Skip to main content

2019 | OriginalPaper | Buchkapitel

Biofuel Production from Carbon Dioxide Gas in Polluted Areas

verfasst von : Delia Teresa Sponza, Cansu Vural, Gokce Güney

Erschienen in: Recycling and Reuse Approaches for Better Sustainability

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Although carbon dioxide (CO2) in the air is at a low level (between 0 and 0.03%), the concentration of it is significantly higher in industrial regions. The CO2 concentration in the atmosphere increases 2–3 ppm every year because of the burning of fossil fuels. Global studies have focused on reducing the carbon dioxide level to the minimum limit (450 ppm) by reducing CO2 emissions 50–80% by the year 2050. In this study, in order to minimize the CO2 levels in the Aliağa and Atatürk industrial districts in Izmir, Turkey, S. elongatus from cyanobacteria were isolated from the Gölcük Lake in Ödemiş, Izmir, and were used to produce 1-butanol from CO2 via photosynthesis as a fuel source, instead of gasoline, for cars. The maximum 1-butanol concentration produced was 79 mg/L, and the 1-butanolproduced/CO2utilized efficiency was 87.6% in the S. elongatus species isolated from the Gölcük Lake at a temperature of 30 °C, at 60 W light intensity, at pH = 7.1, at 120 mV redox potential, at a flow rate of 0.083 m3/min using CO2 from the Aliağa industrial region, and at 0.5 mg/L dissolved O2 concentration. The maximum 1-butanol concentration produced was 59 mg/L, and the 1-butanolproduced/CO2utilized efficiency was 67.9% in the Atatürk industrial district due to low levels of polluted air in this region. In order to produce 10.000 m3 1-butanol from 1000 g/L CO2, the cost was calculated as 0.13 euro, while the addition of plasmid increased the cost to 0.66 euro to produce 10.000 m3 1-butanol.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Armbrust EV, Bowen JD, Olson RJ, Chisholm SW (1989) Effect of light on the cell cycle of a marine synechococcus strain. Appl Environ Microbiol 55(2):425–432 Armbrust EV, Bowen JD, Olson RJ, Chisholm SW (1989) Effect of light on the cell cycle of a marine synechococcus strain. Appl Environ Microbiol 55(2):425–432
3.
Zurück zum Zitat Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89CrossRef Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89CrossRef
4.
Zurück zum Zitat Devaki B, Watanabe N, Ogawa T (1999) National center for biotechnology information. U.S. National Library of Medicine 96(6):3188–3319 Devaki B, Watanabe N, Ogawa T (1999) National center for biotechnology information. U.S. National Library of Medicine 96(6):3188–3319
5.
Zurück zum Zitat Binder BJ, Chisholm SW (1995) Cell cycle regulation in marine synechococcus sp. strains. Appl Environ Microbiol 61(2):708–717 Binder BJ, Chisholm SW (1995) Cell cycle regulation in marine synechococcus sp. strains. Appl Environ Microbiol 61(2):708–717
6.
Zurück zum Zitat Boynton ZL, Bennet GN, Rudolph FB (1996) Cloning sequencing and expression of clustered genes encoding beta-hydroxybutyryl-coenzyme A (CoA) dehydrogenase, crotonase and butyryl-CoA dehydrogenase from clostridium acetobutylicum ATCC 824. J Bacteriol 178(11):3015–3024CrossRef Boynton ZL, Bennet GN, Rudolph FB (1996) Cloning sequencing and expression of clustered genes encoding beta-hydroxybutyryl-coenzyme A (CoA) dehydrogenase, crotonase and butyryl-CoA dehydrogenase from clostridium acetobutylicum ATCC 824. J Bacteriol 178(11):3015–3024CrossRef
7.
Zurück zum Zitat Denhez F (2007) Global climate change and its effects in Turkey. Turkey, p 56–58 Denhez F (2007) Global climate change and its effects in Turkey. Turkey, p 56–58
8.
Zurück zum Zitat Elliott JA (2010) The seasonal sensitivity of cyanobacteria and other phytoplankton to changes in flushing rate and water temperature. Glob Chang Biol 16:864–876CrossRef Elliott JA (2010) The seasonal sensitivity of cyanobacteria and other phytoplankton to changes in flushing rate and water temperature. Glob Chang Biol 16:864–876CrossRef
9.
