Skip to main content

2011 | OriginalPaper | Buchkapitel

4. Bioelastomers in Tissue Engineering

verfasst von : Zhengwei You, Yadong Wang

Erschienen in: Biomaterials for Tissue Engineering Applications

Verlag: Springer Vienna

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The rapid progress in cell and developmental biology has clearly revealed that substrate elasticity and mechanical stimulation significantly affect cell function and tissue development. Further, many engineered soft-tissue constructs such as vascular grafts, cardiac patches, and cartilage are implanted in a mechanically dynamic environment, thus successful implants must sustain and recover from various deformations without mechanical irritations to surrounding tissues. Ideal scaffolds for these tissue engineering applications would be made of biodegradable elastomers with properties that resemble those of the extracellular matrix, providing a biomimetic mechanical environment and mechanical stimulation to cells and tissues. However, traditional biodegradable scaffold materials such as polylactide, polyglycolide, and poly(lactide-co-glycolide) are stiff and are subjected to plastic deformation and failure under cyclic strain. Consequently, for the past decade, many novel bioelastomers have been developed and extensively investigated for applications in tissue engineering. Both thermoplastic elastomers such as polyurethane, poly(ε-caprolactone) copolyester, poly(ether ester) and thermoset elastomers such as crosslinked polyesters have been developed and evaluated to engineer various tissues such as heart muscle and valves, blood vessels, skin, and cartilage. This chapter will cover representative bioelastomers and their applications in tissue engineering to highlight recent advances in this area.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Langer R, Vacanti JP. Tissue engineering. Science 1993;260(5110):920–926.CrossRef Langer R, Vacanti JP. Tissue engineering. Science 1993;260(5110):920–926.CrossRef
2.
Zurück zum Zitat Freed LE, Engelmayr GC, Borenstein JT, Moutos FT, Guilak F. Advanced material strategies for tissue engineering scaffolds. Adv Mater 2009;21(32–33):3410–3418.CrossRef Freed LE, Engelmayr GC, Borenstein JT, Moutos FT, Guilak F. Advanced material strategies for tissue engineering scaffolds. Adv Mater 2009;21(32–33):3410–3418.CrossRef
3.
Zurück zum Zitat Ghosh K, Ingber DE. Micromechanical control of cell and tissue development: implications for tissue engineering. Adv Drug Deliv Rev 2007;59(13):1306–1318.CrossRef Ghosh K, Ingber DE. Micromechanical control of cell and tissue development: implications for tissue engineering. Adv Drug Deliv Rev 2007;59(13):1306–1318.CrossRef
4.
Zurück zum Zitat Mitragotri S, Lahann J. Physical approaches to biomaterial design. Nat Mater 2009;8(1):15–23.CrossRef Mitragotri S, Lahann J. Physical approaches to biomaterial design. Nat Mater 2009;8(1):15–23.CrossRef
5.
Zurück zum Zitat Rehfeldt F, Engler AJ, Eckhardt A, Ahmed F, Diseher DE. Cell responses to the mechanochemical microenvironment – implications for regenerative medicine and drug delivery. Adv Drug Del Rev 2007;59(13):1329–1339.CrossRef Rehfeldt F, Engler AJ, Eckhardt A, Ahmed F, Diseher DE. Cell responses to the mechanochemical microenvironment – implications for regenerative medicine and drug delivery. Adv Drug Del Rev 2007;59(13):1329–1339.CrossRef
6.
Zurück zum Zitat Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science 2005;310(5751):1139–1143.CrossRef Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science 2005;310(5751):1139–1143.CrossRef
7.
Zurück zum Zitat Levental I, Georges PC, Janmey PA. Soft biological materials and their impact on cell function. Soft Matter 2007;3(3):299–306.CrossRef Levental I, Georges PC, Janmey PA. Soft biological materials and their impact on cell function. Soft Matter 2007;3(3):299–306.CrossRef
8.
Zurück zum Zitat Lutolf MP, Gilbert PM, Blau HM. Designing materials to direct stem-cell fate. Nature 2009;462(7272):433–441.CrossRef Lutolf MP, Gilbert PM, Blau HM. Designing materials to direct stem-cell fate. Nature 2009;462(7272):433–441.CrossRef
9.
Zurück zum Zitat Engler AJ, Griffin MA, Sen S, Bonnetnann CG, Sweeney HL, Discher DE. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol 2004;166(6):877–887.CrossRef Engler AJ, Griffin MA, Sen S, Bonnetnann CG, Sweeney HL, Discher DE. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol 2004;166(6):877–887.CrossRef
10.
Zurück zum Zitat Griffin MA, Sen S, Sweeney HL, Discher DE. Adhesion-contractile balance in myocyte differentiation. J Cell Sci 2004;117(Pt 24):5855–5863.CrossRef Griffin MA, Sen S, Sweeney HL, Discher DE. Adhesion-contractile balance in myocyte differentiation. J Cell Sci 2004;117(Pt 24):5855–5863.CrossRef
11.
Zurück zum Zitat Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006;126(4):677–689.CrossRef Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006;126(4):677–689.CrossRef
12.
Zurück zum Zitat Reinhart-King CA, Dembo M, Hammer DA. Cell–cell mechanical communication through compliant substrates. Biophys J 2008;95(12):6044–6051.CrossRef Reinhart-King CA, Dembo M, Hammer DA. Cell–cell mechanical communication through compliant substrates. Biophys J 2008;95(12):6044–6051.CrossRef
13.
Zurück zum Zitat Amsden B. Curable, biodegradable elastomers: emerging biomaterials for drug delivery and tissue engineering. Soft Matter 2007;3(11):1335–1348.CrossRef Amsden B. Curable, biodegradable elastomers: emerging biomaterials for drug delivery and tissue engineering. Soft Matter 2007;3(11):1335–1348.CrossRef
14.
Zurück zum Zitat Chen QZ, Bismarck A, Hansen U, Junaid S, Tran MQ, Harding SE, Ali NN, Boccaccini AR. Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Biomaterials 2008;29(1):47–57.CrossRef Chen QZ, Bismarck A, Hansen U, Junaid S, Tran MQ, Harding SE, Ali NN, Boccaccini AR. Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Biomaterials 2008;29(1):47–57.CrossRef
15.
Zurück zum Zitat Gupta BS, Kasyanov VA. Biomechanics of human common carotid artery and design of novel hybrid textile compliant vascular grafts. J Biomed Mater Res 1997;34(3):341–349.CrossRef Gupta BS, Kasyanov VA. Biomechanics of human common carotid artery and design of novel hybrid textile compliant vascular grafts. J Biomed Mater Res 1997;34(3):341–349.CrossRef
16.
Zurück zum Zitat Dahms SE, Piechota HJ, Dahiya R, Lue TF, Tanagho EA. Composition and biomechanical properties of the bladder acellular matrix graft: comparative analysis in rat, pig and human. Br J Urol 1998;82(3):411–419.CrossRef Dahms SE, Piechota HJ, Dahiya R, Lue TF, Tanagho EA. Composition and biomechanical properties of the bladder acellular matrix graft: comparative analysis in rat, pig and human. Br J Urol 1998;82(3):411–419.CrossRef
17.
Zurück zum Zitat Balguid A, Rubbens MP, Mol A, Bank RA, Bogers AJ, van Kats JP, de Mol BA, Baaijens FP, Bouten CV. The role of collagen cross-links in biomechanical behavior of human aortic heart valve leaflets – relevance for tissue engineering. Tissue Eng 2007;13(7):1501–1511.CrossRef Balguid A, Rubbens MP, Mol A, Bank RA, Bogers AJ, van Kats JP, de Mol BA, Baaijens FP, Bouten CV. The role of collagen cross-links in biomechanical behavior of human aortic heart valve leaflets – relevance for tissue engineering. Tissue Eng 2007;13(7):1501–1511.CrossRef
18.
Zurück zum Zitat Lee JM, Boughner DR. Mechanical properties of human pericardium. Differences in viscoelastic response when compared with canine pericardium. Circ Res 1985;57(3):475–481.CrossRef Lee JM, Boughner DR. Mechanical properties of human pericardium. Differences in viscoelastic response when compared with canine pericardium. Circ Res 1985;57(3):475–481.CrossRef
19.
Zurück zum Zitat Monson KL, Goldsmith W, Barbaro NM, Manley GT. Axial mechanical properties of fresh human cerebral blood vessels. J Biomech Eng 2003;125(2):288–294.CrossRef Monson KL, Goldsmith W, Barbaro NM, Manley GT. Axial mechanical properties of fresh human cerebral blood vessels. J Biomech Eng 2003;125(2):288–294.CrossRef
20.
Zurück zum Zitat Yang SF, Leong KF, Du ZH, Chua CK. The design of scaffolds for use in tissue engineering. Part 1. Traditional factors. Tissue Eng 2001;7(6):679–689.CrossRef Yang SF, Leong KF, Du ZH, Chua CK. The design of scaffolds for use in tissue engineering. Part 1. Traditional factors. Tissue Eng 2001;7(6):679–689.CrossRef
21.
Zurück zum Zitat Janmey PA, McCulloch CA. Cell mechanics: integrating cell responses to mechanical stimuli. Annu Rev Biomed Eng 2007;9:1–34.CrossRef Janmey PA, McCulloch CA. Cell mechanics: integrating cell responses to mechanical stimuli. Annu Rev Biomed Eng 2007;9:1–34.CrossRef
22.
Zurück zum Zitat Dado D, Levenberg S. Cell-scaffold mechanical interplay within engineered tissue. Semin Cell Dev Biol 2009;20(6):656–664.CrossRef Dado D, Levenberg S. Cell-scaffold mechanical interplay within engineered tissue. Semin Cell Dev Biol 2009;20(6):656–664.CrossRef
23.
Zurück zum Zitat Bilodeau K, Mantovani D. Bioreactors for tissue engineering: focus on mechanical constraints. A comparative review. Tissue Eng 2006;12(8):2367–2383.CrossRef Bilodeau K, Mantovani D. Bioreactors for tissue engineering: focus on mechanical constraints. A comparative review. Tissue Eng 2006;12(8):2367–2383.CrossRef
24.
Zurück zum Zitat Zimmermann WH, Cesnjevar R. Cardiac tissue engineering: implications for pediatric heart surgery. Pediatr Cardiol 2009;30(5):716–723.CrossRef Zimmermann WH, Cesnjevar R. Cardiac tissue engineering: implications for pediatric heart surgery. Pediatr Cardiol 2009;30(5):716–723.CrossRef
25.
