Skip to main content

2019 | OriginalPaper | Buchkapitel

5. Bioelectricity Generation

verfasst von : Basanta Kumara Behera, Ajit Varma

Erschienen in: Bioenergy for Sustainability and Security

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Bioelectricity refers to electrical potentials and currents occurring within or produced by living organisms. It results from the conversion of chemical energy into electrical energy. Bioelectric potentials are generated by a number of different biological processes and are used by cells to govern metabolism, to conduct impulses along nerve fibres and to regulate muscular contraction. In most organisms bioelectric potentials vary in strength from one to several hundred millivolts from the activity of such electric fishes as the Nile catfish and the electric eel. Bioelectric effects were known in ancient times. There are numerous species of electric ray; most inhabit shallow water, but some (Benthobatis) live at depths of 1000 m (3300 ft) and more. Slow-moving bottom dwellers, electric rays feed on fishes and invertebrates. The shock from these organs is used in defence, sensory location and capturing prey. Electric shocks emitted reach 220 volts and are strong enough to fell a human adult. In ancient Greece and Rome, the shocks of the species Torpedo nobiliana were used as a treatment for gout, headache and other malady.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Antonopoulou, KG et al (2010). Electricity generation from synthetic substrates and cheese whey using a two chamber microbial fuel cell. Biochem. Eng. J., 50: 10-15.CrossRef Antonopoulou, KG et al (2010). Electricity generation from synthetic substrates and cheese whey using a two chamber microbial fuel cell. Biochem. Eng. J., 50: 10-15.CrossRef
2.
Zurück zum Zitat Rahimnejad, GM and Najafpour, AA (2011). Ghoreyshi Effect of mass transfer on performance of microbial fuel cell. Intech, 5: 233-250. Rahimnejad, GM and Najafpour, AA (2011). Ghoreyshi Effect of mass transfer on performance of microbial fuel cell. Intech, 5: 233-250.
3.
Zurück zum Zitat Sharma, Y and Li, B (2010). The variation of power generation with organic substrates in single-chamber microbial fuel cells (SCMFCs). Bioresource Technol., 101: 1844-1850.CrossRef Sharma, Y and Li, B (2010). The variation of power generation with organic substrates in single-chamber microbial fuel cells (SCMFCs). Bioresource Technol., 101: 1844-1850.CrossRef
4.
Zurück zum Zitat Logan, BE et al (2006). Microbial fuel cells: Methodology and technology. Environ. Sci. Technol., 40: 5181-5192.CrossRef Logan, BE et al (2006). Microbial fuel cells: Methodology and technology. Environ. Sci. Technol., 40: 5181-5192.CrossRef
5.
Zurück zum Zitat Najafpour, G et al (2011). The enhancement of a microbial fuel cell for electrical output using mediators and oxidizing agents. Energy Sourc., 33: 2239-2248.CrossRef Najafpour, G et al (2011). The enhancement of a microbial fuel cell for electrical output using mediators and oxidizing agents. Energy Sourc., 33: 2239-2248.CrossRef
6.
Zurück zum Zitat Rabaey, K et al (2005). Microbial fuel cells: Performances and perspectives. In: Lens, PN, Westermann, P, Haberbauer, M and Moreno, A (eds), Biofuels for fuel cells. London: IWA. Rabaey, K et al (2005). Microbial fuel cells: Performances and perspectives. In: Lens, PN, Westermann, P, Haberbauer, M and Moreno, A (eds), Biofuels for fuel cells. London: IWA.
7.
Zurück zum Zitat Logan, BE and Regan, JM (2006). Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol., 14(12): 512-518.CrossRef Logan, BE and Regan, JM (2006). Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol., 14(12): 512-518.CrossRef
8.
Zurück zum Zitat Pham, TH et al (2006). Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng Life Sci., 6: 285-292.CrossRef Pham, TH et al (2006). Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng Life Sci., 6: 285-292.CrossRef
9.
Zurück zum Zitat Ghangrekar, MM and Shinde, VB (2007). Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production. Bioresour Technol., 98(15): 2879-2885.CrossRef Ghangrekar, MM and Shinde, VB (2007). Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production. Bioresour Technol., 98(15): 2879-2885.CrossRef
10.
Zurück zum Zitat Lovely, DR (2006). Microbial Energizers: Fuel Cells that Keep on Going. Microbe., 1: 324-329. Lovely, DR (2006). Microbial Energizers: Fuel Cells that Keep on Going. Microbe., 1: 324-329.
11.
