Skip to main content

2021 | OriginalPaper | Buchkapitel

8. Biohydrogen Production Through Mixed Culture Dark Anaerobic Fermentation of Industrial Waste

verfasst von : Abdollah Hajizadeh, Noori M. Cata Saady, Sohrab Zendehboudi, Rajinikanth Rajagopal, Yung-Tse Hung

Erschienen in: Integrated Natural Resources Management

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Industrial organic waste from food processing, livestock production, brewery, bakery, and other related industries is a renewable substrate for anaerobic digestion to produce methane (CH4) or with some process manipulation and control to produce hydrogen (H2). Type of waste, its strength, presence of any toxic compounds, and other specific characteristics affect the operating conditions such as organic loading rate, hydraulic retention time, substrate pretreatment, as well as the yield and the rate of H2 production from industrial waste. Therefore, they need to be optimized for each waste. Research is required on the modeling, cost analysis, economic evaluation, comparative studies about the effect of bioreactor design, as well as on combining several industrial wastes to prepare a well-balanced substrate for H2-producing mixed culture dark fermentation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Wei C, Zhang T, Feng C, Wu H, Deng Z, Wu C, Lu B (2011) Treatment of food processing wastewater in a full-scale jet biogas internal loop anaerobic fluidized bed reactor. Biodegradation 22(2):347–357CrossRef Wei C, Zhang T, Feng C, Wu H, Deng Z, Wu C, Lu B (2011) Treatment of food processing wastewater in a full-scale jet biogas internal loop anaerobic fluidized bed reactor. Biodegradation 22(2):347–357CrossRef
2.
Zurück zum Zitat Rupani PF, Singh RP, Ibrahim MH, Esa N (2010) Review of current palm oil mill effluent (pome) treatment methods: vermicomposting as a sustainable practice. World Appl Sci J 11(1):70–81 Rupani PF, Singh RP, Ibrahim MH, Esa N (2010) Review of current palm oil mill effluent (pome) treatment methods: vermicomposting as a sustainable practice. World Appl Sci J 11(1):70–81
3.
Zurück zum Zitat Alkaya E, Demirer GN (2011) Anaerobic acidification of sugar-beet processing wastes: effect of operational parameters. Biomass Bioenergy 35(1):32–39CrossRef Alkaya E, Demirer GN (2011) Anaerobic acidification of sugar-beet processing wastes: effect of operational parameters. Biomass Bioenergy 35(1):32–39CrossRef
4.
Zurück zum Zitat Passeggi M, López I, Borzacconi L (2009) Integrated anaerobic treatment of dairy industrial wastewater and sludge. Water Sci Technol 59(3):501–506CrossRef Passeggi M, López I, Borzacconi L (2009) Integrated anaerobic treatment of dairy industrial wastewater and sludge. Water Sci Technol 59(3):501–506CrossRef
5.
Zurück zum Zitat Durham RJ, Hourigan JA (2007) Waste management and co-product recovery in dairy processing. In: Waldron K (ed) Handbook of waste management and co-product recovery in food processing. Woodhead Publishing Limited, Cambridge, England, pp 332–387CrossRef Durham RJ, Hourigan JA (2007) Waste management and co-product recovery in dairy processing. In: Waldron K (ed) Handbook of waste management and co-product recovery in food processing. Woodhead Publishing Limited, Cambridge, England, pp 332–387CrossRef
6.
Zurück zum Zitat Wang LK, Hung Y-T, Lo HH, Yapijakis C (eds) (2005) Waste treatment in the food processing industry. Taylor & Francis Group, LLC, New York, p 344 Wang LK, Hung Y-T, Lo HH, Yapijakis C (eds) (2005) Waste treatment in the food processing industry. Taylor & Francis Group, LLC, New York, p 344
7.
Zurück zum Zitat Scott J, Smith K (1997) A bioreactor coupled to a membrane to provide aeration and filtration in ice-cream factory wastewater remediation. Water Res 31(1):69–74CrossRef Scott J, Smith K (1997) A bioreactor coupled to a membrane to provide aeration and filtration in ice-cream factory wastewater remediation. Water Res 31(1):69–74CrossRef
8.
Zurück zum Zitat Yu H, Zhu Z, Hu W, Zhang H (2002) Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. Int J Hydrog Energy 27(11–12):1359–1365CrossRef Yu H, Zhu Z, Hu W, Zhang H (2002) Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. Int J Hydrog Energy 27(11–12):1359–1365CrossRef
9.
Zurück zum Zitat Jordening H-J (2007) Water re-use and wastewater treatment in the German sugar industry. In Water & waste conference 2007. Assiut University, Egypt Jordening H-J (2007) Water re-use and wastewater treatment in the German sugar industry. In Water & waste conference 2007. Assiut University, Egypt
10.
Zurück zum Zitat Wang D, Duan Y, Yang Q, Liu Y, Ni B-J, Wang Q, Zeng G, Li X, Yuan Z (2018) Free ammonia enhances dark fermentative hydrogen production from waste activated sludge. Water Res 133:272–281CrossRef Wang D, Duan Y, Yang Q, Liu Y, Ni B-J, Wang Q, Zeng G, Li X, Yuan Z (2018) Free ammonia enhances dark fermentative hydrogen production from waste activated sludge. Water Res 133:272–281CrossRef
11.
Zurück zum Zitat Baez-Smith C (2006) Anaerobic digestion of vinasse for the production of methane in the sugar cane distillery. In: SPRI conference on sugar processing, Loxahatchee Baez-Smith C (2006) Anaerobic digestion of vinasse for the production of methane in the sugar cane distillery. In: SPRI conference on sugar processing, Loxahatchee
12.
Zurück zum Zitat Rouf M, Bajpai P, Jotshi C (2010) Optimization of biogas generation from press mud in batch reactor. Bangladesh J Sci Ind Res 45(4):371–376CrossRef Rouf M, Bajpai P, Jotshi C (2010) Optimization of biogas generation from press mud in batch reactor. Bangladesh J Sci Ind Res 45(4):371–376CrossRef
14.