Zurück zum Zitat Flores E, Frías JE, Rubio LM, Herrero A (2005) Photosynthetic nitrate assimilation in cyanobacteria: a review. Photosynth Res 83:117–133CrossRef Flores E, Frías JE, Rubio LM, Herrero A (2005) Photosynthetic nitrate assimilation in cyanobacteria: a review. Photosynth Res 83:117–133CrossRef
10.
Zurück zum Zitat Fu F, Mark E, Zhang Y, Feng Y, Hulchins DA (2007) Effects of increased temperature and CO2 on photosynthesis, growth and elemental ratios in marine synechococcus and prochlorococcus (cyanobacteria). J Phycol 443(3):485–496CrossRef Fu F, Mark E, Zhang Y, Feng Y, Hulchins DA (2007) Effects of increased temperature and CO2 on photosynthesis, growth and elemental ratios in marine synechococcus and prochlorococcus (cyanobacteria). J Phycol 443(3):485–496CrossRef
11.
Zurück zum Zitat Hansen JL, Nazaernko R, Ruedy M, Sato M, Willis J, Del Genio A, Koch D, Lacis A, Lo K, Menon S, Novakov T, Perlwitz J, Russell G, Schmidt GA, Tausnev N (2005) Earth’s energy imbalance: confirmation and implications. Science 308:1431–1435CrossRef Hansen JL, Nazaernko R, Ruedy M, Sato M, Willis J, Del Genio A, Koch D, Lacis A, Lo K, Menon S, Novakov T, Perlwitz J, Russell G, Schmidt GA, Tausnev N (2005) Earth’s energy imbalance: confirmation and implications. Science 308:1431–1435CrossRef
12.
Zurück zum Zitat Kuan D, Duff S, Posarac D, Bi X (2015) Growth optimization of synechococcus elongatus PCC 7942 in lab flasks and 2-D photobioreactor. Can J Chem Eng 93:640–647CrossRef Kuan D, Duff S, Posarac D, Bi X (2015) Growth optimization of synechococcus elongatus PCC 7942 in lab flasks and 2-D photobioreactor. Can J Chem Eng 93:640–647CrossRef
13.
Zurück zum Zitat Kajiwara S, Yamada H, Ohkuni N (1997) Design of the bioreactor for carbon dioxide fixation by synechococcus PCC 7942. Energy Convers Manag 38:529–532CrossRef Kajiwara S, Yamada H, Ohkuni N (1997) Design of the bioreactor for carbon dioxide fixation by synechococcus PCC 7942. Energy Convers Manag 38:529–532CrossRef
14.
Zurück zum Zitat Kamennaya NA, Anton FP (2011) Characterization of cyanate metabolism in marine synechococcus and prochlorococcus sp. Appl Environ Microbiol 77(1):291–301CrossRef Kamennaya NA, Anton FP (2011) Characterization of cyanate metabolism in marine synechococcus and prochlorococcus sp. Appl Environ Microbiol 77(1):291–301CrossRef
15.
Zurück zum Zitat Lan EI, Liao JC (2011) Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab Eng 13:353–363CrossRef Lan EI, Liao JC (2011) Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab Eng 13:353–363CrossRef
16.
Zurück zum Zitat Lan EI, Liao JC (2012) ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc Natl Acad Sci U S A 109(16):6018–6023CrossRef Lan EI, Liao JC (2012) ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc Natl Acad Sci U S A 109(16):6018–6023CrossRef
17.
Zurück zum Zitat Liu H, Robert R, Laws E, Landry M, Camphell L (1999) Cell cycle and physiological characteristics of synechococcus (WH7803) in chemostat culture. Mar Ecol Prog Ser 189:17–25CrossRef Liu H, Robert R, Laws E, Landry M, Camphell L (1999) Cell cycle and physiological characteristics of synechococcus (WH7803) in chemostat culture. Mar Ecol Prog Ser 189:17–25CrossRef
18.
Zurück zum Zitat Luque I, Flores E, Herrero A (1993) Nitrite reductase gene from synechococcus sp. PCC 7942: homology between cyanobacterial and higher-plant nitrite reductases. Plant Mol Biol 21:1201–1205CrossRef Luque I, Flores E, Herrero A (1993) Nitrite reductase gene from synechococcus sp. PCC 7942: homology between cyanobacterial and higher-plant nitrite reductases. Plant Mol Biol 21:1201–1205CrossRef
19.
Zurück zum Zitat Maeda S, Kawaguchi Y, Ohe TA, Omata T (1998) Cis-acting sequences required for NtcB-dependent, nitrite-responsive positive regulation of the nitrate assimilation operon in the cyanobacterium synechococcus sp. strain PCC 7942. J Bacteriol 180:4080–4088 Maeda S, Kawaguchi Y, Ohe TA, Omata T (1998) Cis-acting sequences required for NtcB-dependent, nitrite-responsive positive regulation of the nitrate assimilation operon in the cyanobacterium synechococcus sp. strain PCC 7942. J Bacteriol 180:4080–4088
20.