Zurück zum Zitat Logan, BE (2113) Exoelectrogenic bacteria that power microbial fuel cells. Nature 2009, DOI: 10.1038/nrmicro Logan, BE (2113) Exoelectrogenic bacteria that power microbial fuel cells. Nature 2009, DOI: 10.1038/nrmicro
13.
Zurück zum Zitat Gottenbos, B et al (1999). Models for studying initial adhesion and surface growth in biofilm formation on surfaces. Methods in Enzymology, 310: 523-533.CrossRef Gottenbos, B et al (1999). Models for studying initial adhesion and surface growth in biofilm formation on surfaces. Methods in Enzymology, 310: 523-533.CrossRef
14.
Zurück zum Zitat Kim, IS et al (2008). Microbial Fuel Cells: Recent Advances, Bacterial Communities and Application Beyond Electricity Generation. Environmental Engineering Research, 13(2): 51-65.CrossRef Kim, IS et al (2008). Microbial Fuel Cells: Recent Advances, Bacterial Communities and Application Beyond Electricity Generation. Environmental Engineering Research, 13(2): 51-65.CrossRef
16.
Zurück zum Zitat Kim, HJ et al (2002). A mediatorless microbial fuel cell using a metal reducing bacterium, Shewanella, putrefaciens. Enzyme. Microb. Tech., 30: 145-152.CrossRef Kim, HJ et al (2002). A mediatorless microbial fuel cell using a metal reducing bacterium, Shewanella, putrefaciens. Enzyme. Microb. Tech., 30: 145-152.CrossRef
17.
Zurück zum Zitat Bond, DR and Lovley, DR (2003). Electricity production by Geobacter sulphur reducens attached to electrodes. Appl. Environ. Microbiol. 69: 1548-1555.CrossRef Bond, DR and Lovley, DR (2003). Electricity production by Geobacter sulphur reducens attached to electrodes. Appl. Environ. Microbiol. 69: 1548-1555.CrossRef
18.
Zurück zum Zitat Min, B et al (2005). Electricity generation using membrane and salt bridge microbial fuel cells. Water Res., 39: 1675-1686.CrossRef Min, B et al (2005). Electricity generation using membrane and salt bridge microbial fuel cells. Water Res., 39: 1675-1686.CrossRef
19.
Zurück zum Zitat Chaudhuri, SK and Lovley, DR (2003). Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol., 21: 1229-1232.CrossRef Chaudhuri, SK and Lovley, DR (2003). Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol., 21: 1229-1232.CrossRef
20.
Zurück zum Zitat Rabaey, K and Verstraete, W (2003). Microbial fuel cells: Novel biotechnology for energy generation. Trends Biotechnol, 23: 291-298.CrossRef Rabaey, K and Verstraete, W (2003). Microbial fuel cells: Novel biotechnology for energy generation. Trends Biotechnol, 23: 291-298.CrossRef
21.
Zurück zum Zitat Leropoulos, I et al (2003). Imitation metabolism: Energy autonomy in biologically inspired robots. In: Proceedings of 2nd International Symposium on Imitation of Animals and Artifacts. Leropoulos, I et al (2003). Imitation metabolism: Energy autonomy in biologically inspired robots. In: Proceedings of 2nd International Symposium on Imitation of Animals and Artifacts.
22.
Zurück zum Zitat Watanabe, K et al (2009). Electron shuttles in biotechnology. Curr. Opin. Biotechnol., 20: 633-641.CrossRef Watanabe, K et al (2009). Electron shuttles in biotechnology. Curr. Opin. Biotechnol., 20: 633-641.CrossRef
23.
Zurück zum Zitat Cheng, S et al (2006). Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environmental Science & Technology, 40: 2426-2432.CrossRef Cheng, S et al (2006). Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environmental Science & Technology, 40: 2426-2432.CrossRef
24.
Zurück zum Zitat He, Z et al (2007). Increased power production from a sediment microbial fuel cell with a rotating cathode. Biosens. Bioelectron, 22: 3252-3255.CrossRef He, Z et al (2007). Increased power production from a sediment microbial fuel cell with a rotating cathode. Biosens. Bioelectron, 22: 3252-3255.CrossRef
25.
Zurück zum Zitat He, Z et al (2005). Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ. Sci. Technol, 39: 5262-5267.CrossRef He, Z et al (2005). Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ. Sci. Technol, 39: 5262-5267.CrossRef
26.
Zurück zum Zitat Scafer, H and Muyzer, G (2001). Denaturing gradient gelelectrophoresis in marine microbial ecology. In: Methods in Microbiology. Paul, J (Ed.). Academic Press London. Scafer, H and Muyzer, G (2001). Denaturing gradient gelelectrophoresis in marine microbial ecology. In: Methods in Microbiology. Paul, J (Ed.). Academic Press London.