Zurück zum Zitat Hollister SJ. Scaffold design and manufacturing: from concept to clinic. Adv Mater 2009;21(32–33):3330–3342.CrossRef Hollister SJ. Scaffold design and manufacturing: from concept to clinic. Adv Mater 2009;21(32–33):3330–3342.CrossRef
26.
Zurück zum Zitat Zimmermann WH. Tissue engineering polymers flex their muscles. Nat Mater 2008;7(12):932–933.CrossRef Zimmermann WH. Tissue engineering polymers flex their muscles. Nat Mater 2008;7(12):932–933.CrossRef
27.
Zurück zum Zitat Lavik E, Langer R. Tissue engineering: current state and perspectives. Appl Microbiol Biotechnol 2004;65(1):1–8.CrossRef Lavik E, Langer R. Tissue engineering: current state and perspectives. Appl Microbiol Biotechnol 2004;65(1):1–8.CrossRef
28.
Zurück zum Zitat Chow D, Nunalee ML, Lim DW, Simnick AJ, Chilkoti A. Peptide-based biopolymers in biomedicine and biotechnology. Mater Sci Eng R Rep 2008;62(4):125–155.CrossRef Chow D, Nunalee ML, Lim DW, Simnick AJ, Chilkoti A. Peptide-based biopolymers in biomedicine and biotechnology. Mater Sci Eng R Rep 2008;62(4):125–155.CrossRef
29.
Zurück zum Zitat van Hest JCM, Tirrell DA. Protein-based materials, toward a new level of structural control. Chem Commun 2001;(19):1897–1904. van Hest JCM, Tirrell DA. Protein-based materials, toward a new level of structural control. Chem Commun 2001;(19):1897–1904.
30.
Zurück zum Zitat Daamen WF, Veerkamp JH, van Hest JCM, van Kuppevelt TH. Elastin as a biomaterial for tissue engineering. Biomaterials 2007;28(30):4378–4398.CrossRef Daamen WF, Veerkamp JH, van Hest JCM, van Kuppevelt TH. Elastin as a biomaterial for tissue engineering. Biomaterials 2007;28(30):4378–4398.CrossRef
31.
Zurück zum Zitat Martin DP, Williams SF. Medical applications of poly-4-hydroxybutyrate: a strong flexible absorbable biomaterial. Biochem Eng J 2003;16(2):97–105.CrossRef Martin DP, Williams SF. Medical applications of poly-4-hydroxybutyrate: a strong flexible absorbable biomaterial. Biochem Eng J 2003;16(2):97–105.CrossRef
32.
Zurück zum Zitat Chen GQ, Wu Q. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 2005;26(33):6565–6578.CrossRef Chen GQ, Wu Q. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 2005;26(33):6565–6578.CrossRef
33.
Zurück zum Zitat Malafaya PB, Silva GA, Reis RL. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Del Rev 2007;59(4–5):207–233.CrossRef Malafaya PB, Silva GA, Reis RL. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Del Rev 2007;59(4–5):207–233.CrossRef
34.
Zurück zum Zitat Drobny JG. Handbook of thermoplastic elastomers. Norwich, NY: PDL(Plastics Design Library)/William Andrew Pub., 2007. Drobny JG. Handbook of thermoplastic elastomers. Norwich, NY: PDL(Plastics Design Library)/William Andrew Pub., 2007.
35.
Zurück zum Zitat Boretos JW, Pierce WS. Segmented polyurethane: a new elastomer for biomedical applications. Science 1967;158(807):1481–1482.CrossRef Boretos JW, Pierce WS. Segmented polyurethane: a new elastomer for biomedical applications. Science 1967;158(807):1481–1482.CrossRef
36.
Zurück zum Zitat Zdrahala RJ, Zdrahala IJ. Biomedical applications of polyurethanes: a review of past promises, present realities, and a vibrant future. J Biomater Appl 1999;14(1):67–90. Zdrahala RJ, Zdrahala IJ. Biomedical applications of polyurethanes: a review of past promises, present realities, and a vibrant future. J Biomater Appl 1999;14(1):67–90.
37.
Zurück zum Zitat Burke A, Hasirci N. Polyurethanes in biomedical applications. Adv Exp Med Biol 2004;553:83–101. Burke A, Hasirci N. Polyurethanes in biomedical applications. Adv Exp Med Biol 2004;553:83–101.
38.
Zurück zum Zitat Wagner H, Beller FK, Pfautsch M. Electron and light microscopy examination of capsules around breast implants. Plast Reconstr Surg 1977;60(1):49–55.CrossRef Wagner H, Beller FK, Pfautsch M. Electron and light microscopy examination of capsules around breast implants. Plast Reconstr Surg 1977;60(1):49–55.CrossRef
39.
Zurück zum Zitat Bucky LP, Ehrlich HP, Sohoni S, May JW, Jr. The capsule quality of saline-filled smooth silicone, textured silicone, and polyurethane implants in rabbits: a long-term study. Plast Reconstr Surg 1994;93(6):1123–1131; discussion 1132–1133.CrossRef Bucky LP, Ehrlich HP, Sohoni S, May JW, Jr. The capsule quality of saline-filled smooth silicone, textured silicone, and polyurethane implants in rabbits: a long-term study. Plast Reconstr Surg 1994;93(6):1123–1131; discussion 1132–1133.CrossRef
40.
Zurück zum Zitat Slade CL, Peterson HD. Disappearance of the polyurethane cover of the Ashley Natural Y prosthesis. Plast Reconstr Surg 1982;70(3):379–383.CrossRef Slade CL, Peterson HD. Disappearance of the polyurethane cover of the Ashley Natural Y prosthesis. Plast Reconstr Surg 1982;70(3):379–383.CrossRef
41.
Zurück zum Zitat Szycher M, Siciliano AA. An assessment of 2,4 TDA formation from Surgitek polyurethane foam under simulated physiological conditions. J Biomater Appl 1991;5(4):323–336.CrossRef Szycher M, Siciliano AA. An assessment of 2,4 TDA formation from Surgitek polyurethane foam under simulated physiological conditions. J Biomater Appl 1991;5(4):323–336.CrossRef
42.
Zurück zum Zitat Guelcher SA. Biodegradable polyurethanes: synthesis and applications in regenerative medicine. Tissue Eng Part B Rev 2008;14(1):3–17.CrossRef Guelcher SA. Biodegradable polyurethanes: synthesis and applications in regenerative medicine. Tissue Eng Part B Rev 2008;14(1):3–17.CrossRef
43.
Zurück zum Zitat Santerre JP, Woodhouse K, Laroche G, Labow RS. Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials. Biomaterials 2005;26(35):7457–7470.CrossRef Santerre JP, Woodhouse K, Laroche G, Labow RS. Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials. Biomaterials 2005;26(35):7457–7470.CrossRef
44.
Zurück zum Zitat Guan JJ, Sacks MS, Beckman EJ, Wagner WR. Biodegradable poly(ether ester urethane)urea elastomers based on poly(ether ester) triblock copolymers and putrescine: synthesis, characterization and cytocompatibility. Biomaterials 2004;25(1):85–96.CrossRef Guan JJ, Sacks MS, Beckman EJ, Wagner WR. Biodegradable poly(ether ester urethane)urea elastomers based on poly(ether ester) triblock copolymers and putrescine: synthesis, characterization and cytocompatibility. Biomaterials 2004;25(1):85–96.CrossRef
45.
Zurück zum Zitat Sung CSP, Smith TW, Sung NH. Properties of segmented polyether poly(urethaneureas) based on 2,4-toluene diisocyanate. 2. Infrared and mechanical studies. Macromolecules 1980;13(1):117–121.CrossRef Sung CSP, Smith TW, Sung NH. Properties of segmented polyether poly(urethaneureas) based on 2,4-toluene diisocyanate. 2. Infrared and mechanical studies. Macromolecules 1980;13(1):117–121.CrossRef
46.
Zurück zum Zitat Wang CB, Cooper SL. Morphology and properties of segmented polyether polyurethaneureas. Macromolecules 1983;16(5):775–786.CrossRef Wang CB, Cooper SL. Morphology and properties of segmented polyether polyurethaneureas. Macromolecules 1983;16(5):775–786.CrossRef
47.
Zurück zum Zitat Guan JJ, Sacks MS, Beckman EJ, Wagner WR. Synthesis, characterization, and cytocompatibility of elastomeric, biodegradable poly(ester-urethane)ureas based on poly(caprolactone) and putrescine. J Biomed Mater Res 2002;61(3):493–503.CrossRef Guan JJ, Sacks MS, Beckman EJ, Wagner WR. Synthesis, characterization, and cytocompatibility of elastomeric, biodegradable poly(ester-urethane)ureas based on poly(caprolactone) and putrescine. J Biomed Mater Res 2002;61(3):493–503.CrossRef
48.
Zurück zum Zitat Stankus JJ, Guan JJ, Wagner WR. Fabrication of biodegradable elastomeric scaffolds with sub-micron morphologies. J Biomed Mater Res A 2004;70A(4):603–614.CrossRef Stankus JJ, Guan JJ, Wagner WR. Fabrication of biodegradable elastomeric scaffolds with sub-micron morphologies. J Biomed Mater Res A 2004;70A(4):603–614.CrossRef
49.
Zurück zum Zitat Stankus JJ, Freytes DO, Badylak SF, Wagner WR. Hybrid nanofibrous scaffolds from electrospinning of a synthetic biodegradable elastomer and urinary bladder matrix. J Biomater Sci Polym Ed 2008;19(5):635–652.CrossRef Stankus JJ, Freytes DO, Badylak SF, Wagner WR. Hybrid nanofibrous scaffolds from electrospinning of a synthetic biodegradable elastomer and urinary bladder matrix. J Biomater Sci Polym Ed 2008;19(5):635–652.CrossRef
50.
Zurück zum Zitat Guan JJ, Fujimoto KL, Sacks MS, Wagner WR. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials 2005;26(18):3961–3971.CrossRef Guan JJ, Fujimoto KL, Sacks MS, Wagner WR. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials 2005;26(18):3961–3971.CrossRef
51.
Zurück zum Zitat Guan JJ, Wagner WR. Synthesis, characterization and cytocompatibility of polyurethaneurea elastomers with designed elastase sensitivity. Biomacromolecules 2005;6(5):2833–2842.CrossRef Guan JJ, Wagner WR. Synthesis, characterization and cytocompatibility of polyurethaneurea elastomers with designed elastase sensitivity. Biomacromolecules 2005;6(5):2833–2842.CrossRef
52.