Zurück zum Zitat Standard methods for water and wastewater engineering (2012) APHA – AWWA, USA Standard methods for water and wastewater engineering (2012) APHA – AWWA, USA
21.
Zurück zum Zitat Murray R, Badger T, Andrews J (1982) Photosynthesis and inorganic carbon usage by the marine cyanobacterium synechococcus sp. Plant Physiol 70(2):517–523CrossRef Murray R, Badger T, Andrews J (1982) Photosynthesis and inorganic carbon usage by the marine cyanobacterium synechococcus sp. Plant Physiol 70(2):517–523CrossRef
23.
Zurück zum Zitat Palenik B, Brahamsha B, Larimer FW (2003) The genome of a motile marine synechococcus. Nature 424:1037–1042CrossRef Palenik B, Brahamsha B, Larimer FW (2003) The genome of a motile marine synechococcus. Nature 424:1037–1042CrossRef
24.
Zurück zum Zitat Parmar A, Singh NK, Pandey A, Gnansounou E, Madamwar D (2011) Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresour Technol 102:10163–10172CrossRef Parmar A, Singh NK, Pandey A, Gnansounou E, Madamwar D (2011) Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresour Technol 102:10163–10172CrossRef
25.
Zurück zum Zitat Prince RC, Khsheegi HS (2005) The photobiological production of hydrogen: potential efficiency and effectiveness as a renewable fuel. Crit Rev Microbiol 31(1):19–31CrossRef Prince RC, Khsheegi HS (2005) The photobiological production of hydrogen: potential efficiency and effectiveness as a renewable fuel. Crit Rev Microbiol 31(1):19–31CrossRef
26.
Zurück zum Zitat Yan R, Zhang Z, Zhu D (2009) Carbon and energetic metabolism of synechococcus sp. PCC7942 under photoautotrophic conditions. Springer Science and Business Media 25(9):1352–1359 Yan R, Zhang Z, Zhu D (2009) Carbon and energetic metabolism of synechococcus sp. PCC7942 under photoautotrophic conditions. Springer Science and Business Media 25(9):1352–1359
27.
Zurück zum Zitat Rippka R, Deruelles J, Waterbury JB, Herdman M, Stainer RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61 Rippka R, Deruelles J, Waterbury JB, Herdman M, Stainer RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61
28.
Zurück zum Zitat Romo S, Soria J, Fernandez F, Ouahid Y, Sola A (2013) Water residence time and the dynamics of toxic cyanobacteria. Freshw Biol 58:513–522CrossRef Romo S, Soria J, Fernandez F, Ouahid Y, Sola A (2013) Water residence time and the dynamics of toxic cyanobacteria. Freshw Biol 58:513–522CrossRef
29.
Zurück zum Zitat Pope D (1975) Effects of light intensity, oxygen concentration, and carbon dioxide concentration on photosynthesis in algae. Microb Ecol 2(1):1–16CrossRef Pope D (1975) Effects of light intensity, oxygen concentration, and carbon dioxide concentration on photosynthesis in algae. Microb Ecol 2(1):1–16CrossRef
31.
Zurück zum Zitat Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC (2011) Driving forces enable high-titer anaerobic 1-butanol synthesis in escherichia coli. Appl Environ Microbiol 77:2905–2915CrossRef Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC (2011) Driving forces enable high-titer anaerobic 1-butanol synthesis in escherichia coli. Appl Environ Microbiol 77:2905–2915CrossRef
32.
Zurück zum Zitat Snyder DS, Brahamsha B, Azadi P, Palenik B (2009) Structure of compositionally simple lipopolysaccharide from marine synechococcus. J Bacteriol 191(17):5499–5509CrossRef Snyder DS, Brahamsha B, Azadi P, Palenik B (2009) Structure of compositionally simple lipopolysaccharide from marine synechococcus. J Bacteriol 191(17):5499–5509CrossRef
33.
Zurück zum Zitat Riming Y, Zhu D, Zhang Z (2012) Carbon metabolism and energy conversion of synechococcus sp. PCC 7942 under mixotrophic conditions: comparison with photoautotrophic condition. J Appl Phycol 24(4):657–688CrossRef Riming Y, Zhu D, Zhang Z (2012) Carbon metabolism and energy conversion of synechococcus sp. PCC 7942 under mixotrophic conditions: comparison with photoautotrophic condition. J Appl Phycol 24(4):657–688CrossRef
Metadaten
Titel
Biofuel Production from Carbon Dioxide Gas in Polluted Areas
verfasst von
Delia Teresa Sponza
Cansu Vural
Gokce Güney
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-95888-0_11