Zurück zum Zitat Sentürk E, Ince M, Engin GO (2010) Treatment efficiency and vfa composition of a thermophilic anaerobic contact reactor treating food industry wastewater. J Hazard Mater 176(1–3):843–848CrossRef Sentürk E, Ince M, Engin GO (2010) Treatment efficiency and vfa composition of a thermophilic anaerobic contact reactor treating food industry wastewater. J Hazard Mater 176(1–3):843–848CrossRef
15.
Zurück zum Zitat Corbari SD, Andreani CL, Torres DG, Eng F, Gomes SD (2019) Strategies to improve the biohydrogen production from cassava wastewater in fixed-bed reactors. Int J Hydrog Energy 44(32):17214–17223CrossRef Corbari SD, Andreani CL, Torres DG, Eng F, Gomes SD (2019) Strategies to improve the biohydrogen production from cassava wastewater in fixed-bed reactors. Int J Hydrog Energy 44(32):17214–17223CrossRef
16.
Zurück zum Zitat Noike T, Takabatake H, Mizuno O, Ohba M (2002) Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria. Int J Hydrog Energy 27(11–12):1367–1371CrossRef Noike T, Takabatake H, Mizuno O, Ohba M (2002) Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria. Int J Hydrog Energy 27(11–12):1367–1371CrossRef
17.
Zurück zum Zitat Vijayaraghavan K, Ahmad D, Ibrahim MKB (2006) Biohydrogen generation from jackfruit peel using anaerobic contact filter. Int J Hydrog Energy 31(5):569–579CrossRef Vijayaraghavan K, Ahmad D, Ibrahim MKB (2006) Biohydrogen generation from jackfruit peel using anaerobic contact filter. Int J Hydrog Energy 31(5):569–579CrossRef
18.
Zurück zum Zitat Mizuno O, Shinya M, Miyahara T, Noike T (2001) Effect ofphon biological hydrogen production from organic wastewater. In: 9th world congress anaerobic digestion: anaerobic conversion for sustainability, Antwerpen Mizuno O, Shinya M, Miyahara T, Noike T (2001) Effect ofphon biological hydrogen production from organic wastewater. In: 9th world congress anaerobic digestion: anaerobic conversion for sustainability, Antwerpen
19.
Zurück zum Zitat Gavala HN, Skiadas IV, Ahring BK, Lyberatos G (2005) Potential for biohydrogen and methane production from olive pulp. Water Sci Technol 52(1–2):209–215CrossRef Gavala HN, Skiadas IV, Ahring BK, Lyberatos G (2005) Potential for biohydrogen and methane production from olive pulp. Water Sci Technol 52(1–2):209–215CrossRef
20.
Zurück zum Zitat Gavala HN, Skiadas IV, Ahring BK, Lyberatos G (2006) Thermophilic anaerobic fermentation of olive pulp for hydrogen and methane production: modelling of the anaerobic digestion process. Water Sci Technol 53(8):271–279CrossRef Gavala HN, Skiadas IV, Ahring BK, Lyberatos G (2006) Thermophilic anaerobic fermentation of olive pulp for hydrogen and methane production: modelling of the anaerobic digestion process. Water Sci Technol 53(8):271–279CrossRef
21.
Zurück zum Zitat Eroğlu E, Eroğlu İ, Gündüz U, Türker L, Yücel M (2006) Biological hydrogen production from olive mill wastewater with two-stage processes. Int J Hydrog Energy 31(11):1527–1535CrossRef Eroğlu E, Eroğlu İ, Gündüz U, Türker L, Yücel M (2006) Biological hydrogen production from olive mill wastewater with two-stage processes. Int J Hydrog Energy 31(11):1527–1535CrossRef
22.
Zurück zum Zitat Eroğlu E, Eroğlu İ, Gündüz U, Yücel M (2009) Treatment of olive mill wastewater by different physicochemical methods and utilization of their liquid effluents for biological hydrogen production. Biomass Bioenergy 33(4):701–705CrossRef Eroğlu E, Eroğlu İ, Gündüz U, Yücel M (2009) Treatment of olive mill wastewater by different physicochemical methods and utilization of their liquid effluents for biological hydrogen production. Biomass Bioenergy 33(4):701–705CrossRef
23.
Zurück zum Zitat Lyberatos G, Antonopoulou G, Koutrouli E, Kalfas H, Gavala H, Skiadas I (2006) Gaseous biofuels production from sweet sorghum and olive pulp. In: AIChE annual meeting, conference proceedings Lyberatos G, Antonopoulou G, Koutrouli E, Kalfas H, Gavala H, Skiadas I (2006) Gaseous biofuels production from sweet sorghum and olive pulp. In: AIChE annual meeting, conference proceedings
24.
Zurück zum Zitat Ntaikou I, Kourmentza C, Koutrouli E, Stamatelatou K, Zampraka A, Kornaros M, Lyberatos G (2009) Exploitation of olive oil mill wastewater for combined biohydrogen and biopolymers production. Bioresour Technol 100(15):3724–3730CrossRef Ntaikou I, Kourmentza C, Koutrouli E, Stamatelatou K, Zampraka A, Kornaros M, Lyberatos G (2009) Exploitation of olive oil mill wastewater for combined biohydrogen and biopolymers production. Bioresour Technol 100(15):3724–3730CrossRef
25.
Zurück zum Zitat Noike T, Mizuno O (2000) Hydrogen fermentation of organic municipal wastes. Water Sci Technol 42(12):155–162CrossRef Noike T, Mizuno O (2000) Hydrogen fermentation of organic municipal wastes. Water Sci Technol 42(12):155–162CrossRef
26.