Zurück zum Zitat Courtney T, Sacks MS, Stankus J, Guan J, Wagner WR. Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy. Biomaterials 2006;27(19):3631–3638. Courtney T, Sacks MS, Stankus J, Guan J, Wagner WR. Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy. Biomaterials 2006;27(19):3631–3638.
53.
Zurück zum Zitat Stankus JJ, Guan JJ, Fujimoto K, Wagner WR. Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix. Biomaterials 2006;27(5):735–744.CrossRef Stankus JJ, Guan JJ, Fujimoto K, Wagner WR. Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix. Biomaterials 2006;27(5):735–744.CrossRef
54.
Zurück zum Zitat Guan J, Stankus JJ, Wagner WR. Biodegradable elastomeric scaffolds with basic fibroblast growth factor release. J Control Release 2007;120(1–2):70–78.CrossRef Guan J, Stankus JJ, Wagner WR. Biodegradable elastomeric scaffolds with basic fibroblast growth factor release. J Control Release 2007;120(1–2):70–78.CrossRef
55.
Zurück zum Zitat Guan J, Fujimoto KL, Wagner WR. Elastase-sensitive elastomeric scaffolds with variable anisotropy for soft tissue engineering. Pharm Res 2008;25(10):2400–2412.CrossRef Guan J, Fujimoto KL, Wagner WR. Elastase-sensitive elastomeric scaffolds with variable anisotropy for soft tissue engineering. Pharm Res 2008;25(10):2400–2412.CrossRef
56.
Zurück zum Zitat Wang F, Li ZQ, Tamama K, Sen CK, Guan JJ. Fabrication and characterization of prosurvival growth factor releasing, anisotropic scaffolds for enhanced mesenchymal stem cell survival/growth and orientation. Biomacromolecules 2009;10(9):2609–2618.CrossRef Wang F, Li ZQ, Tamama K, Sen CK, Guan JJ. Fabrication and characterization of prosurvival growth factor releasing, anisotropic scaffolds for enhanced mesenchymal stem cell survival/growth and orientation. Biomacromolecules 2009;10(9):2609–2618.CrossRef
57.
Zurück zum Zitat Wang F, Li ZQ, Lannutti JL, Wagner WR, Guan JJ. Synthesis, characterization and surface modification of low moduli poly(ether carbonate urethane)ureas for soft tissue engineering. Acta Biomater 2009;5(8):2901–2912.CrossRef Wang F, Li ZQ, Lannutti JL, Wagner WR, Guan JJ. Synthesis, characterization and surface modification of low moduli poly(ether carbonate urethane)ureas for soft tissue engineering. Acta Biomater 2009;5(8):2901–2912.CrossRef
58.
Zurück zum Zitat Hong Y, Ye SH, Nieponice A, Soletti L, Vorp DA, Wagner WR. A small diameter, fibrous vascular conduit generated from a poly(ester urethane)urea and phospholipid polymer blend. Biomaterials 2009;30(13):2457–2467.CrossRef Hong Y, Ye SH, Nieponice A, Soletti L, Vorp DA, Wagner WR. A small diameter, fibrous vascular conduit generated from a poly(ester urethane)urea and phospholipid polymer blend. Biomaterials 2009;30(13):2457–2467.CrossRef
59.
Zurück zum Zitat Fujimoto KL, Guan JJ, Oshima H, Sakai T, Wagner WR. In vivo evaluation of a porous, elastic, biodegradable patch for reconstructive cardiac procedures. Ann Thorac Surg 2007;83(2):648–654.CrossRef Fujimoto KL, Guan JJ, Oshima H, Sakai T, Wagner WR. In vivo evaluation of a porous, elastic, biodegradable patch for reconstructive cardiac procedures. Ann Thorac Surg 2007;83(2):648–654.CrossRef
60.
Zurück zum Zitat Fujimoto KL, Tobita K, Merryman WD, Guan JJ, Momoi N, Stolz DB, Sacks MS, Keller BB, Wagner WR. An elastic, biodegradable cardiac patch induces contractile smooth muscle and improves cardiac remodeling and function in subacute myocardial infarction. J Am Coll Cardiol 2007;49(23):2292–2300.CrossRef Fujimoto KL, Tobita K, Merryman WD, Guan JJ, Momoi N, Stolz DB, Sacks MS, Keller BB, Wagner WR. An elastic, biodegradable cardiac patch induces contractile smooth muscle and improves cardiac remodeling and function in subacute myocardial infarction. J Am Coll Cardiol 2007;49(23):2292–2300.CrossRef
61.
Zurück zum Zitat Nieponice A, Soletti L, Guan JJ, Deasy BM, Huard J, Wagner WR, Vorp DA. Development of a tissue-engineered vascular graft combining a biodegradable scaffold, muscle-derived stem cells and a rotational vacuum seeding technique. Biomaterials 2008;29(7):825–833.CrossRef Nieponice A, Soletti L, Guan JJ, Deasy BM, Huard J, Wagner WR, Vorp DA. Development of a tissue-engineered vascular graft combining a biodegradable scaffold, muscle-derived stem cells and a rotational vacuum seeding technique. Biomaterials 2008;29(7):825–833.CrossRef
62.
Zurück zum Zitat Skarja GA, Woodhouse KA. Structure-property relationships of degradable polyurethane elastomers containing an amino acid-based chain extender. J Appl Polym Sci 2000;75(12):1522–1534.CrossRef Skarja GA, Woodhouse KA. Structure-property relationships of degradable polyurethane elastomers containing an amino acid-based chain extender. J Appl Polym Sci 2000;75(12):1522–1534.CrossRef
63.
Zurück zum Zitat Skarja GA, Woodhouse KA. In vitro degradation and erosion of degradable, segmented polyurethanes containing an amino acid-based chain extender. J Biomater Sci Polym Ed 2001;12(8):851–873.CrossRef Skarja GA, Woodhouse KA. In vitro degradation and erosion of degradable, segmented polyurethanes containing an amino acid-based chain extender. J Biomater Sci Polym Ed 2001;12(8):851–873.CrossRef
64.
Zurück zum Zitat Fromstein JD, Woodhouse KA. Elastomeric biodegradable polyurethane blends for soft tissue applications. J Biomater Sci Polym Ed 2002;13(4):391–406.CrossRef Fromstein JD, Woodhouse KA. Elastomeric biodegradable polyurethane blends for soft tissue applications. J Biomater Sci Polym Ed 2002;13(4):391–406.CrossRef
65.
Zurück zum Zitat Alperin C, Zandstra PW, Woodhouse KA. Polyurethane films seeded with embryonic stem cell-derived cardiomyocytes for use in cardiac tissue engineering applications. Biomaterials 2005;26(35):7377–7386.CrossRef Alperin C, Zandstra PW, Woodhouse KA. Polyurethane films seeded with embryonic stem cell-derived cardiomyocytes for use in cardiac tissue engineering applications. Biomaterials 2005;26(35):7377–7386.CrossRef
66.
Zurück zum Zitat Fromstein JD, Zandstra PW, Alperin C, Rockwood D, Rabolt JF, Woodhouse KA. Seeding bioreactor-produced embryonic stem cell-derived cardiomyocytes on different porous, degradable, polyurethane scaffolds reveals the effect of scaffold architecture on cell morphology. Tissue Eng Part A 2008;14(3):369–378.CrossRef Fromstein JD, Zandstra PW, Alperin C, Rockwood D, Rabolt JF, Woodhouse KA. Seeding bioreactor-produced embryonic stem cell-derived cardiomyocytes on different porous, degradable, polyurethane scaffolds reveals the effect of scaffold architecture on cell morphology. Tissue Eng Part A 2008;14(3):369–378.CrossRef
67.
Zurück zum Zitat McDevitt TC, Woodhouse KA, Hauschka SD, Murry CE, Stayton PS. Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair. J Biomed Mater Res A 2003;66A(3):586–595.CrossRef McDevitt TC, Woodhouse KA, Hauschka SD, Murry CE, Stayton PS. Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair. J Biomed Mater Res A 2003;66A(3):586–595.CrossRef
68.
Zurück zum Zitat Rockwood DN, Akins RE, Parrag IC, Woodhouse KA, Rabolt JF. Culture on electrospun polyurethane scaffolds decreases atrial natriuretic peptide expression by cardiomyocytes in vitro. Biomaterials 2008;29(36):4783–4791.CrossRef Rockwood DN, Akins RE, Parrag IC, Woodhouse KA, Rabolt JF. Culture on electrospun polyurethane scaffolds decreases atrial natriuretic peptide expression by cardiomyocytes in vitro. Biomaterials 2008;29(36):4783–4791.CrossRef
69.
Zurück zum Zitat Rockwood DN, Woodhouse KA, Fromstein JD, Chase DB, Rabolt JF. Characterization of biodegradable polyurethane microfibers for tissue engineering. J Biomater Sci Polym Ed 2007;18(6):743–758.CrossRef Rockwood DN, Woodhouse KA, Fromstein JD, Chase DB, Rabolt JF. Characterization of biodegradable polyurethane microfibers for tissue engineering. J Biomater Sci Polym Ed 2007;18(6):743–758.CrossRef
70.
Zurück zum Zitat Tatai L, Moore TG, Adhikari R, Malherbe F, Jayasekara R, Griffiths I, Gunatillake PA. Thermoplastic biodegradable polyurethanes: the effect of chain extender structure on properties and in-vitro degradation. Biomaterials 2007;28(36):5407–5417.CrossRef Tatai L, Moore TG, Adhikari R, Malherbe F, Jayasekara R, Griffiths I, Gunatillake PA. Thermoplastic biodegradable polyurethanes: the effect of chain extender structure on properties and in-vitro degradation. Biomaterials 2007;28(36):5407–5417.CrossRef
71.
Zurück zum Zitat Ding MM, Li JH, Fu XT, Zhou J, Tan H, Gu Q, Fu Q. Synthesis, degradation, and cytotoxicity of multiblock poly(epsilon-caprolactone urethane)s containing Gemini quaternary ammonium cationic groups. Biomacromolecules 2009;10(10):2857–2865.CrossRef Ding MM, Li JH, Fu XT, Zhou J, Tan H, Gu Q, Fu Q. Synthesis, degradation, and cytotoxicity of multiblock poly(epsilon-caprolactone urethane)s containing Gemini quaternary ammonium cationic groups. Biomacromolecules 2009;10(10):2857–2865.CrossRef
72.
Zurück zum Zitat Sarkar D, Lopina ST. Oxidative and enzymatic degradations of L-tyrosine based polyurethanes. Polym Degrad Stab 2007;92(11):1994–2004.CrossRef Sarkar D, Lopina ST. Oxidative and enzymatic degradations of L-tyrosine based polyurethanes. Polym Degrad Stab 2007;92(11):1994–2004.CrossRef
73.