27.
Zurück zum Zitat Liu, H et al (2005). Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ. Sci. Technol, 39: 5488-5493.CrossRef Liu, H et al (2005). Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ. Sci. Technol, 39: 5488-5493.CrossRef
28.
Zurück zum Zitat Davis, F and Higson, S (2005). Biofuel cells—Recent advances and applications. Biosens. Bioelectron, 22: 1224-1235.CrossRef Davis, F and Higson, S (2005). Biofuel cells—Recent advances and applications. Biosens. Bioelectron, 22: 1224-1235.CrossRef
29.
Zurück zum Zitat Ieropoulos, I et al (2006). Comparative study of three types of microbial fuel cell. Enzyme Microb Tech, 37: 238-245.CrossRef Ieropoulos, I et al (2006). Comparative study of three types of microbial fuel cell. Enzyme Microb Tech, 37: 238-245.CrossRef
30.
Zurück zum Zitat Moon, H et al (2006). Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell. Bioresour. Technol., 97: 621-627.CrossRef Moon, H et al (2006). Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell. Bioresour. Technol., 97: 621-627.CrossRef
31.
Zurück zum Zitat Oh, S and Logan, BE (2006). Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl. Microbiol. Biotechnol., 70: 162-169.CrossRef Oh, S and Logan, BE (2006). Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl. Microbiol. Biotechnol., 70: 162-169.CrossRef
32.
Zurück zum Zitat Rabaey, K et al (2003). A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol. Lett, 25: 1531-1535.CrossRef Rabaey, K et al (2003). A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol. Lett, 25: 1531-1535.CrossRef
33.
Zurück zum Zitat Rabaery, K et al (2005). Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci.Technol., 39: 3401-3408.CrossRef Rabaery, K et al (2005). Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci.Technol., 39: 3401-3408.CrossRef
34.
Zurück zum Zitat Rozendal, RA et al (2006). Effects of membrane cation transport on pH and microbial fuel cell performance. Environ. Sci. Technol, 40: 5206-5211.CrossRef Rozendal, RA et al (2006). Effects of membrane cation transport on pH and microbial fuel cell performance. Environ. Sci. Technol, 40: 5206-5211.CrossRef
35.
Zurück zum Zitat Min, B et al (2005). Electricity generation from swine wastewater using microbial fuel cells. Water Research, 39: 4961-4968.CrossRef Min, B et al (2005). Electricity generation from swine wastewater using microbial fuel cells. Water Research, 39: 4961-4968.CrossRef
36.
Zurück zum Zitat Kim, JR et al (2008). Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater. Biotechnol. Bioeng, 99: 1120-1127.CrossRef Kim, JR et al (2008). Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater. Biotechnol. Bioeng, 99: 1120-1127.CrossRef
37.
Zurück zum Zitat Henslee, BE et al (2004). Biological Fuel Cell: Modeling, Design, and Testing. Final Report for ASAE’s G.B. Gunlogs on Student Environmental Design Competition. Ohio State University, Columbus, Ohio. Henslee, BE et al (2004). Biological Fuel Cell: Modeling, Design, and Testing. Final Report for ASAE’s G.B. Gunlogs on Student Environmental Design Competition. Ohio State University, Columbus, Ohio.
38.
Zurück zum Zitat Bennetto, HP (1990). Electricity generation by microorganisms. Bio-technology Education, 4: 163-168. Bennetto, HP (1990). Electricity generation by microorganisms. Bio-technology Education, 4: 163-168.
40.
Zurück zum Zitat Lithgow, AM et al (1986). Interception of electron-transport chain in bacteria with hydrophilic redox mediators. J. Chem. Research, (S): 178–179. Lithgow, AM et al (1986). Interception of electron-transport chain in bacteria with hydrophilic redox mediators. J. Chem. Research, (S): 178–179.
41.
Zurück zum Zitat Kim, BH et al (1999). Direct electrode reaction of Fe (III) reducing bacterium, Shewanella putrefaciencs (PDF). J Microbiol. Biotechnol., 9: 127-131. Kim, BH et al (1999). Direct electrode reaction of Fe (III) reducing bacterium, Shewanella putrefaciencs (PDF). J Microbiol. Biotechnol., 9: 127-131.
42.
Zurück zum Zitat Pham, CA et al (2003). A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiology Letters, 223(1): 129-134.CrossRef Pham, CA et al (2003). A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiology Letters, 223(1): 129-134.CrossRef
45.