Zurück zum Zitat Fang HH, Li C, Zhang T (2006) Acidophilic biohydrogen production from rice slurry. Int J Hydrog Energy 31(6):683–692CrossRef Fang HH, Li C, Zhang T (2006) Acidophilic biohydrogen production from rice slurry. Int J Hydrog Energy 31(6):683–692CrossRef
27.
Zurück zum Zitat Yokoi H, Maki R, Hirose J, Hayashi S (2002) Microbial production of hydrogen from starch-manufacturing wastes. Biomass Bioenergy 22(5):389–395CrossRef Yokoi H, Maki R, Hirose J, Hayashi S (2002) Microbial production of hydrogen from starch-manufacturing wastes. Biomass Bioenergy 22(5):389–395CrossRef
28.
Zurück zum Zitat Zhang T, Liu H, Fang HH (2003) Biohydrogen production from starch in wastewater under thermophilic condition. J Environ Manag 69(2):149–156CrossRef Zhang T, Liu H, Fang HH (2003) Biohydrogen production from starch in wastewater under thermophilic condition. J Environ Manag 69(2):149–156CrossRef
29.
Zurück zum Zitat Ueno Y, Otsuka S, Morimoto M (1996) Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture. J Ferment Bioeng 82(2):194–197CrossRef Ueno Y, Otsuka S, Morimoto M (1996) Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture. J Ferment Bioeng 82(2):194–197CrossRef
30.
Zurück zum Zitat Zhu H, Ueda S, Asada Y, Miyake J (2002) Hydrogen production as a novel process of wastewater treatment—studies on tofu wastewater with entrapped r. Sphaeroides and mutagenesis. Int J Hydrog Energy 27(11–12):1349–1357CrossRef Zhu H, Ueda S, Asada Y, Miyake J (2002) Hydrogen production as a novel process of wastewater treatment—studies on tofu wastewater with entrapped r. Sphaeroides and mutagenesis. Int J Hydrog Energy 27(11–12):1349–1357CrossRef
32.
Zurück zum Zitat Awarwnet (2004) Handbook for the prevention and minimization of waste and valorization of by-products in european agro-food industries: Deposito Legal: BI-223-04 Awarwnet (2004) Handbook for the prevention and minimization of waste and valorization of by-products in european agro-food industries: Deposito Legal: BI-223-04
34.
Zurück zum Zitat Smithers GW (2008) Whey and whey proteins—from ‘gutter-to-gold’. Int Dairy J 18(7):695–704CrossRef Smithers GW (2008) Whey and whey proteins—from ‘gutter-to-gold’. Int Dairy J 18(7):695–704CrossRef
35.
Zurück zum Zitat Madaki YS, Seng L (2013) Pollution control: how feasible is zero discharge concepts in Malaysia palm oil mills. Am J Eng Res 2(10):239–252 Madaki YS, Seng L (2013) Pollution control: how feasible is zero discharge concepts in Malaysia palm oil mills. Am J Eng Res 2(10):239–252
36.
Zurück zum Zitat Wu TY, Mohammad AW, Jahim JM, Anuar N (2010) Pollution control technologies for the treatment of palm oil mill effluent (pome) through end-of-pipe processes. J Environ Manag 91(7):1467–1490CrossRef Wu TY, Mohammad AW, Jahim JM, Anuar N (2010) Pollution control technologies for the treatment of palm oil mill effluent (pome) through end-of-pipe processes. J Environ Manag 91(7):1467–1490CrossRef
37.
Zurück zum Zitat Bundhoo ZM (2019) Potential of bio-hydrogen production from dark fermentation of crop residues: a review. Int J Hydrog Energy 44(32):17346–17362CrossRef Bundhoo ZM (2019) Potential of bio-hydrogen production from dark fermentation of crop residues: a review. Int J Hydrog Energy 44(32):17346–17362CrossRef
38.
Zurück zum Zitat Sobhi B, Isam S, Ahmad Y, Jacob H (2007) Reducing the environmental impact of olive mill wastewater in Jordan, Palestine and Israel. In: Shuval H, Dweik H (eds) Water resources in the middle east. Springer, Berlin, Heidelberg, pp 409–415CrossRef Sobhi B, Isam S, Ahmad Y, Jacob H (2007) Reducing the environmental impact of olive mill wastewater in Jordan, Palestine and Israel. In: Shuval H, Dweik H (eds) Water resources in the middle east. Springer, Berlin, Heidelberg, pp 409–415CrossRef
39.
Zurück zum Zitat Arvanitoyannis IS, Kassaveti A (2008) Olive oil waste management: treatment methods and potential uses of treated waste. In: Waste management for the food industries. Elsevier Academic Press, Amsterdam, pp 453–568CrossRef Arvanitoyannis IS, Kassaveti A (2008) Olive oil waste management: treatment methods and potential uses of treated waste. In: Waste management for the food industries. Elsevier Academic Press, Amsterdam, pp 453–568CrossRef
40.
Zurück zum Zitat Hamdi M (1992) Toxicity and biodegradability of olive mill wastewaters in batch anaerobic digestion. Appl Biochem Biotechnol 37(2):155–163CrossRef Hamdi M (1992) Toxicity and biodegradability of olive mill wastewaters in batch anaerobic digestion. Appl Biochem Biotechnol 37(2):155–163CrossRef
41.
Zurück zum Zitat Angenent LT, Karim K, Al-Dahhan MH, Domiguez-Espinosa R (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22(9):477–485CrossRef Angenent LT, Karim K, Al-Dahhan MH, Domiguez-Espinosa R (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22(9):477–485CrossRef
42.
Zurück zum Zitat Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi S, Pavlostathis S, Rozzi A, Sanders W, Siegrist H, Vavilin V (2002) The IWA anaerobic digestion model no 1 (ADM1). Water Sci Technol 45(10):65–73CrossRef Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi S, Pavlostathis S, Rozzi A, Sanders W, Siegrist H, Vavilin V (2002) The IWA anaerobic digestion model no 1 (ADM1). Water Sci Technol 45(10):65–73CrossRef
43.