Zurück zum Zitat Xu W, Wang XH, Yan YN, Zhang RJ. Rapid prototyping of polyurethane for the creation of vascular systems. J Bioact Compat Polym 2008;23(2):103–114.CrossRef Xu W, Wang XH, Yan YN, Zhang RJ. Rapid prototyping of polyurethane for the creation of vascular systems. J Bioact Compat Polym 2008;23(2):103–114.CrossRef
74.
Zurück zum Zitat Chia SL, Gorna K, Gogolewski S, Alini M. Biodegradable elastomeric polyurethane membranes as chondrocyte carriers for cartilage repair. Tissue Eng 2006;12(7):1945–1953.CrossRef Chia SL, Gorna K, Gogolewski S, Alini M. Biodegradable elastomeric polyurethane membranes as chondrocyte carriers for cartilage repair. Tissue Eng 2006;12(7):1945–1953.CrossRef
75.
Zurück zum Zitat Zhang L, Zhou JY, Lu QP, Wei YJ, Hu SS. A novel small-diameter vascular graft: in vivo behavior of biodegradable three-layered tubular scaffolds. Biotechnol Bioeng 2008;99(4):1007–1015.CrossRef Zhang L, Zhou JY, Lu QP, Wei YJ, Hu SS. A novel small-diameter vascular graft: in vivo behavior of biodegradable three-layered tubular scaffolds. Biotechnol Bioeng 2008;99(4):1007–1015.CrossRef
76.
Zurück zum Zitat Laschke MW, Strohe A, Scheuer C, Eglin D, Verrier S, Alini M, Pohlemann T, Menger MD. In vivo biocompatibility and vascularization of biodegradable porous polyurethane scaffolds for tissue engineering. Acta Biomater 2009;5(6):1991–2001.CrossRef Laschke MW, Strohe A, Scheuer C, Eglin D, Verrier S, Alini M, Pohlemann T, Menger MD. In vivo biocompatibility and vascularization of biodegradable porous polyurethane scaffolds for tissue engineering. Acta Biomater 2009;5(6):1991–2001.CrossRef
77.
Zurück zum Zitat Gisselfalt K, Edberg B, Flodin P. Synthesis and properties of degradable poly(urethane urea)s to be used for ligament reconstructions. Biomacromolecules 2002;3(5):951–958.CrossRef Gisselfalt K, Edberg B, Flodin P. Synthesis and properties of degradable poly(urethane urea)s to be used for ligament reconstructions. Biomacromolecules 2002;3(5):951–958.CrossRef
78.
Zurück zum Zitat Liljensten E, Gisselfalt K, Edberg B, Bertilsson H, Flodin P, Nilsson A, Lindahl A, Peterson L. Studies of polyurethane urea bands for ACL reconstruction. J Mater Sci Mater Med 2002;13(4):351–359.CrossRef Liljensten E, Gisselfalt K, Edberg B, Bertilsson H, Flodin P, Nilsson A, Lindahl A, Peterson L. Studies of polyurethane urea bands for ACL reconstruction. J Mater Sci Mater Med 2002;13(4):351–359.CrossRef
79.
Zurück zum Zitat Zhang CH, Zhang N, Wen XJ. Improving the elasticity and cytophilicity of biodegradable polyurethane by changing chain extender. J Biomed Mater Res B Appl Biomater 2006;79B(2):335–344.CrossRef Zhang CH, Zhang N, Wen XJ. Improving the elasticity and cytophilicity of biodegradable polyurethane by changing chain extender. J Biomed Mater Res B Appl Biomater 2006;79B(2):335–344.CrossRef
80.
Zurück zum Zitat Siepe M, Giraud MN, Liljensten E, Nydegger U, Menasche P, Carrel T, Tevaearai HT. Construction of skeletal myoblast-based polyurethane scaffolds for myocardial repair. Artif Organs 2007;31(6):425-433.CrossRef Siepe M, Giraud MN, Liljensten E, Nydegger U, Menasche P, Carrel T, Tevaearai HT. Construction of skeletal myoblast-based polyurethane scaffolds for myocardial repair. Artif Organs 2007;31(6):425-433.CrossRef
81.
Zurück zum Zitat Siepe M, Giraud MN, Pavlovic M, Receputo C, Beyersdorf F, Menasche P, Carrel T, Tevaearai HT. Myoblast-seeded biodegradable scaffolds to prevent post-myocardial infarction evolution toward heart failure. J Thorac Cardiovasc Surg 2006;132(1):124–131.CrossRef Siepe M, Giraud MN, Pavlovic M, Receputo C, Beyersdorf F, Menasche P, Carrel T, Tevaearai HT. Myoblast-seeded biodegradable scaffolds to prevent post-myocardial infarction evolution toward heart failure. J Thorac Cardiovasc Surg 2006;132(1):124–131.CrossRef
82.
Zurück zum Zitat Soletti L, Nieponice A, Guan JJ, Stankus JJ, Wagner WR, Vorp DA. A seeding device for tissue engineered tubular structures. Biomaterials 2006;27(28):4863–4870.CrossRef Soletti L, Nieponice A, Guan JJ, Stankus JJ, Wagner WR, Vorp DA. A seeding device for tissue engineered tubular structures. Biomaterials 2006;27(28):4863–4870.CrossRef
83.
Zurück zum Zitat Zhang JY, Beckman EJ, Hu J, Yang GG, Agarwal S, Hollinger JO. Synthesis, biodegradability, and biocompatibility of lysine diisocyanate-glucose polymers. Tissue Eng 2002;8(5):771–785.CrossRef Zhang JY, Beckman EJ, Hu J, Yang GG, Agarwal S, Hollinger JO. Synthesis, biodegradability, and biocompatibility of lysine diisocyanate-glucose polymers. Tissue Eng 2002;8(5):771–785.CrossRef
84.
Zurück zum Zitat Li B, Davidson JM, Guelcher SA. The effect of the local delivery of platelet-derived growth factor from reactive two-component polyurethane scaffolds on the healing in rat skin excisional wounds. Biomaterials 2009;30(20):3486–3494.CrossRef Li B, Davidson JM, Guelcher SA. The effect of the local delivery of platelet-derived growth factor from reactive two-component polyurethane scaffolds on the healing in rat skin excisional wounds. Biomaterials 2009;30(20):3486–3494.CrossRef
85.
Zurück zum Zitat Sharifpoor S, Labow RS, Santerre JP. Synthesis and characterization of degradable polar hydrophobic ionic polyurethane scaffolds for vascular tissue engineering applications. Biomacromolecules 2009;10(10):2729–2739.CrossRef Sharifpoor S, Labow RS, Santerre JP. Synthesis and characterization of degradable polar hydrophobic ionic polyurethane scaffolds for vascular tissue engineering applications. Biomacromolecules 2009;10(10):2729–2739.CrossRef
86.
Zurück zum Zitat Hollinger JO. Preliminary report on the osteogenic potential of a biodegradable copolymer of polyactide (PLA) and polyglycolide (PGA). J Biomed Mater Res 1983;17(1):71–82.CrossRef Hollinger JO. Preliminary report on the osteogenic potential of a biodegradable copolymer of polyactide (PLA) and polyglycolide (PGA). J Biomed Mater Res 1983;17(1):71–82.CrossRef
87.
Zurück zum Zitat Pitt CG, Gratzl MM, Kimmel GL, Surles J, Schindler A. Aliphatic polyesters II. The degradation of poly (DL-lactide), poly (epsilon-caprolactone), and their copolymers in vivo. Biomaterials 1981;2(4):215–220.CrossRef Pitt CG, Gratzl MM, Kimmel GL, Surles J, Schindler A. Aliphatic polyesters II. The degradation of poly (DL-lactide), poly (epsilon-caprolactone), and their copolymers in vivo. Biomaterials 1981;2(4):215–220.CrossRef
88.
Zurück zum Zitat Barrett DG, Yousaf MN. Design and Applications of biodegradable polyester tissue scaffolds based on endogenous monomers found in human metabolism. Molecules 2009;14(10):4022–4050.CrossRef Barrett DG, Yousaf MN. Design and Applications of biodegradable polyester tissue scaffolds based on endogenous monomers found in human metabolism. Molecules 2009;14(10):4022–4050.CrossRef
89.
Zurück zum Zitat Lee SH, Kim BS, Kim SH, Choi SW, Jeong SI, Kwon IK, Kang SW, Nikolovski J, Mooney DJ, Han YK, Kim YH. Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering. J Biomed Mater Res A 2003;66A(1):29–37.CrossRef Lee SH, Kim BS, Kim SH, Choi SW, Jeong SI, Kwon IK, Kang SW, Nikolovski J, Mooney DJ, Han YK, Kim YH. Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering. J Biomed Mater Res A 2003;66A(1):29–37.CrossRef
90.
Zurück zum Zitat Jeong SI, Kim SH, Kim YH, Jung Y, Kwon JH, Kim BS, Lee YM. Manufacture of elastic biodegradable PLCL scaffolds for mechano-active vascular tissue engineering. J Biomater Sci Polym Ed 2004;15(5):645–660.CrossRef Jeong SI, Kim SH, Kim YH, Jung Y, Kwon JH, Kim BS, Lee YM. Manufacture of elastic biodegradable PLCL scaffolds for mechano-active vascular tissue engineering. J Biomater Sci Polym Ed 2004;15(5):645–660.CrossRef
91.
Zurück zum Zitat Jeong SI, Kim BS, Kang SW, Kwon JH, Lee YM, Kim SH, Kim YH. In vivo biocompatibilty and degradation behavior of elastic poly(L-lactide-co-epsilon-caprolactone) scaffolds. Biomaterials 2004;25(28):5939–5946.CrossRef Jeong SI, Kim BS, Kang SW, Kwon JH, Lee YM, Kim SH, Kim YH. In vivo biocompatibilty and degradation behavior of elastic poly(L-lactide-co-epsilon-caprolactone) scaffolds. Biomaterials 2004;25(28):5939–5946.CrossRef
92.
Zurück zum Zitat Jeong SI, Kwon JH, Lim JI, Cho SW, Jung YM, Sung WJ, Kim SH, Kim YH, Lee YM, Kim BS, Choi CY, Kim SJ. Mechano-active tissue engineering of vascular smooth muscle using pulsatile perfusion bioreactors and elastic PLCL scaffolds. Biomaterials 2005;26(12):1405–1411.CrossRef Jeong SI, Kwon JH, Lim JI, Cho SW, Jung YM, Sung WJ, Kim SH, Kim YH, Lee YM, Kim BS, Choi CY, Kim SJ. Mechano-active tissue engineering of vascular smooth muscle using pulsatile perfusion bioreactors and elastic PLCL scaffolds. Biomaterials 2005;26(12):1405–1411.CrossRef
93.