Zurück zum Zitat Aelterman, P et al (2006). Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol., 40: 3388-3394.CrossRef Aelterman, P et al (2006). Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol., 40: 3388-3394.CrossRef
46.
Zurück zum Zitat Rabaey, Korneel (2005). Tubular Microbial Fuel Cells for Efficient Electricity Generation, Environ. Sci. Technol., 39(20): 8077-8082.CrossRef Rabaey, Korneel (2005). Tubular Microbial Fuel Cells for Efficient Electricity Generation, Environ. Sci. Technol., 39(20): 8077-8082.CrossRef
47.
Zurück zum Zitat Gregoire, KP and Becker, JG (2012). Design and characterization of a microbial fuel cell for the conversion of a lignocellulosic crop residue to electricity. Bioresource Technology, 119: 208-215.CrossRef Gregoire, KP and Becker, JG (2012). Design and characterization of a microbial fuel cell for the conversion of a lignocellulosic crop residue to electricity. Bioresource Technology, 119: 208-215.CrossRef
48.
Zurück zum Zitat Wei, J (2011). Recent progress in electrodes for microbial fuel cells. Bioresource Technology, 102(20): 9335-9344.CrossRef Wei, J (2011). Recent progress in electrodes for microbial fuel cells. Bioresource Technology, 102(20): 9335-9344.CrossRef
49.
Zurück zum Zitat Pec, MK (2010). Reticulated vitreous carbon: A useful material for cell adhesion and tissue invasion. Eur. Cells Mater., 20: 282.CrossRef Pec, MK (2010). Reticulated vitreous carbon: A useful material for cell adhesion and tissue invasion. Eur. Cells Mater., 20: 282.CrossRef
50.
Zurück zum Zitat Wang, X et al (2009). Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells. Environ. Sci. Technol., 43: 17, 6870-6874.CrossRef Wang, X et al (2009). Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells. Environ. Sci. Technol., 43: 17, 6870-6874.CrossRef
51.
Zurück zum Zitat Liang, P (2008). Electricity generation using the packing-type microbial fuel cells. Huan. Jing. Ke. Xue., 29: 512-517. Liang, P (2008). Electricity generation using the packing-type microbial fuel cells. Huan. Jing. Ke. Xue., 29: 512-517.
52.
Zurück zum Zitat Iijima, S (1991). Helical microtubules of graphitic carbon. Nature 354(6348): 56.CrossRef Iijima, S (1991). Helical microtubules of graphitic carbon. Nature 354(6348): 56.CrossRef
53.
Zurück zum Zitat Correa-Duarte et al (2004) Fabrication and biocompatibility of carbon nanotube-based 3D networks as scaffolds for cell seeding and growth. Nano Lett., 4(11): 2233.CrossRef Correa-Duarte et al (2004) Fabrication and biocompatibility of carbon nanotube-based 3D networks as scaffolds for cell seeding and growth. Nano Lett., 4(11): 2233.CrossRef
54.
Zurück zum Zitat Heister, E (2013). Are carbon nanotubes a natural solution? Applications in biology and medicine. ACS Appl. Mater. Interfaces, 5(6): 1870.CrossRef Heister, E (2013). Are carbon nanotubes a natural solution? Applications in biology and medicine. ACS Appl. Mater. Interfaces, 5(6): 1870.CrossRef
55.
Zurück zum Zitat Cheng, S and Logan, BE (2007). Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem. Commun., 9(3): 492.CrossRef Cheng, S and Logan, BE (2007). Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem. Commun., 9(3): 492.CrossRef
56.
Zurück zum Zitat Zhang, Y (2011). A graphene modified anode to improve the performance of microbial fuel cells. J. Power Sources, 196(13): 5402.CrossRef Zhang, Y (2011). A graphene modified anode to improve the performance of microbial fuel cells. J. Power Sources, 196(13): 5402.CrossRef
58.
Zurück zum Zitat Yuan, Y (2011). Iron phthalocyanine supported on amino-functionalized multi-walled carbon nanotube as an alternative cathodic oxygen catalyst in microbial fuel cells. Bioresour. Technol., 102(10): 5849.CrossRef Yuan, Y (2011). Iron phthalocyanine supported on amino-functionalized multi-walled carbon nanotube as an alternative cathodic oxygen catalyst in microbial fuel cells. Bioresour. Technol., 102(10): 5849.CrossRef
59.
Zurück zum Zitat Cheng, S (2006). Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ. Sci. Technol., 40(1): 364.CrossRef Cheng, S (2006). Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ. Sci. Technol., 40(1): 364.CrossRef
60.