Zurück zum Zitat Plaza G, Robredo P, Pacheco O, Toledo AS (1996) Anaerobic treatment of municipal solid waste. Water Sci Technol 33(3):169–175CrossRef Plaza G, Robredo P, Pacheco O, Toledo AS (1996) Anaerobic treatment of municipal solid waste. Water Sci Technol 33(3):169–175CrossRef
44.
Zurück zum Zitat McInerney MJ, Bryant MP (1981) Basic principles of bioconversions in anaerobic digestion and methanogenesis. In: Sofer SS, Zaborsky OR (eds) Biomass conversion processes for energy and fuels. Springer, New York, pp 277–296CrossRef McInerney MJ, Bryant MP (1981) Basic principles of bioconversions in anaerobic digestion and methanogenesis. In: Sofer SS, Zaborsky OR (eds) Biomass conversion processes for energy and fuels. Springer, New York, pp 277–296CrossRef
45.
Zurück zum Zitat Batstone DJ, Keller J, Newell RB, Newland M (2000) Modelling anaerobic degradation of complex wastewater. I: Model development. Bioresour Technol 75(1):67–74CrossRef Batstone DJ, Keller J, Newell RB, Newland M (2000) Modelling anaerobic degradation of complex wastewater. I: Model development. Bioresour Technol 75(1):67–74CrossRef
46.
Zurück zum Zitat Zoetemeyer RJ, Vandenheuvel JC, Cohen A (1982) pH influence on acidogenic dissimilation of glucose in an anaerobic digester. Water Res 16(3):303–311CrossRef Zoetemeyer RJ, Vandenheuvel JC, Cohen A (1982) pH influence on acidogenic dissimilation of glucose in an anaerobic digester. Water Res 16(3):303–311CrossRef
47.
Zurück zum Zitat Sivagurunathan P, Kumar G, Mudhoo A, Rene ER, Saratale GD, Kobayashi T, Xu KQ, Kim SH, Kim DH (2017) Fermentative hydrogen production using lignocellulose biomass: an overview of pre-treatment methods, inhibitor effects and detoxification experiences. Renew Sust Energ Rev 77:28–42CrossRef Sivagurunathan P, Kumar G, Mudhoo A, Rene ER, Saratale GD, Kobayashi T, Xu KQ, Kim SH, Kim DH (2017) Fermentative hydrogen production using lignocellulose biomass: an overview of pre-treatment methods, inhibitor effects and detoxification experiences. Renew Sust Energ Rev 77:28–42CrossRef
48.
Zurück zum Zitat Urbaniec K, Bakker RR (2015) Biomass residues as raw material for dark hydrogen fermentation - a review. Int J Hydrog Energy 40(9):3648–3658CrossRef Urbaniec K, Bakker RR (2015) Biomass residues as raw material for dark hydrogen fermentation - a review. Int J Hydrog Energy 40(9):3648–3658CrossRef
49.
Zurück zum Zitat Parawira W, Murto M, Zvauya R, Mattiasson B (2004) Anaerobic batch digestion of solid potato waste alone and in combination with sugar beet leaves. Renew Energy 29(11):1811–1823CrossRef Parawira W, Murto M, Zvauya R, Mattiasson B (2004) Anaerobic batch digestion of solid potato waste alone and in combination with sugar beet leaves. Renew Energy 29(11):1811–1823CrossRef
50.
Zurück zum Zitat Liu TC, Ghosh S (1997) Phase separation during anaerobic fermentation of solid substrates in an innovative plug-flow reactor. Water Sci Technol 36(6–7):303–310CrossRef Liu TC, Ghosh S (1997) Phase separation during anaerobic fermentation of solid substrates in an innovative plug-flow reactor. Water Sci Technol 36(6–7):303–310CrossRef
51.
Zurück zum Zitat Pavlostathis SG, Giraldogomez E (1991) Kinetics of anaerobic treatment - a critical-review. Crit Rev Environ Sci Technol 21(5–6):411–490 Pavlostathis SG, Giraldogomez E (1991) Kinetics of anaerobic treatment - a critical-review. Crit Rev Environ Sci Technol 21(5–6):411–490
52.
Zurück zum Zitat Boone DR, Whitman WB, Rouvière P (1993) Diversity and taxonomy of methanogens. In: Ferry JG (ed) Methanogenesis. Ecology, physiology, biochemistry & genetics. Springer, New York, pp 35–80 Boone DR, Whitman WB, Rouvière P (1993) Diversity and taxonomy of methanogens. In: Ferry JG (ed) Methanogenesis. Ecology, physiology, biochemistry & genetics. Springer, New York, pp 35–80
53.
Zurück zum Zitat Saady NMC (2013) Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: unresolved challenge. Int J Hydrog Energy 38(30):13172–13191CrossRef Saady NMC (2013) Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: unresolved challenge. Int J Hydrog Energy 38(30):13172–13191CrossRef
54.
Zurück zum Zitat Schink B (2002) Synergistic interactions in the microbial world. Antonie Van Leeuwenhoek 81(1–4):257–261CrossRef Schink B (2002) Synergistic interactions in the microbial world. Antonie Van Leeuwenhoek 81(1–4):257–261CrossRef
55.
Zurück zum Zitat Demirel B, Scherer P (2008) The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev Environ Sci Biotechnol 7(2):173–190CrossRef Demirel B, Scherer P (2008) The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev Environ Sci Biotechnol 7(2):173–190CrossRef
56.
Zurück zum Zitat Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61(2):262–+ Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61(2):262–+
57.
Zurück zum Zitat Jerris J, McCarty P (1965) The biochemistry of methane fermentation using c14 tracers. J Water Poll Control Fed 39:178–192 Jerris J, McCarty P (1965) The biochemistry of methane fermentation using c14 tracers. J Water Poll Control Fed 39:178–192
58.