Zurück zum Zitat Kim SH, Kwon JH, Chung MS, Chung E, Jung Y, Kim SH, Kim YH. Fabrication of a new tubular fibrous PLCL scaffold for vascular tissue engineering. J Biomater Sci Polym Ed 2006;17(12):1359–1374.CrossRef Kim SH, Kwon JH, Chung MS, Chung E, Jung Y, Kim SH, Kim YH. Fabrication of a new tubular fibrous PLCL scaffold for vascular tissue engineering. J Biomater Sci Polym Ed 2006;17(12):1359–1374.CrossRef
94.
Zurück zum Zitat He W, Ma ZW, Yong T, Teo WE, Ramakrishna S. Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth. Biomaterials 2005;26(36):7606–7615.CrossRef He W, Ma ZW, Yong T, Teo WE, Ramakrishna S. Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth. Biomaterials 2005;26(36):7606–7615.CrossRef
95.
Zurück zum Zitat Burks CA, Bundy K, Fotuhi P, Alt E. Characterization of 75 : 25 poly(l-lactide-co-epsilon-caprolactone) thin films for the endoluminal delivery of adipose-derived stem cells to abdominal aortic aneurysms. Tissue Eng 2006;12(9):2591–2600.CrossRef Burks CA, Bundy K, Fotuhi P, Alt E. Characterization of 75 : 25 poly(l-lactide-co-epsilon-caprolactone) thin films for the endoluminal delivery of adipose-derived stem cells to abdominal aortic aneurysms. Tissue Eng 2006;12(9):2591–2600.CrossRef
96.
Zurück zum Zitat Matsumura G, Hibino N, Ikada Y, Kurosawa H, Shin’oka T. Successful application of tissue engineered vascular autografts: clinical experience. Biomaterials 2003;24(13):2303–2308.CrossRef Matsumura G, Hibino N, Ikada Y, Kurosawa H, Shin’oka T. Successful application of tissue engineered vascular autografts: clinical experience. Biomaterials 2003;24(13):2303–2308.CrossRef
97.
Zurück zum Zitat Shin’oka T, Matsumura G, Hibino N, Naito Y, Watanabe M, Konuma T, Sakamoto T, Nagatsu M, Kurosawa H. Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg 2005;129(6):1330–1338.CrossRef Shin’oka T, Matsumura G, Hibino N, Naito Y, Watanabe M, Konuma T, Sakamoto T, Nagatsu M, Kurosawa H. Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg 2005;129(6):1330–1338.CrossRef
98.
Zurück zum Zitat Xie J, Ihara M, Jung Y, Kwon IK, Kim SH, Kim YH, Matsuda T. Mechano-active scaffold design based on microporous poly(L-lactide-co-epsilon-caprolactone) for articular cartilage tissue engineering: dependence of porosity on compression force-applied mechanical behaviors. Tissue Eng 2006;12(3):449–458.CrossRef Xie J, Ihara M, Jung Y, Kwon IK, Kim SH, Kim YH, Matsuda T. Mechano-active scaffold design based on microporous poly(L-lactide-co-epsilon-caprolactone) for articular cartilage tissue engineering: dependence of porosity on compression force-applied mechanical behaviors. Tissue Eng 2006;12(3):449–458.CrossRef
99.
Zurück zum Zitat Deschamps AA, Grijpma DW, Feijen J. Poly(ethylene oxide)/poly(butylene terephthalate) segmented block copolymers: the effect of copolymer composition on physical properties and degradation behavior. Polymer 2001;42(23):9335–9345.CrossRef Deschamps AA, Grijpma DW, Feijen J. Poly(ethylene oxide)/poly(butylene terephthalate) segmented block copolymers: the effect of copolymer composition on physical properties and degradation behavior. Polymer 2001;42(23):9335–9345.CrossRef
100.
Zurück zum Zitat Deschamps AA, van Apeldoorn AA, Hayen H, de Bruijn JD, Karst U, Grijpma DW, Feijen J. In vivo and in vitro degradation of poly(ether ester) block copolymers based on poly(ethylene glycol) and poly(butylene terephthalate). Biomaterials 2004;25(2):247–258.CrossRef Deschamps AA, van Apeldoorn AA, Hayen H, de Bruijn JD, Karst U, Grijpma DW, Feijen J. In vivo and in vitro degradation of poly(ether ester) block copolymers based on poly(ethylene glycol) and poly(butylene terephthalate). Biomaterials 2004;25(2):247–258.CrossRef
101.
Zurück zum Zitat Lamme EN, Druecke D, Pieper J, May PS, Kaim P, Jacobsen F, Steinau HU, Steinstraesser L. Long-term evaluation of porous PEGT/PBT implants for soft tissue augmentation. J Biomater Appl 2008;22(4):309–335.CrossRef Lamme EN, Druecke D, Pieper J, May PS, Kaim P, Jacobsen F, Steinau HU, Steinstraesser L. Long-term evaluation of porous PEGT/PBT implants for soft tissue augmentation. J Biomater Appl 2008;22(4):309–335.CrossRef
102.
Zurück zum Zitat Shi R, Chen DF, Liu QY, Wu Y, Xu XC, Zhang LQ, Tian W. Recent advances in synthetic bioelastomers. Int J Mol Sci 2009;10(10):4223–4256.CrossRef Shi R, Chen DF, Liu QY, Wu Y, Xu XC, Zhang LQ, Tian W. Recent advances in synthetic bioelastomers. Int J Mol Sci 2009;10(10):4223–4256.CrossRef
103.
Zurück zum Zitat Xiao YL, Riesle J, Van Blitterswijk CA. Static and dynamic fibroblast seeding and cultivation in porous PEO/PBT scaffolds. J Mater Sci Mater Med 1999;10(12):773–777.CrossRef Xiao YL, Riesle J, Van Blitterswijk CA. Static and dynamic fibroblast seeding and cultivation in porous PEO/PBT scaffolds. J Mater Sci Mater Med 1999;10(12):773–777.CrossRef
104.
Zurück zum Zitat van Dorp AGM, Verhoeven MCH, Koerten HK, van Blitterswijk CA, Ponec M. Bilayered biodegradable poly(ethylene glycol)/poly(butylene terephthalate) copolymer (polyactive (TM)) as substrate for human fibroblasts and keratinocytes. J Biomed Mater Res 1999;47(3):292–300.CrossRef van Dorp AGM, Verhoeven MCH, Koerten HK, van Blitterswijk CA, Ponec M. Bilayered biodegradable poly(ethylene glycol)/poly(butylene terephthalate) copolymer (polyactive (TM)) as substrate for human fibroblasts and keratinocytes. J Biomed Mater Res 1999;47(3):292–300.CrossRef
105.
Zurück zum Zitat Malda J, Woodfield TBF, van der Vloodt F, Wilson C, Martens DE, Tramper J, van Blitterswijk CA, Riesle J. The effect of PEGT/PBT scaffold architecture on the composition of tissue engineered cartilage. Biomaterials 2005;26(1):63–72.CrossRef Malda J, Woodfield TBF, van der Vloodt F, Wilson C, Martens DE, Tramper J, van Blitterswijk CA, Riesle J. The effect of PEGT/PBT scaffold architecture on the composition of tissue engineered cartilage. Biomaterials 2005;26(1):63–72.CrossRef
106.
Zurück zum Zitat Jansen EJP, Pieper J, Gijbels MJJ, Guldemond NA, Riesle J, Van Rhijn LW, Bulstra SK, Kuijer R. PEOT/PBT based scaffolds with low mechanical properties improve cartilage repair tissue formation in osteochondral defects. J Biomed Mater Res A 2009;89A(2):444–452.CrossRef Jansen EJP, Pieper J, Gijbels MJJ, Guldemond NA, Riesle J, Van Rhijn LW, Bulstra SK, Kuijer R. PEOT/PBT based scaffolds with low mechanical properties improve cartilage repair tissue formation in osteochondral defects. J Biomed Mater Res A 2009;89A(2):444–452.CrossRef
107.
Zurück zum Zitat Pego AP, Grijpma DW, Feijen J. Enhanced mechanical properties of 1,3-trimethylene carbonate polymers and networks. Polymer 2003;44(21):6495–6504.CrossRef Pego AP, Grijpma DW, Feijen J. Enhanced mechanical properties of 1,3-trimethylene carbonate polymers and networks. Polymer 2003;44(21):6495–6504.CrossRef
108.
Zurück zum Zitat Pego AP, Poot AA, Grijpma DW, Feijen J. Copolymers of trimethylene carbonate and epsilon-caprolactone for porous nerve guides: synthesis and properties. J Biomater Sci Polym Ed 2001;12(1):35–53.CrossRef Pego AP, Poot AA, Grijpma DW, Feijen J. Copolymers of trimethylene carbonate and epsilon-caprolactone for porous nerve guides: synthesis and properties. J Biomater Sci Polym Ed 2001;12(1):35–53.CrossRef
109.
Zurück zum Zitat Pego AP, Poot AA, Grijpma DW, Feijen J. Physical properties of high molecular weight 1,3-trimethylene carbonate and D,L-lactide copolymers. J Mater Sci Mater Med 2003;14(9):767–773.CrossRef Pego AP, Poot AA, Grijpma DW, Feijen J. Physical properties of high molecular weight 1,3-trimethylene carbonate and D,L-lactide copolymers. J Mater Sci Mater Med 2003;14(9):767–773.CrossRef
110.
Zurück zum Zitat Pego AP, Van Luyn MJA, Brouwer LA, van Wachem PB, Poot AA, Grijpma DW, Feijen J. In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with D,L-lactide or epsilon-caprolactone: degradation and tissue response. J Biomed Mater Res A 2003;67A(3):1044–1054.CrossRef Pego AP, Van Luyn MJA, Brouwer LA, van Wachem PB, Poot AA, Grijpma DW, Feijen J. In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with D,L-lactide or epsilon-caprolactone: degradation and tissue response. J Biomed Mater Res A 2003;67A(3):1044–1054.CrossRef
111.
Zurück zum Zitat Zhang Z, Kuijer R, Bulstra SK, Grijpma DW, Feijen J. The in vivo and in vitro degradation behavior of poly(trimethylene carbonate). Biomaterials 2006;27(9):1741–1748.CrossRef Zhang Z, Kuijer R, Bulstra SK, Grijpma DW, Feijen J. The in vivo and in vitro degradation behavior of poly(trimethylene carbonate). Biomaterials 2006;27(9):1741–1748.CrossRef
112.