Zurück zum Zitat Harnisch, F and Schröder, U (2010). From MFC to MXC: Chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chem. Soc. Rev., 39(11): 4433.CrossRef Harnisch, F and Schröder, U (2010). From MFC to MXC: Chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chem. Soc. Rev., 39(11): 4433.CrossRef
61.
Zurück zum Zitat Park, DH and Zeikus, JG (2003). Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng., 81(3): 348.CrossRef Park, DH and Zeikus, JG (2003). Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng., 81(3): 348.CrossRef
62.
Zurück zum Zitat Rabaey, K and Rozendal, RA (2010). Microbial electrosynthesis—Revisiting the electrical route for microbial production. Nat. Rev. Microbiol., 8(10): 706.CrossRef Rabaey, K and Rozendal, RA (2010). Microbial electrosynthesis—Revisiting the electrical route for microbial production. Nat. Rev. Microbiol., 8(10): 706.CrossRef
63.
Zurück zum Zitat Li, WW (2011). Recent advances in the separators for microbial fuel cells. Bioresource. Technol., 102: 244-252.CrossRef Li, WW (2011). Recent advances in the separators for microbial fuel cells. Bioresource. Technol., 102: 244-252.CrossRef
64.
Zurück zum Zitat Hideo, K (2014). Ion Exchange Membranes, Ion Exchangers. Korean Journal of Chemical Engineering, 31: 1187-1193.CrossRef Hideo, K (2014). Ion Exchange Membranes, Ion Exchangers. Korean Journal of Chemical Engineering, 31: 1187-1193.CrossRef
65.
Zurück zum Zitat Kim, JR (2007). Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ. Sci. Technol., 41: 1004-1009.CrossRef Kim, JR (2007). Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ. Sci. Technol., 41: 1004-1009.CrossRef
66.
Zurück zum Zitat Zhang, X (2009). Logan Separator characteristics for increasing performance of microbial fuel cells. Environ. Sci. Technol., 43: 8456-8461.CrossRef Zhang, X (2009). Logan Separator characteristics for increasing performance of microbial fuel cells. Environ. Sci. Technol., 43: 8456-8461.CrossRef
67.
Zurück zum Zitat Zhuang, L (2012). Scalable microbial fuel cell (MFC) stack for continuous real wastewater treatment. Bioresource Technol., 106: 82-88.CrossRef Zhuang, L (2012). Scalable microbial fuel cell (MFC) stack for continuous real wastewater treatment. Bioresource Technol., 106: 82-88.CrossRef
68.
Zurück zum Zitat Dihrab, SS(2009). Review of the membrane and bipolar plates materials for conventional and unitized regenerative fuel cells. Renew. Sust. Energy Rev., 13: 1663-1668.CrossRef Dihrab, SS(2009). Review of the membrane and bipolar plates materials for conventional and unitized regenerative fuel cells. Renew. Sust. Energy Rev., 13: 1663-1668.CrossRef
69.
Zurück zum Zitat Pasternak, G. et al (2016). Comprehensive Study on Ceramic Membranes for Low-Cost Microbial Fuel Cells. Chem Sus Chem, 9(1): 88-96.CrossRef Pasternak, G. et al (2016). Comprehensive Study on Ceramic Membranes for Low-Cost Microbial Fuel Cells. Chem Sus Chem, 9(1): 88-96.CrossRef
70.
Zurück zum Zitat Manaswini, B (2010). Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode. Bioresource Technology, 101(4): 1183-1189.CrossRef Manaswini, B (2010). Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode. Bioresource Technology, 101(4): 1183-1189.CrossRef
71.
Zurück zum Zitat Winfield, J (2013). Comparing terracotta and earthenware for multiple functionalities in microbial fuel cells. Bioprocess and Biosystems Engineering, 36(12): 1913-1921.CrossRef Winfield, J (2013). Comparing terracotta and earthenware for multiple functionalities in microbial fuel cells. Bioprocess and Biosystems Engineering, 36(12): 1913-1921.CrossRef
72.
Zurück zum Zitat Bengamin, Erable et al (2012). Microbial Catalysis of the Oxygen Reduction Reaction for Microbial Fuel Cells: A Review. 5(6): 975-987. Bengamin, Erable et al (2012). Microbial Catalysis of the Oxygen Reduction Reaction for Microbial Fuel Cells: A Review. 5(6): 975-987.
73.