Zurück zum Zitat McHugh S, Carton M, Mahony T, O’Flaherty V (2003) Methanogenic population structure in a variety of anaerobic bioreactors. FEMS Microbiol Lett 219(2):297–304CrossRef McHugh S, Carton M, Mahony T, O’Flaherty V (2003) Methanogenic population structure in a variety of anaerobic bioreactors. FEMS Microbiol Lett 219(2):297–304CrossRef
59.
Zurück zum Zitat Hallenbeck PC, Benemann JR (2002) Biological hydrogen production; fundamentals and limiting processes. Int J Hydrog Energy 27(11–12):1185–1193CrossRef Hallenbeck PC, Benemann JR (2002) Biological hydrogen production; fundamentals and limiting processes. Int J Hydrog Energy 27(11–12):1185–1193CrossRef
60.
Zurück zum Zitat Xu KW, Liu H, Li XF, Chen JA, Wang AJ (2010) Typical methanogenic inhibitors can considerably alter bacterial populations and affect the interaction between fatty acid degraders and homoacetogens. Appl Microbiol Biotechnol 87(6):2267–2279CrossRef Xu KW, Liu H, Li XF, Chen JA, Wang AJ (2010) Typical methanogenic inhibitors can considerably alter bacterial populations and affect the interaction between fatty acid degraders and homoacetogens. Appl Microbiol Biotechnol 87(6):2267–2279CrossRef
61.
Zurück zum Zitat Lyberatos G, Skiadas I (1999) Modelling of anaerobic digestion–a review. Global Nest Int J 1(2):63–76 Lyberatos G, Skiadas I (1999) Modelling of anaerobic digestion–a review. Global Nest Int J 1(2):63–76
62.
Zurück zum Zitat Das D, Veziroglu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrog Energy 26(1):13–28CrossRef Das D, Veziroglu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrog Energy 26(1):13–28CrossRef
63.
Zurück zum Zitat Nandi R, Sengupta S (1998) Microbial production of hydrogen: an overview. Crit Rev Microbiol 24(1):61–84CrossRef Nandi R, Sengupta S (1998) Microbial production of hydrogen: an overview. Crit Rev Microbiol 24(1):61–84CrossRef
64.
Zurück zum Zitat Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrog Energy 29(2):173–185CrossRef Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrog Energy 29(2):173–185CrossRef
65.
Zurück zum Zitat Ueno Y, Kawai T, Sato S, Otsuka S, Morimoto M (1995) Biological production of hydrogen from cellulose by natural anaerobic microflora. J Ferment Bioeng 79(4):395–397CrossRef Ueno Y, Kawai T, Sato S, Otsuka S, Morimoto M (1995) Biological production of hydrogen from cellulose by natural anaerobic microflora. J Ferment Bioeng 79(4):395–397CrossRef
66.
Zurück zum Zitat Brosseau JD, Zajic JE (1982) Hydrogen-gas production with citrobacter-intermedius and clostridium-pasteurianum. J Chem Technol Biotechnol 32(3):496–502CrossRef Brosseau JD, Zajic JE (1982) Hydrogen-gas production with citrobacter-intermedius and clostridium-pasteurianum. J Chem Technol Biotechnol 32(3):496–502CrossRef
67.
Zurück zum Zitat Lay JJ, Lee YJ, Noike T (1999) Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Res 33(11):2579–2586CrossRef Lay JJ, Lee YJ, Noike T (1999) Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Res 33(11):2579–2586CrossRef
68.
Zurück zum Zitat Fang HHP, Zhang T, Liu H (2002) Microbial diversity of a mesophilic hydrogen-producing sludge. Appl Microbiol Biotechnol 58(1):112–118CrossRef Fang HHP, Zhang T, Liu H (2002) Microbial diversity of a mesophilic hydrogen-producing sludge. Appl Microbiol Biotechnol 58(1):112–118CrossRef
69.
Zurück zum Zitat Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38(5):569–582CrossRef Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38(5):569–582CrossRef
70.
Zurück zum Zitat Kumar N, Das D (2001) Continuous hydrogen production by immobilized enterobacter cloacae iit-bt 08 using lignocellulosic materials as solid matrices. Enzyme Microb Technol 29(4–5):280–287CrossRef Kumar N, Das D (2001) Continuous hydrogen production by immobilized enterobacter cloacae iit-bt 08 using lignocellulosic materials as solid matrices. Enzyme Microb Technol 29(4–5):280–287CrossRef
71.
Zurück zum Zitat Oh SE, Van Ginkel S, Logan BE (2003) The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. Environ Sci Technol 37(22):5186–5190CrossRef Oh SE, Van Ginkel S, Logan BE (2003) The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. Environ Sci Technol 37(22):5186–5190CrossRef
72.
Zurück zum Zitat Yu HQ, Fang HHP (2001) Acidification of mid- and high-strength dairy wastewaters. Water Res 35(15):3697–3705CrossRef Yu HQ, Fang HHP (2001) Acidification of mid- and high-strength dairy wastewaters. Water Res 35(15):3697–3705CrossRef
73.
Zurück zum Zitat Chookaew T, O-Thong S, Prasertsan P (2014) Biohydrogen production from crude glycerol by immobilized klebsiella sp tr17 in a UASB reactor and bacterial quantification under non-sterile conditions. Int J Hydrog Energy 39(18):9580–9587CrossRef Chookaew T, O-Thong S, Prasertsan P (2014) Biohydrogen production from crude glycerol by immobilized klebsiella sp tr17 in a UASB reactor and bacterial quantification under non-sterile conditions. Int J Hydrog Energy 39(18):9580–9587CrossRef
74.
Zurück zum Zitat Sarma S, Dubey VK, Moholkar VS (2016) Kinetic and thermodynamic analysis (with statistical optimization) of hydrogen production from crude glycerol using clostridium pasteurianum. Int J Hydrog Energy 41(44):19972–19989CrossRef Sarma S, Dubey VK, Moholkar VS (2016) Kinetic and thermodynamic analysis (with statistical optimization) of hydrogen production from crude glycerol using clostridium pasteurianum. Int J Hydrog Energy 41(44):19972–19989CrossRef
75.