Zurück zum Zitat Edlund U, Albertsson AC. Polyesters based on diacid monomers. Adv Drug Deliv Rev 2003;55(4):585–609.CrossRef Edlund U, Albertsson AC. Polyesters based on diacid monomers. Adv Drug Deliv Rev 2003;55(4):585–609.CrossRef
113.
Zurück zum Zitat Lips PAM, van Luyn MJA, Chiellini F, Brouwer LA, Velthoen IW, Dijkstra PJ, Feijen J. Biocompatibility and degradation of aliphatic segmented poly(ester amide)s: in vitro and in vivo evaluation. J Biomed Mater Res A 2006;76A(4):699–710.CrossRef Lips PAM, van Luyn MJA, Chiellini F, Brouwer LA, Velthoen IW, Dijkstra PJ, Feijen J. Biocompatibility and degradation of aliphatic segmented poly(ester amide)s: in vitro and in vivo evaluation. J Biomed Mater Res A 2006;76A(4):699–710.CrossRef
114.
Zurück zum Zitat Deschamps AA, van Apeldoorn AA, de Bruijn JD, Grijpma DW, Feijen J. Poly(ether ester amide)s for tissue engineering. Biomaterials 2003;24(15):2643–2652.CrossRef Deschamps AA, van Apeldoorn AA, de Bruijn JD, Grijpma DW, Feijen J. Poly(ether ester amide)s for tissue engineering. Biomaterials 2003;24(15):2643–2652.CrossRef
115.
Zurück zum Zitat Wang YD, Ameer GA, Sheppard BJ, Langer R. A tough biodegradable elastomer. Nat Biotechnol 2002;20(6):602–606.CrossRef Wang YD, Ameer GA, Sheppard BJ, Langer R. A tough biodegradable elastomer. Nat Biotechnol 2002;20(6):602–606.CrossRef
116.
Zurück zum Zitat Lee MC, Haut RC. Strain rate effects on tensile failure properties of the common carotid-artery and jugular vein of ferrets. J Biomech 1992;25(8):925–927.CrossRef Lee MC, Haut RC. Strain rate effects on tensile failure properties of the common carotid-artery and jugular vein of ferrets. J Biomech 1992;25(8):925–927.CrossRef
117.
Zurück zum Zitat Wang YD, Kim YM, Langer R. In vivo degradation characteristics of poly(glycerol sebacate). J Biomed Mater Res A 2003;66A(1):192–197.CrossRef Wang YD, Kim YM, Langer R. In vivo degradation characteristics of poly(glycerol sebacate). J Biomed Mater Res A 2003;66A(1):192–197.CrossRef
118.
Zurück zum Zitat Liu QY, Tian M, Shi R, Zhang LQ, Chen DF, Tian W. Structure and properties of thermoplastic poly(glycerol sebacate) elastomers originating from prepolymers with different molecular weights. J Appl Polym Sci 2007;104(2):1131–1137.CrossRef Liu QY, Tian M, Shi R, Zhang LQ, Chen DF, Tian W. Structure and properties of thermoplastic poly(glycerol sebacate) elastomers originating from prepolymers with different molecular weights. J Appl Polym Sci 2007;104(2):1131–1137.CrossRef
119.
Zurück zum Zitat Liu QY, Tian M, Ding T, Shi R, Zhang LQ. Preparation and characterization of a biodegradable polyester elastomer with thermal processing abilities. J Appl Polym Sci 2005;98(5):2033–2041.CrossRef Liu QY, Tian M, Ding T, Shi R, Zhang LQ. Preparation and characterization of a biodegradable polyester elastomer with thermal processing abilities. J Appl Polym Sci 2005;98(5):2033–2041.CrossRef
120.
Zurück zum Zitat Pomerantseva I, Krebs N, Hart A, Neville CM, Huang AY, Sundback CA. Degradation behavior of poly(glycerol sebacate). J Biomed Mater Res A 2009;91A(4):1038–1047.CrossRef Pomerantseva I, Krebs N, Hart A, Neville CM, Huang AY, Sundback CA. Degradation behavior of poly(glycerol sebacate). J Biomed Mater Res A 2009;91A(4):1038–1047.CrossRef
121.
Zurück zum Zitat Sun ZJ, Chen C, Sun MZ, Ai CH, Lu XL, Zheng YF, Yang BF, Dong DL. The application of poly (glycerol-sebacate) as biodegradable drug carrier. Biomaterials 2009;30(28):5209–5214.CrossRef Sun ZJ, Chen C, Sun MZ, Ai CH, Lu XL, Zheng YF, Yang BF, Dong DL. The application of poly (glycerol-sebacate) as biodegradable drug carrier. Biomaterials 2009;30(28):5209–5214.CrossRef
122.
Zurück zum Zitat Pryor HI, O'Doherty E, Hart A, Owens G, Hoganson D, Vacanti JP, Masiakos PT, Sundback CA. Poly(glycerol sebacate) films prevent postoperative adhesions and allow laparoscopic placement. Surgery 2009;146(3):490–497.CrossRef Pryor HI, O'Doherty E, Hart A, Owens G, Hoganson D, Vacanti JP, Masiakos PT, Sundback CA. Poly(glycerol sebacate) films prevent postoperative adhesions and allow laparoscopic placement. Surgery 2009;146(3):490–497.CrossRef
123.
Zurück zum Zitat Fidkowski C, Kaazempur-Mofrad MR, Borenstein J, Vacanti JP, Langer R, Wang YD. Endothelialized microvasculature based on a biodegradable elastomer. Tissue Eng 2005;11(1–2):302–309.CrossRef Fidkowski C, Kaazempur-Mofrad MR, Borenstein J, Vacanti JP, Langer R, Wang YD. Endothelialized microvasculature based on a biodegradable elastomer. Tissue Eng 2005;11(1–2):302–309.CrossRef
124.
Zurück zum Zitat Bettinger CJ, Weinberg EJ, Kulig KM, Vacanti JP, Wang YD, Borenstein JT, Langer R. Three-dimensional microfluidic tissue-engineering scaffolds using a flexible biodegradable polymer. Adv Mater 2006;18(2):165–169.CrossRef Bettinger CJ, Weinberg EJ, Kulig KM, Vacanti JP, Wang YD, Borenstein JT, Langer R. Three-dimensional microfluidic tissue-engineering scaffolds using a flexible biodegradable polymer. Adv Mater 2006;18(2):165–169.CrossRef
125.
Zurück zum Zitat Bettinger CJ, Orrick B, Misra A, Langer R, Borenstein JT. Micro fabrication of poly (glycerol-sebacate) for contact guidance applications. Biomaterials 2006;27(12):2558–2565.CrossRef Bettinger CJ, Orrick B, Misra A, Langer R, Borenstein JT. Micro fabrication of poly (glycerol-sebacate) for contact guidance applications. Biomaterials 2006;27(12):2558–2565.CrossRef
126.
Zurück zum Zitat Gao J, Crapo PM, Wang YD. Macroporous elastomeric scaffolds with extensive micropores for soft tissue engineering. Tissue Eng 2006;12(4):917–925.CrossRef Gao J, Crapo PM, Wang YD. Macroporous elastomeric scaffolds with extensive micropores for soft tissue engineering. Tissue Eng 2006;12(4):917–925.CrossRef
127.
Zurück zum Zitat Crapo PM, Gao J, Wang YD. Seamless tubular poly(glycerol sebacate) scaffolds: high-yield fabrication and potential applications. J Biomed Mater Res A 2008;86A(2):354–363.CrossRef Crapo PM, Gao J, Wang YD. Seamless tubular poly(glycerol sebacate) scaffolds: high-yield fabrication and potential applications. J Biomed Mater Res A 2008;86A(2):354–363.CrossRef
128.
Zurück zum Zitat Yi F, Lavan DA. Poly(glycerol sebacate) nanofiber scaffolds by core/shell electrospinning. Macromol Biosci 2008;8(9):803–806.CrossRef Yi F, Lavan DA. Poly(glycerol sebacate) nanofiber scaffolds by core/shell electrospinning. Macromol Biosci 2008;8(9):803–806.CrossRef
129.
Zurück zum Zitat Gao J, Ensley AE, Nerem RM, Wang YD. Poly(glycerol sebacate) supports the proliferation and phenotypic protein expression of primary baboon vascular cells. J Biomed Mater Res A 2007;83A(4):1070–1075.CrossRef Gao J, Ensley AE, Nerem RM, Wang YD. Poly(glycerol sebacate) supports the proliferation and phenotypic protein expression of primary baboon vascular cells. J Biomed Mater Res A 2007;83A(4):1070–1075.CrossRef
130.
Zurück zum Zitat Gao J, Crapo P, Nerern R, Wang YD. Co-expression of elastin and collagen leads to highly compliant engineered blood vessels. J Biomed Mater Res A 2008;85A(4):1120–1128.CrossRef Gao J, Crapo P, Nerern R, Wang YD. Co-expression of elastin and collagen leads to highly compliant engineered blood vessels. J Biomed Mater Res A 2008;85A(4):1120–1128.CrossRef
131.
Zurück zum Zitat Crapo PM, Wang Y. Physiologic compliance in engineered small-diameter arterial constructs based on an elastomeric substrate. Biomaterials 2010;31(7):1626–1635.CrossRef Crapo PM, Wang Y. Physiologic compliance in engineered small-diameter arterial constructs based on an elastomeric substrate. Biomaterials 2010;31(7):1626–1635.CrossRef
132.
Zurück zum Zitat Radisic M, Park H, Chen F, Salazar-Lazzaro JE, Wang YD, Dennis R, Langer R, Freed LE, Vunjak-Novakovic G. Biomirnetic approach to cardiac tissue engineering: oxygen carriers and channeled scaffolds. Tissue Eng 2006;12(8):2077–2091.CrossRef Radisic M, Park H, Chen F, Salazar-Lazzaro JE, Wang YD, Dennis R, Langer R, Freed LE, Vunjak-Novakovic G. Biomirnetic approach to cardiac tissue engineering: oxygen carriers and channeled scaffolds. Tissue Eng 2006;12(8):2077–2091.CrossRef
133.
Zurück zum Zitat Radisic M, Marsano A, Maidhof R, Wang Y, Vunjak-Novakovic G. Cardiac tissue engineering using perfusion bioreactor systems. Nat Protoc 2008;3(4):719–738.CrossRef Radisic M, Marsano A, Maidhof R, Wang Y, Vunjak-Novakovic G. Cardiac tissue engineering using perfusion bioreactor systems. Nat Protoc 2008;3(4):719–738.CrossRef
134.