Zurück zum Zitat Berk, RS and Canfield, JH (1964). Bioelectrochemical energy conversion. Appl. Microbiol., 12: 10-12. Berk, RS and Canfield, JH (1964). Bioelectrochemical energy conversion. Appl. Microbiol., 12: 10-12.
74.
Zurück zum Zitat Rao, JR et al (1976). The performance of glucose electrodes and the characteristics of different biofuel cell constructions. Bioelectrochem. Bioenerg., 3: 139-150.CrossRef Rao, JR et al (1976). The performance of glucose electrodes and the characteristics of different biofuel cell constructions. Bioelectrochem. Bioenerg., 3: 139-150.CrossRef
75.
Zurück zum Zitat Logan, BE (2010). Scaling up microbial fuel cells and other bioelectrochemical systems. Appl. Microbiol. Biotechnol., 85(6): 1665.CrossRef Logan, BE (2010). Scaling up microbial fuel cells and other bioelectrochemical systems. Appl. Microbiol. Biotechnol., 85(6): 1665.CrossRef
76.
Zurück zum Zitat Rismani-Yazdi (2008). Cathodic limitations in microbial fuel cells: An overview. J. Power Sources, 180(2): 683.CrossRef Rismani-Yazdi (2008). Cathodic limitations in microbial fuel cells: An overview. J. Power Sources, 180(2): 683.CrossRef
78.
Zurück zum Zitat Rahimnejad, M (2011). Power generation from organic substrate in batch and continuous flow microbial fuel cell operations. Appl. Energy, 88: 3999-4004.CrossRef Rahimnejad, M (2011). Power generation from organic substrate in batch and continuous flow microbial fuel cell operations. Appl. Energy, 88: 3999-4004.CrossRef
80.
Zurück zum Zitat Hailiang, Song et al (2017). Optimization of Bioelectricity Generation in Constructed Wetland-Coupled Microbial Fuel Cell Systems. Water, 9(185): 2-13. Hailiang, Song et al (2017). Optimization of Bioelectricity Generation in Constructed Wetland-Coupled Microbial Fuel Cell Systems. Water, 9(185): 2-13.
81.
Zurück zum Zitat Theerkadharshini, S (2017). Production of Hydrogen Fuel from Waste Water Using Microbial Fuel Cell. International Journal of Innovative Research in Science, Engineering and Technology, 6(3): 4211-4215. Theerkadharshini, S (2017). Production of Hydrogen Fuel from Waste Water Using Microbial Fuel Cell. International Journal of Innovative Research in Science, Engineering and Technology, 6(3): 4211-4215.
82.
Zurück zum Zitat Michael, GW and Thomas, AT (2013). Review of Microbial Fuel Cells for wastewater treatment: Large-scale application, future need and current research gaps. In: Proceedings of the ASME 2013 7th International Conference on Energy Sustainability & 11th Fuel Cell Science, Engineering and Technology Conference. Michael, GW and Thomas, AT (2013). Review of Microbial Fuel Cells for wastewater treatment: Large-scale application, future need and current research gaps. In: Proceedings of the ASME 2013 7th International Conference on Energy Sustainability & 11th Fuel Cell Science, Engineering and Technology Conference.
83.
Zurück zum Zitat Logan, B (2005). Generating Electricity from Wastewater Treatment. (Editorial). Water Environment Research, 77(3): 209. Logan, B (2005). Generating Electricity from Wastewater Treatment. (Editorial). Water Environment Research, 77(3): 209.
84.
Zurück zum Zitat Trabold, TA ( 2011). Analysis of waste-to-energy opportunities in the New York State food processing industry. In: Proceedings of the ASME 5th International Conference on Energy Sustainability, Paper ES Fuel Cell 2011-54334, Washington D.C. Trabold, TA ( 2011). Analysis of waste-to-energy opportunities in the New York State food processing industry. In: Proceedings of the ASME 5th International Conference on Energy Sustainability, Paper ES Fuel Cell 2011-54334, Washington D.C.
85.
Zurück zum Zitat Liang, S (2008). Effect of solution chemistry on the fouling potential of dissolved organic matter in membrane bioreactor systems. Journal of Membrane Science, 310(1–2): 503-511.CrossRef Liang, S (2008). Effect of solution chemistry on the fouling potential of dissolved organic matter in membrane bioreactor systems. Journal of Membrane Science, 310(1–2): 503-511.CrossRef
86.
Zurück zum Zitat Rittmann, BE (2008). Opportunities for renewable bioenergy using microorganisms. Biotechnology and Bioengineering, 100(2): 203-212.CrossRef Rittmann, BE (2008). Opportunities for renewable bioenergy using microorganisms. Biotechnology and Bioengineering, 100(2): 203-212.CrossRef
87.