Zurück zum Zitat Maru BT, Bielen AAM, Kengen SWM, Constanti M, Medina F, International, J.P (2012) Biohydrogen production from glycerol using thermotoga spp. In: Whec 2012 conference proceedings - 19th world hydrogen energy conference 2012 Maru BT, Bielen AAM, Kengen SWM, Constanti M, Medina F, International, J.P (2012) Biohydrogen production from glycerol using thermotoga spp. In: Whec 2012 conference proceedings - 19th world hydrogen energy conference 2012
76.
Zurück zum Zitat Liu Q, Xiong D, Hong-Bo H, Zhang X (2015) Hydrogen production from glycerol using a genetically engineered Escherichia coli HW2 strain. J Chem Eng Chin Univ 5:1133–1137 Liu Q, Xiong D, Hong-Bo H, Zhang X (2015) Hydrogen production from glycerol using a genetically engineered Escherichia coli HW2 strain. J Chem Eng Chin Univ 5:1133–1137
77.
Zurück zum Zitat Zhang D, Xiao N, Mahbubani KT, del Rio-Chanona EA, Slater NKH, Vassiliadis VS (2015) Bioprocess modelling of biohydrogen production by rhodopseudomonas palustris: model development and effects of operating conditions on hydrogen yield and glycerol conversion efficiency. Chem Eng Sci 130:68–78CrossRef Zhang D, Xiao N, Mahbubani KT, del Rio-Chanona EA, Slater NKH, Vassiliadis VS (2015) Bioprocess modelling of biohydrogen production by rhodopseudomonas palustris: model development and effects of operating conditions on hydrogen yield and glycerol conversion efficiency. Chem Eng Sci 130:68–78CrossRef
78.
Zurück zum Zitat Li YF, Qiu YQ, Zhang X, Zhu ML, Tan WS (2019) Strain screening and optimization of biohydrogen production by Enterobacter aerogenes EB-06 from glycerol fermentation. Bioresour Bioprocess 6:15CrossRef Li YF, Qiu YQ, Zhang X, Zhu ML, Tan WS (2019) Strain screening and optimization of biohydrogen production by Enterobacter aerogenes EB-06 from glycerol fermentation. Bioresour Bioprocess 6:15CrossRef
79.
Zurück zum Zitat Asadi N, Zilouei H (2017) Optimization of organosolv pretreatment of rice straw for enhanced biohydrogen production using Enterobacter aerogenes. Bioresour Technol 227:335–344CrossRef Asadi N, Zilouei H (2017) Optimization of organosolv pretreatment of rice straw for enhanced biohydrogen production using Enterobacter aerogenes. Bioresour Technol 227:335–344CrossRef
80.
Zurück zum Zitat Duangmanee T, Padmasiri SI, Simmons JJ, Raskin L, Sung S (2007) Hydrogen production by anaerobic microbial communities exposed to repeated heat treatments. Water Environ Res 79(9):975–983CrossRef Duangmanee T, Padmasiri SI, Simmons JJ, Raskin L, Sung S (2007) Hydrogen production by anaerobic microbial communities exposed to repeated heat treatments. Water Environ Res 79(9):975–983CrossRef
81.
Zurück zum Zitat Chen WH, Sung S, Chen SY (2009) Biological hydrogen production in an anaerobic sequencing batch reactor: pH and cyclic duration effects. Int J Hydrog Energy 34(1):227–234CrossRef Chen WH, Sung S, Chen SY (2009) Biological hydrogen production in an anaerobic sequencing batch reactor: pH and cyclic duration effects. Int J Hydrog Energy 34(1):227–234CrossRef
82.
Zurück zum Zitat Goud RK, Mohan SV (2012) Regulating biohydrogen production from wastewater by applying organic load-shock: change in the microbial community structure and bio-electrochemical behavior over long-term operation. Int J Hydrog Energy 37(23):17763–17777CrossRef Goud RK, Mohan SV (2012) Regulating biohydrogen production from wastewater by applying organic load-shock: change in the microbial community structure and bio-electrochemical behavior over long-term operation. Int J Hydrog Energy 37(23):17763–17777CrossRef
83.
Zurück zum Zitat Hawkes FR, Hussy I, Kyazze G, Dinsdale R, Hawkes DL (2007) Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress. Int J Hydrog Energy 32(2):172–184CrossRef Hawkes FR, Hussy I, Kyazze G, Dinsdale R, Hawkes DL (2007) Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress. Int J Hydrog Energy 32(2):172–184CrossRef
84.
Zurück zum Zitat Valdez-Vazquez I, Poggi-Varaldo HM (2009) Hydrogen production by fermentative consortia. Renew Sust Energ Rev 13(5):1000–1013CrossRef Valdez-Vazquez I, Poggi-Varaldo HM (2009) Hydrogen production by fermentative consortia. Renew Sust Energ Rev 13(5):1000–1013CrossRef
85.
Zurück zum Zitat Hallenbeck PC, Ghosh D (2009) Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol 27(5):287–297CrossRef Hallenbeck PC, Ghosh D (2009) Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol 27(5):287–297CrossRef
86.
Zurück zum Zitat Lee HS, Salerno MB, Rittmann BE (2008) Thermodynamic evaluation on H2 production in glucose fermentation. Environ Sci Technol 42(7):2401–2407CrossRef Lee HS, Salerno MB, Rittmann BE (2008) Thermodynamic evaluation on H2 production in glucose fermentation. Environ Sci Technol 42(7):2401–2407CrossRef
87.
Zurück zum Zitat Chen X, Sun YQ, Xiu ZL, Li XH, Zhang DJ (2006) Stoichiometric analysis of biological hydrogen production by fermentative bacteria. Int J Hydrog Energy 31(4):539–549CrossRef Chen X, Sun YQ, Xiu ZL, Li XH, Zhang DJ (2006) Stoichiometric analysis of biological hydrogen production by fermentative bacteria. Int J Hydrog Energy 31(4):539–549CrossRef
88.