Zurück zum Zitat Radisic M, Park H, Martens TP, Salazar-Lazaro JE, Geng WL, Wang YD, Langer R, Freed LE, Vunjak-Novakovic G. Pre-treatment of synthetic elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissue. J Biomed Mater Res A 2008;86A(3):713–724.CrossRef Radisic M, Park H, Martens TP, Salazar-Lazaro JE, Geng WL, Wang YD, Langer R, Freed LE, Vunjak-Novakovic G. Pre-treatment of synthetic elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissue. J Biomed Mater Res A 2008;86A(3):713–724.CrossRef
135.
Zurück zum Zitat Engelmayr GC, Cheng MY, Bettinger CJ, Borenstein JT, Langer R, Freed LE. Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat Mater 2008;7(12):1003–1010.CrossRef Engelmayr GC, Cheng MY, Bettinger CJ, Borenstein JT, Langer R, Freed LE. Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat Mater 2008;7(12):1003–1010.CrossRef
136.
Zurück zum Zitat Sales VL, Engelmayr GC, Johnson JA, Gao J, Wang YD, Sacks MS, Mayer JE. Protein precoating of elastomeric tissue-engineering scaffolds increased cellularity, enhanced extracellular matrix protein production, and differentially regulated the phenotypes of circulating endothelial progenitor cells. Circulation 2007;116(11):I55–I63.CrossRef Sales VL, Engelmayr GC, Johnson JA, Gao J, Wang YD, Sacks MS, Mayer JE. Protein precoating of elastomeric tissue-engineering scaffolds increased cellularity, enhanced extracellular matrix protein production, and differentially regulated the phenotypes of circulating endothelial progenitor cells. Circulation 2007;116(11):I55–I63.CrossRef
137.
Zurück zum Zitat Sundback CA, Shyu JY, Wang YD, Faquin WC, Langer RS, Vacanti JP, Hadlock TA. Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material. Biomaterials 2005;26(27):5454–5464.CrossRef Sundback CA, Shyu JY, Wang YD, Faquin WC, Langer RS, Vacanti JP, Hadlock TA. Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material. Biomaterials 2005;26(27):5454–5464.CrossRef
138.
Zurück zum Zitat Neeley WL, Redenti S, Klassen H, Tao S, Desai T, Young MJ, Langer R. A microfabricated scaffold for retinal progenitor cell grafting. Biomaterials 2008;29(4):418–426.CrossRef Neeley WL, Redenti S, Klassen H, Tao S, Desai T, Young MJ, Langer R. A microfabricated scaffold for retinal progenitor cell grafting. Biomaterials 2008;29(4):418–426.CrossRef
139.
Zurück zum Zitat Redenti S, Neeley WL, Rompani S, Saigal S, Yang J, Klassen H, Langer R, Young MJ. Engineering retinal progenitor cell and scrollable poly(glycerol-sebacate) composites for expansion and subretinal transplantation. Biomaterials 2009;30(20):3405–3414.CrossRef Redenti S, Neeley WL, Rompani S, Saigal S, Yang J, Klassen H, Langer R, Young MJ. Engineering retinal progenitor cell and scrollable poly(glycerol-sebacate) composites for expansion and subretinal transplantation. Biomaterials 2009;30(20):3405–3414.CrossRef
140.
Zurück zum Zitat Nijst CLE, Bruggeman JP, Karp JM, Ferreira L, Zumbuehl A, Bettinger CJ, Langer R. Synthesis and characterization of photocurable elastomers from poly(glycerol-co-sebacate). Biomacromolecules 2007;8(10):3067–3073.CrossRef Nijst CLE, Bruggeman JP, Karp JM, Ferreira L, Zumbuehl A, Bettinger CJ, Langer R. Synthesis and characterization of photocurable elastomers from poly(glycerol-co-sebacate). Biomacromolecules 2007;8(10):3067–3073.CrossRef
141.
Zurück zum Zitat Gerecht S, Townsend SA, Pressler H, Zhu H, Nijst CLE, Bruggeman JP, Nichol JW, Langer R. A porous photocurable elastomer for cell encapsulation and culture. Biomaterials 2007;28:4826–4835.CrossRef Gerecht S, Townsend SA, Pressler H, Zhu H, Nijst CLE, Bruggeman JP, Nichol JW, Langer R. A porous photocurable elastomer for cell encapsulation and culture. Biomaterials 2007;28:4826–4835.CrossRef
142.
Zurück zum Zitat Ifkovits JL, Devlin JJ, Eng G, Martens TP, Vunjak-Novakovic G, Burdick JA. Biodegradable fibrous scaffolds with tunable properties formed from photo-cross-linkable poly(glycerol sebacate). Acs ACS Appl Mater Interfaces 2009;1(9):1878–1886.CrossRef Ifkovits JL, Devlin JJ, Eng G, Martens TP, Vunjak-Novakovic G, Burdick JA. Biodegradable fibrous scaffolds with tunable properties formed from photo-cross-linkable poly(glycerol sebacate). Acs ACS Appl Mater Interfaces 2009;1(9):1878–1886.CrossRef
143.
Zurück zum Zitat Yang J, Webb AR, Ameer GA. Novel citric acid-based biodegradable elastomers for tissue engineering. Adv Mater 2004;16(6):511–516.CrossRef Yang J, Webb AR, Ameer GA. Novel citric acid-based biodegradable elastomers for tissue engineering. Adv Mater 2004;16(6):511–516.CrossRef
144.
Zurück zum Zitat Nijst CLE, Bruggeman JP, Karp JM, Ferreira L, Zumbuehl A, Bettinger CJ, Langer R. Synthesis and characterization of photocurable elastomers from poly(glycerol-co-sebacate). Biomacromolecules 2007;8:3067–3073.CrossRef Nijst CLE, Bruggeman JP, Karp JM, Ferreira L, Zumbuehl A, Bettinger CJ, Langer R. Synthesis and characterization of photocurable elastomers from poly(glycerol-co-sebacate). Biomacromolecules 2007;8:3067–3073.CrossRef
145.
Zurück zum Zitat Bruggeman JP, Bettinger CJ, Nijst CLE, Kohane DS, Langer R. Biodegradable xylitol-based polymers. Adv Mater 2008;20(10):1922–1927.CrossRef Bruggeman JP, Bettinger CJ, Nijst CLE, Kohane DS, Langer R. Biodegradable xylitol-based polymers. Adv Mater 2008;20(10):1922–1927.CrossRef
146.
Zurück zum Zitat Bettinger CJ, Bruggeman JP, Borenstein JT, Langer RS. Amino alcohol-based degradable poly(ester amide) elastomers. Biomaterials 2008;29(15):2315–2325.CrossRef Bettinger CJ, Bruggeman JP, Borenstein JT, Langer RS. Amino alcohol-based degradable poly(ester amide) elastomers. Biomaterials 2008;29(15):2315–2325.CrossRef
147.
Zurück zum Zitat Bruggeman JP, de Bruin BJ, Bettinger CJ, Langer R. Biodegradable poly(polyol sebacate) polymers. Biomaterials 2008;29(36):4726–4735.CrossRef Bruggeman JP, de Bruin BJ, Bettinger CJ, Langer R. Biodegradable poly(polyol sebacate) polymers. Biomaterials 2008;29(36):4726–4735.CrossRef
148.
Zurück zum Zitat You Z, Cao H, Gao J, Shin PH, Day BW, Wang Y. A functionalizable polyester with free hydroxyl groups and tunable physiochemical and biological properties. Biomaterials 2010;31(12):3129–3138.CrossRef You Z, Cao H, Gao J, Shin PH, Day BW, Wang Y. A functionalizable polyester with free hydroxyl groups and tunable physiochemical and biological properties. Biomaterials 2010;31(12):3129–3138.CrossRef
149.
Zurück zum Zitat Barrett DG, Yousaf MN. Poly(triol alpha-ketoglutarate) as biodegradable, chemoselective, and mechanically tunable elastomers. Macromolecules 2008;41(17):6347–6352.CrossRef Barrett DG, Yousaf MN. Poly(triol alpha-ketoglutarate) as biodegradable, chemoselective, and mechanically tunable elastomers. Macromolecules 2008;41(17):6347–6352.CrossRef
150.
Zurück zum Zitat Dey J, Xu H, Shen JH, Thevenot P, Gondi SR, Nguyen KT, Sumerlin BS, Tang LP, Yang J. Development of biodegradable crosslinked urethane-doped polyester elastomers. Biomaterials 2008;29(35):4637–4649.CrossRef Dey J, Xu H, Shen JH, Thevenot P, Gondi SR, Nguyen KT, Sumerlin BS, Tang LP, Yang J. Development of biodegradable crosslinked urethane-doped polyester elastomers. Biomaterials 2008;29(35):4637–4649.CrossRef
151.
Zurück zum Zitat Yang J, Webb AR, Pickerill SJ, Hageman G, Ameer GA. Synthesis and evaluation of poly(diol citrate) biodegradable elastomers. Biomaterials 2006;27(9):1889–1898.CrossRef Yang J, Webb AR, Pickerill SJ, Hageman G, Ameer GA. Synthesis and evaluation of poly(diol citrate) biodegradable elastomers. Biomaterials 2006;27(9):1889–1898.CrossRef
152.
Zurück zum Zitat Wan YQ, Feng G, Shen FH, Laurencin CT, Li XD. Biphasic scaffold for annulus fibrosus tissue regeneration. Biomaterials 2008;29(6):643–652.CrossRef Wan YQ, Feng G, Shen FH, Laurencin CT, Li XD. Biphasic scaffold for annulus fibrosus tissue regeneration. Biomaterials 2008;29(6):643–652.CrossRef
153.
Zurück zum Zitat Sun ZJ, Wu L, Lu XL, Meng ZX, Zheng YF, Dong DL. The characterization of mechanical and surface properties of poly (glycerol-sebacate-lactic acid) during degradation in phosphate buffered saline. Appl Surf Sci 2008;255(2):350–352.CrossRef Sun ZJ, Wu L, Lu XL, Meng ZX, Zheng YF, Dong DL. The characterization of mechanical and surface properties of poly (glycerol-sebacate-lactic acid) during degradation in phosphate buffered saline. Appl Surf Sci 2008;255(2):350–352.CrossRef
154.
Zurück zum Zitat Liu QY, Tan TW, Weng JY, Zhang LQ. Study on the control of the compositions and properties of a biodegradable polyester elastomer. Biomed Mater 2009;4(2):9. Liu QY, Tan TW, Weng JY, Zhang LQ. Study on the control of the compositions and properties of a biodegradable polyester elastomer. Biomed Mater 2009;4(2):9.