Zurück zum Zitat Rabaey, K et al (2007). Microbial ecology meets electrochemistry: Electricity-driven and driving communities. The ISME Journal, l (1): 9-18.CrossRef Rabaey, K et al (2007). Microbial ecology meets electrochemistry: Electricity-driven and driving communities. The ISME Journal, l (1): 9-18.CrossRef
88.
Zurück zum Zitat Potter, MC (1911). Electrical effects accompanying the decomposition of organic compounds. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 84 (571): 260–276.CrossRef Potter, MC (1911). Electrical effects accompanying the decomposition of organic compounds. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 84 (571): 260–276.CrossRef
89.
Zurück zum Zitat Kim, HJ (1999). A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol, 9(3): 365-367.MathSciNet Kim, HJ (1999). A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol, 9(3): 365-367.MathSciNet
90.
Zurück zum Zitat Liu, HR et al (2004). Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environmental Science & Technology, 38(7): 2281-2285.CrossRef Liu, HR et al (2004). Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environmental Science & Technology, 38(7): 2281-2285.CrossRef
92.
Zurück zum Zitat Ge, Z. and Zhen, He (2015). Energy extraction from a large scale microbial fuel cell system treating municipal waste water. Journal of Power Sources, 297: 260-264.CrossRef Ge, Z. and Zhen, He (2015). Energy extraction from a large scale microbial fuel cell system treating municipal waste water. Journal of Power Sources, 297: 260-264.CrossRef
93.
Zurück zum Zitat Webb, B (1999). The first mobile robot. In: Proceedings of TIMR 99, Towards Intelligent Mobile Robots. Bristol. Webb, B (1999). The first mobile robot. In: Proceedings of TIMR 99, Towards Intelligent Mobile Robots. Bristol.
94.
Zurück zum Zitat Ieropoulos, I (2003). Imitating Metabolism: Energy Autonomy in Biologically Inspired Robots. In: Proceedings of the AISB’03, Second International Symposium on Imitation in Animals and Artifacts. SSAISB, Aberystwyth, Wales. Ieropoulos, I (2003). Imitating Metabolism: Energy Autonomy in Biologically Inspired Robots. In: Proceedings of the AISB’03, Second International Symposium on Imitation in Animals and Artifacts. SSAISB, Aberystwyth, Wales.
95.
Zurück zum Zitat Bennetto, HP (1987). Microbes come to Power. New Scientist, 36-39. Bennetto, HP (1987). Microbes come to Power. New Scientist, 36-39.
96.
Zurück zum Zitat Wilkinson, S (2000). Gastronome – A Pioneering Food Powered Mobile Robot. In: Proceedings of the 8th IASTED, International Conference on Robotics and Applications, Paper No. 318-037. Honolulu, Hawaii, USA. Wilkinson, S (2000). Gastronome – A Pioneering Food Powered Mobile Robot. In: Proceedings of the 8th IASTED, International Conference on Robotics and Applications, Paper No. 318-037. Honolulu, Hawaii, USA.
97.
Zurück zum Zitat Park, DH and Zeikus, G (2000). Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl. Microbiol. Biotechnol., 59: 58-61. Park, DH and Zeikus, G (2000). Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl. Microbiol. Biotechnol., 59: 58-61.
98.
Zurück zum Zitat Byung, Hong Kim et al (2003). Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnology Letter, 25: 541-545.CrossRef Byung, Hong Kim et al (2003). Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnology Letter, 25: 541-545.CrossRef
100.
Zurück zum Zitat Nielsen, ME et al (2007). Enhanced Power from Chambered Benthic Microbial Fuel Cells. Environ. Sci. Technol. (41): 7895-7900.CrossRef Nielsen, ME et al (2007). Enhanced Power from Chambered Benthic Microbial Fuel Cells. Environ. Sci. Technol. (41): 7895-7900.CrossRef
101.
Zurück zum Zitat Reimers, CE (2001). Harvesting Energy from the Marine Sediment-Water Interface. Environ. Sci. Technol., 35: 192-195.MathSciNetCrossRef Reimers, CE (2001). Harvesting Energy from the Marine Sediment-Water Interface. Environ. Sci. Technol., 35: 192-195.MathSciNetCrossRef
102.
Zurück zum Zitat Tender, LM et al (2009). Harnessing microbially generated power on the seafloor. Nature Biotechnology, 20: 821-825.CrossRef Tender, LM et al (2009). Harnessing microbially generated power on the seafloor. Nature Biotechnology, 20: 821-825.CrossRef
103.