Zurück zum Zitat Rodriguez J, Kleerebezem R, Lema JM, van Loosdrecht MCM (2006) Modeling product formation in anaerobic mixed culture fermentations. Biotechnol Bioeng 93(3):592–606CrossRef Rodriguez J, Kleerebezem R, Lema JM, van Loosdrecht MCM (2006) Modeling product formation in anaerobic mixed culture fermentations. Biotechnol Bioeng 93(3):592–606CrossRef
89.
Zurück zum Zitat Bartacek J, Zabranska J, Lens PNL (2007) Developments and constraints in fermentative hydrogen production. Biofuels Bioprod Biorefin 1(3):201–214CrossRef Bartacek J, Zabranska J, Lens PNL (2007) Developments and constraints in fermentative hydrogen production. Biofuels Bioprod Biorefin 1(3):201–214CrossRef
90.
Zurück zum Zitat Rai PK (2016) Recent advances in substrate utilization for fermentative hydrogen production. J Appl Biol Biotechnol 4(06):059–067CrossRef Rai PK (2016) Recent advances in substrate utilization for fermentative hydrogen production. J Appl Biol Biotechnol 4(06):059–067CrossRef
91.
Zurück zum Zitat Shin HS, Youn JH, Kim SH (2004) Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. Int J Hydrog Energy 29(13):1355–1363CrossRef Shin HS, Youn JH, Kim SH (2004) Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. Int J Hydrog Energy 29(13):1355–1363CrossRef
92.
Zurück zum Zitat Kim DH, Kim SH, Ko IB, Lee CY, Shin HS (2008) Start-up strategy for continuous fermentative hydrogen production: early switchover from batch to continuous operation. Int J Hydrog Energy 33(5):1532–1541CrossRef Kim DH, Kim SH, Ko IB, Lee CY, Shin HS (2008) Start-up strategy for continuous fermentative hydrogen production: early switchover from batch to continuous operation. Int J Hydrog Energy 33(5):1532–1541CrossRef
93.
Zurück zum Zitat Kim SH, Han SK, Shin HS (2008) Optimization of continuous hydrogen fermentation of food waste as a function of solids retention time independent of hydraulic retention time. Process Biochem 43(2):213–218CrossRef Kim SH, Han SK, Shin HS (2008) Optimization of continuous hydrogen fermentation of food waste as a function of solids retention time independent of hydraulic retention time. Process Biochem 43(2):213–218CrossRef
94.
Zurück zum Zitat Lay JJ, Fan KS, Hwang JI, Chang JI, Hsu PC (2005) Factors affecting hydrogen production from food wastes by clostridium-rich composts. J Environ Eng-ASCE 131(4):595–602CrossRef Lay JJ, Fan KS, Hwang JI, Chang JI, Hsu PC (2005) Factors affecting hydrogen production from food wastes by clostridium-rich composts. J Environ Eng-ASCE 131(4):595–602CrossRef
95.
Zurück zum Zitat Sreela-Or C, Imai T, Plangklang P, Reungsang A (2011) Optimization of key factors affecting hydrogen production from food waste by anaerobic mixed cultures. Int J Hydrog Energy 36(21):14120–14133CrossRef Sreela-Or C, Imai T, Plangklang P, Reungsang A (2011) Optimization of key factors affecting hydrogen production from food waste by anaerobic mixed cultures. Int J Hydrog Energy 36(21):14120–14133CrossRef
96.
Zurück zum Zitat Sreela-or C, Plangklang P, Imai T, Reungsang A (2011) Co-digestion of food waste and sludge for hydrogen production by anaerobic mixed cultures: statistical key factors optimization. Int J Hydrog Energy 36(21):14227–14237CrossRef Sreela-or C, Plangklang P, Imai T, Reungsang A (2011) Co-digestion of food waste and sludge for hydrogen production by anaerobic mixed cultures: statistical key factors optimization. Int J Hydrog Energy 36(21):14227–14237CrossRef
97.
Zurück zum Zitat Kim DH, Kim SH, Kim HW, Kim MS, Shin HS (2011) Sewage sludge addition to food waste synergistically enhances hydrogen fermentation performance. Bioresour Technol 102(18):8501–8506CrossRef Kim DH, Kim SH, Kim HW, Kim MS, Shin HS (2011) Sewage sludge addition to food waste synergistically enhances hydrogen fermentation performance. Bioresour Technol 102(18):8501–8506CrossRef
98.
Zurück zum Zitat Pan JM, Zhang RH, El-Mashad HM, Sun HW, Ying YB (2008) Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation. Int J Hydrog Energy 33(23):6968–6975CrossRef Pan JM, Zhang RH, El-Mashad HM, Sun HW, Ying YB (2008) Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation. Int J Hydrog Energy 33(23):6968–6975CrossRef
99.
Zurück zum Zitat Chen WH, Chen SY, Khanal SK, Sung SW (2006) Kinetic study of biological hydrogen production by anaerobic fermentation. Int J Hydrog Energy 31(15):2170–2178CrossRef Chen WH, Chen SY, Khanal SK, Sung SW (2006) Kinetic study of biological hydrogen production by anaerobic fermentation. Int J Hydrog Energy 31(15):2170–2178CrossRef
100.
Zurück zum Zitat Kim DH, Kim SH, Shin HS (2009) Hydrogen fermentation of food waste without inoculum addition. Enzyme Microb Technol 45(3):181–187CrossRef Kim DH, Kim SH, Shin HS (2009) Hydrogen fermentation of food waste without inoculum addition. Enzyme Microb Technol 45(3):181–187CrossRef
101.