155.
Zurück zum Zitat Liu QY, Wu SZ, Tan TW, Weng JY, Zhang LQ, Liu L, Tian W, Chen DF. Preparation and properties of a novel biodegradable polyester elastomer with functional groups. J Biomater Sci Polym Ed 2009;20(11):1567–1578.CrossRef Liu QY, Wu SZ, Tan TW, Weng JY, Zhang LQ, Liu L, Tian W, Chen DF. Preparation and properties of a novel biodegradable polyester elastomer with functional groups. J Biomater Sci Polym Ed 2009;20(11):1567–1578.CrossRef
156.
Zurück zum Zitat Yang J, Motlagh D, Webb AR, Ameer GA. Novel biphasic elastomeric scaffold for small-diameter blood vessel tissue engineering. Tissue Eng 2005;11(11–12):1876–1886.CrossRef Yang J, Motlagh D, Webb AR, Ameer GA. Novel biphasic elastomeric scaffold for small-diameter blood vessel tissue engineering. Tissue Eng 2005;11(11–12):1876–1886.CrossRef
157.
Zurück zum Zitat Hidalgo-Bastida LA, Barry JJA, Everitt NM, Rose FRAJ, Buttery LD, Hall IP, Claycomb WC, Shakesheff KM. Cell adhesion and mechanical properties of a flexible scaffold for cardiac tissue engineering. Acta Biomater 2007;3(4):457–462.CrossRef Hidalgo-Bastida LA, Barry JJA, Everitt NM, Rose FRAJ, Buttery LD, Hall IP, Claycomb WC, Shakesheff KM. Cell adhesion and mechanical properties of a flexible scaffold for cardiac tissue engineering. Acta Biomater 2007;3(4):457–462.CrossRef
158.
Zurück zum Zitat Kang Y, Yang J, Khan S, Anissian L, Ameer GA. A new biodegradable polyester elastomer for cartilage tissue engineering. J Biomed Mater Res A 2006;77A(2):331–339.CrossRef Kang Y, Yang J, Khan S, Anissian L, Ameer GA. A new biodegradable polyester elastomer for cartilage tissue engineering. J Biomed Mater Res A 2006;77A(2):331–339.CrossRef
159.
Zurück zum Zitat Bettinger CJ, Kulig KM, Vacanti JP, Langer R, Borenstein JT. Nanofabricated collagen-inspired synthetic elastomers for primary rat hepatocyte culture. Tissue Eng Part A 2009;15(6):1321–1329.CrossRef Bettinger CJ, Kulig KM, Vacanti JP, Langer R, Borenstein JT. Nanofabricated collagen-inspired synthetic elastomers for primary rat hepatocyte culture. Tissue Eng Part A 2009;15(6):1321–1329.CrossRef
160.
Zurück zum Zitat Sun ZJ, Wu L, Huang W, Zhang XL, Lu XL, Zheng YF, Yang BF, Dong DL. The influence of lactic on the properties of poly (glycerol-sebacate-lactic acid). Mater Sci Eng C Biomim Supramol Syst 2009;29(1):178–182.CrossRef Sun ZJ, Wu L, Huang W, Zhang XL, Lu XL, Zheng YF, Yang BF, Dong DL. The influence of lactic on the properties of poly (glycerol-sebacate-lactic acid). Mater Sci Eng C Biomim Supramol Syst 2009;29(1):178–182.CrossRef
161.
Zurück zum Zitat Ilagan BG, Amsden BG. Surface modifications of photocrosslinked biodegradable elastomers and their influence on smooth muscle cell adhesion and proliferation. Acta Biomater 2009;5(7):2429–2440.CrossRef Ilagan BG, Amsden BG. Surface modifications of photocrosslinked biodegradable elastomers and their influence on smooth muscle cell adhesion and proliferation. Acta Biomater 2009;5(7):2429–2440.CrossRef
162.
Zurück zum Zitat Amsden BG, Misra G, Gu F, Younes HM. Synthesis and characterization of a photo-cross-linked biodegradable elastomer. Biomacromolecules 2004;5(6):2479–2486.CrossRef Amsden BG, Misra G, Gu F, Younes HM. Synthesis and characterization of a photo-cross-linked biodegradable elastomer. Biomacromolecules 2004;5(6):2479–2486.CrossRef
163.
Zurück zum Zitat Amsden BG, Tse MY, Turner ND, Knight DK, Pang SC. In vivo degradation behavior of photo-cross-linked star-poly(epsilon-caprolactone-co-D,L-lactide) elastomers. Biomacromolecules 2006;7(1):365–372.CrossRef Amsden BG, Tse MY, Turner ND, Knight DK, Pang SC. In vivo degradation behavior of photo-cross-linked star-poly(epsilon-caprolactone-co-D,L-lactide) elastomers. Biomacromolecules 2006;7(1):365–372.CrossRef
164.
Zurück zum Zitat Younes HM, Bravo-Grimaldo E, Amsden BG. Synthesis, characterization and in vitro degradation of a biodegradable elastomer. Biomaterials 2004;25(22):5261–5269.CrossRef Younes HM, Bravo-Grimaldo E, Amsden BG. Synthesis, characterization and in vitro degradation of a biodegradable elastomer. Biomaterials 2004;25(22):5261–5269.CrossRef
165.
Zurück zum Zitat Butler DL, Goldstein SA, Guilak F. Functional tissue engineering: the role of biomechanics. J Biomech Eng 2000;122(6):570–575.CrossRef Butler DL, Goldstein SA, Guilak F. Functional tissue engineering: the role of biomechanics. J Biomech Eng 2000;122(6):570–575.CrossRef
166.
Zurück zum Zitat Mow VC, Kuei SC, Lai WM, Armstrong CG. Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J Biomech Eng 1980;102(1):73–84.CrossRef Mow VC, Kuei SC, Lai WM, Armstrong CG. Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J Biomech Eng 1980;102(1):73–84.CrossRef
167.
Zurück zum Zitat Huang CY, Stankiewicz A, Ateshian GA, Mow VC. Anisotropy, inhomogeneity, and tension-compression nonlinearity of human glenohumeral cartilage in finite deformation. J Biomech 2005;38(4):799–809.CrossRef Huang CY, Stankiewicz A, Ateshian GA, Mow VC. Anisotropy, inhomogeneity, and tension-compression nonlinearity of human glenohumeral cartilage in finite deformation. J Biomech 2005;38(4):799–809.CrossRef
168.
Zurück zum Zitat Ateshian GA, Warden WH, Kim JJ, Grelsamer RP, Mow VC. Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments. J Biomech 1997;30(11–12):1157–1164.CrossRef Ateshian GA, Warden WH, Kim JJ, Grelsamer RP, Mow VC. Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments. J Biomech 1997;30(11–12):1157–1164.CrossRef
169.
Zurück zum Zitat Lai WM, Mow VC. Drag-induced compression of articular cartilage during a permeation experiment. Biorheology 1980;17(1–2):111–123. Lai WM, Mow VC. Drag-induced compression of articular cartilage during a permeation experiment. Biorheology 1980;17(1–2):111–123.
170.
Zurück zum Zitat Moutos FT, Guilak F. Composite scaffolds for cartilage tissue engineering. Biorheology 2008;45(3–4):501–512. Moutos FT, Guilak F. Composite scaffolds for cartilage tissue engineering. Biorheology 2008;45(3–4):501–512.
171.
Zurück zum Zitat Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 2005;23(1):47–55.CrossRef Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 2005;23(1):47–55.CrossRef
172.
Zurück zum Zitat Place ES, Evans ND, Stevens MM. Complexity in biomaterials for tissue engineering. Nat Mater 2009;8(6):457–470.CrossRef Place ES, Evans ND, Stevens MM. Complexity in biomaterials for tissue engineering. Nat Mater 2009;8(6):457–470.CrossRef
173.
Zurück zum Zitat Mather PT, Luo XF, Rousseau IA. Shape memory polymer research. Annu Rev Mat Res 2009;39:445–471.CrossRef Mather PT, Luo XF, Rousseau IA. Shape memory polymer research. Annu Rev Mat Res 2009;39:445–471.CrossRef
174.
Zurück zum Zitat Sokolowski W, Metcalfe A, Hayashi S, Yahia L, Raymond J. Medical applications of shape memory polymers. Biomed Mater 2007;2(1):S23–S27.CrossRef Sokolowski W, Metcalfe A, Hayashi S, Yahia L, Raymond J. Medical applications of shape memory polymers. Biomed Mater 2007;2(1):S23–S27.CrossRef
175.
Zurück zum Zitat Liu C, Qin H, Mather PT. Review of progress in shape-memory polymers. J Mater Chem 2007;17(16):1543–1558.CrossRef Liu C, Qin H, Mather PT. Review of progress in shape-memory polymers. J Mater Chem 2007;17(16):1543–1558.CrossRef
176.
Zurück zum Zitat Langer R, Tirrell DA. Designing materials for biology and medicine. Nature 2004;428(6982):487–492.CrossRef Langer R, Tirrell DA. Designing materials for biology and medicine. Nature 2004;428(6982):487–492.CrossRef
177.
Zurück zum Zitat Zheng XT, Zhou SB, Yu XJ, Li XH, Feng B, Qu SX, Weng J. Effect of in vitro degradation of poly(D,L-lactide)/beta-tricalcium composite on its shape-memory properties. J Biomed Mater Res B Appl Biomater 2008;86B(1):170–180.CrossRef Zheng XT, Zhou SB, Yu XJ, Li XH, Feng B, Qu SX, Weng J. Effect of in vitro degradation of poly(D,L-lactide)/beta-tricalcium composite on its shape-memory properties. J Biomed Mater Res B Appl Biomater 2008;86B(1):170–180.CrossRef
178.
Zurück zum Zitat Cordier P, Tournilhac F, Soulie-Ziakovic C, Leibler L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 2008;451(7181):977–980.CrossRef Cordier P, Tournilhac F, Soulie-Ziakovic C, Leibler L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 2008;451(7181):977–980.CrossRef
179.
Zurück zum Zitat Greef TFA, Meijer EW. Materials science – supramolecular polymers. Nature 2008;453(7192):171–173.CrossRef Greef TFA, Meijer EW. Materials science – supramolecular polymers. Nature 2008;453(7192):171–173.CrossRef
Metadaten
Titel
Bioelastomers in Tissue Engineering
verfasst von
Zhengwei You
Yadong Wang
Copyright-Jahr
2011
Verlag
Springer Vienna
DOI
https://doi.org/10.1007/978-3-7091-0385-2_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.