Zurück zum Zitat Tender, L (2008). The first demonstration of a microbial fuel cell as a viable power supply: Powering a meteorological buoy. Journal of Power Source, 179: 571-575.CrossRef Tender, L (2008). The first demonstration of a microbial fuel cell as a viable power supply: Powering a meteorological buoy. Journal of Power Source, 179: 571-575.CrossRef
104.
Zurück zum Zitat Ieropoulos, J and Greenman, C (2012). Urine utilisation by microbial fuel cells: Energy fuel for the future. Phys. Chem. Chem. Phys., 14: 94-98.CrossRef Ieropoulos, J and Greenman, C (2012). Urine utilisation by microbial fuel cells: Energy fuel for the future. Phys. Chem. Chem. Phys., 14: 94-98.CrossRef
106.
Zurück zum Zitat Chen, GW et al (2008). Application of biocathode in microbial fuel cells: Cell performance and microbial community. Appl. Microbiol. Biot., 79: 379-388.CrossRef Chen, GW et al (2008). Application of biocathode in microbial fuel cells: Cell performance and microbial community. Appl. Microbiol. Biot., 79: 379-388.CrossRef
107.
Zurück zum Zitat Allen, RM (1993). Microbial fuel-cells. Appl. Biochem. Biotech., 39: 27-40.CrossRef Allen, RM (1993). Microbial fuel-cells. Appl. Biochem. Biotech., 39: 27-40.CrossRef
108.
Zurück zum Zitat Kim, BH (1999). Mediator-less biofuel cell. Google Patents 5976719. Kim, BH (1999). Mediator-less biofuel cell. Google Patents 5976719.
109.
Zurück zum Zitat Mokhtarian, N (2012). Bioelectricity generation in biological fuel cell with and without mediators. World Appl. Sci. J., 18: 559-567. Mokhtarian, N (2012). Bioelectricity generation in biological fuel cell with and without mediators. World Appl. Sci. J., 18: 559-567.
110.
Zurück zum Zitat Izadi, P and Rahimnejad, M (2013). Simultaneous electricity generation and sulfide removal via a dual chamber microbial fuel cell. Biofuel Research J., 1: 34-38.CrossRef Izadi, P and Rahimnejad, M (2013). Simultaneous electricity generation and sulfide removal via a dual chamber microbial fuel cell. Biofuel Research J., 1: 34-38.CrossRef
111.
Zurück zum Zitat Najafpour, G et al (2010). Bioconversion of whey to electrical energy in a biofuel cell using Saccharomyces cerevisiae. World Appl. Sci. J., 8: 1-5. Najafpour, G et al (2010). Bioconversion of whey to electrical energy in a biofuel cell using Saccharomyces cerevisiae. World Appl. Sci. J., 8: 1-5.
112.
Zurück zum Zitat Habermann, W and Pommer, E (1991). Biological fuel cells with sulphide storage capacity. App. Microbiol. Biot., 35: 128-133. Habermann, W and Pommer, E (1991). Biological fuel cells with sulphide storage capacity. App. Microbiol. Biot., 35: 128-133.
113.
Zurück zum Zitat Catal, T et al (2008). Electricity production from twelve monosaccharides using microbial fuel cells. J. Power Sources, 175: 196-200.CrossRef Catal, T et al (2008). Electricity production from twelve monosaccharides using microbial fuel cells. J. Power Sources, 175: 196-200.CrossRef
114.
Zurück zum Zitat Kim, JR (2008). Removal of odors from swine wastewater by using microbial fuel cells. Appl. Environ. Microb., 74: 2540-2543.CrossRef Kim, JR (2008). Removal of odors from swine wastewater by using microbial fuel cells. Appl. Environ. Microb., 74: 2540-2543.CrossRef
115.
Zurück zum Zitat Kim M et al (2003). Practical field application of a novel BOD monitoring system. J. Environ. Monit., 5: 640.CrossRef Kim M et al (2003). Practical field application of a novel BOD monitoring system. J. Environ. Monit., 5: 640.CrossRef
116.
Zurück zum Zitat Di, Lorenzo (2009). Single-chamber microbial fuel cell as a biosensor for wastewaters. Water Res., 43: 3145-3154.CrossRef Di, Lorenzo (2009). Single-chamber microbial fuel cell as a biosensor for wastewaters. Water Res., 43: 3145-3154.CrossRef
Metadaten
Titel
Bioelectricity Generation
verfasst von
Basanta Kumara Behera
Ajit Varma
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-96538-3_5