Zurück zum Zitat Kim DH, Wu JY, Jeong KW, Kim MS, Shin HS (2011) Natural inducement of hydrogen from food waste by temperature control. Int J Hydrog Energy 36(17):10666–10673CrossRef Kim DH, Wu JY, Jeong KW, Kim MS, Shin HS (2011) Natural inducement of hydrogen from food waste by temperature control. Int J Hydrog Energy 36(17):10666–10673CrossRef
102.
Zurück zum Zitat Han SK, Shin HS (2004) Performance of an innovative two-stage process converting food waste to hydrogen and methane. J Air Waste Manag Assoc 54(2):242–249CrossRef Han SK, Shin HS (2004) Performance of an innovative two-stage process converting food waste to hydrogen and methane. J Air Waste Manag Assoc 54(2):242–249CrossRef
103.
Zurück zum Zitat Han SK, Shin HS (2004) Biohydrogen production by anaerobic fermentation of food waste. Int J Hydrog Energy 29(6):569–577CrossRef Han SK, Shin HS (2004) Biohydrogen production by anaerobic fermentation of food waste. Int J Hydrog Energy 29(6):569–577CrossRef
104.
Zurück zum Zitat Kim SH, Han SK, Shin HS (2004) Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge. Int J Hydrog Energy 29(15):1607–1616CrossRef Kim SH, Han SK, Shin HS (2004) Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge. Int J Hydrog Energy 29(15):1607–1616CrossRef
105.
Zurück zum Zitat Lee YW, Chung J (2010) Bioproduction of hydrogen from food waste by pilot-scale combined hydrogen/methane fermentation. Int J Hydrog Energy 35(21):11746–11755CrossRef Lee YW, Chung J (2010) Bioproduction of hydrogen from food waste by pilot-scale combined hydrogen/methane fermentation. Int J Hydrog Energy 35(21):11746–11755CrossRef
106.
Zurück zum Zitat Wongthanate J, Chinnacotpong K, Khumpong M (2014) Impacts of pH, temperature, and pretreatment method on biohydrogen production from organic wastes by sewage microflora. Int J Energy Environ Eng 5(1):6CrossRef Wongthanate J, Chinnacotpong K, Khumpong M (2014) Impacts of pH, temperature, and pretreatment method on biohydrogen production from organic wastes by sewage microflora. Int J Energy Environ Eng 5(1):6CrossRef
107.
Zurück zum Zitat Hassan GK, Massanet-Nicolau J, Dinsdale R, Jones RJ, Abo-Aly MM, El-Gohary FA, Guwy A (2019) A novel method for increasing biohydrogen production from food waste using electrodialysis. Int J Hydrog Energy 44(29):14715–14720CrossRef Hassan GK, Massanet-Nicolau J, Dinsdale R, Jones RJ, Abo-Aly MM, El-Gohary FA, Guwy A (2019) A novel method for increasing biohydrogen production from food waste using electrodialysis. Int J Hydrog Energy 44(29):14715–14720CrossRef
108.
Zurück zum Zitat Abreu AA, Tavares F, Alves MM, Cavaleiro AJ, Pereira MA (2019) Garden and food waste co-fermentation for biohydrogen and biomethane production in a two-step hyperthermophilic-mesophilic process. Bioresour Technol 278:180–186CrossRef Abreu AA, Tavares F, Alves MM, Cavaleiro AJ, Pereira MA (2019) Garden and food waste co-fermentation for biohydrogen and biomethane production in a two-step hyperthermophilic-mesophilic process. Bioresour Technol 278:180–186CrossRef
109.
Zurück zum Zitat Shin HS, Youn JH (2005) Conversion of food waste into hydrogen by thermophilic acidogenesis. Biodegradation 16(1):33–44CrossRef Shin HS, Youn JH (2005) Conversion of food waste into hydrogen by thermophilic acidogenesis. Biodegradation 16(1):33–44CrossRef
110.
Zurück zum Zitat Lee ZK, Li SL, Lin JS, Wang YH, Kuo PC, Cheng SS (2008) Effect of pH in fermentation of vegetable kitchen wastes on hydrogen production under a thermophilic condition. Int J Hydrog Energy 33(19):5234–5241CrossRef Lee ZK, Li SL, Lin JS, Wang YH, Kuo PC, Cheng SS (2008) Effect of pH in fermentation of vegetable kitchen wastes on hydrogen production under a thermophilic condition. Int J Hydrog Energy 33(19):5234–5241CrossRef
111.
Zurück zum Zitat Lee ZK, Li SL, Kuo PC, Chen IC, Tien YM, Huang YJ, Chuang CP, Wong SC, Cheng SS (2010) Thermophilic bio-energy process study on hydrogen fermentation with vegetable kitchen waste. Int J Hydrog Energy 35(24):13458–13466CrossRef Lee ZK, Li SL, Kuo PC, Chen IC, Tien YM, Huang YJ, Chuang CP, Wong SC, Cheng SS (2010) Thermophilic bio-energy process study on hydrogen fermentation with vegetable kitchen waste. Int J Hydrog Energy 35(24):13458–13466CrossRef
112.
Zurück zum Zitat Chu CF, Li YY, Xu KQ, Ebie Y, Inamori Y, Kong HN (2008) A pH- and temperature-phased two-stage process for hydrogen and methane production from food waste. Int J Hydrog Energy 33(18):4739–4746CrossRef Chu CF, Li YY, Xu KQ, Ebie Y, Inamori Y, Kong HN (2008) A pH- and temperature-phased two-stage process for hydrogen and methane production from food waste. Int J Hydrog Energy 33(18):4739–4746CrossRef
113.
Zurück zum Zitat Lay JJ, Fan KS, Chang J, Ku CH (2003) Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-shock digested sludge. Int J Hydrog Energy 28(12):1361–1367CrossRef Lay JJ, Fan KS, Chang J, Ku CH (2003) Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-shock digested sludge. Int J Hydrog Energy 28(12):1361–1367CrossRef
114.
Zurück zum Zitat Wongthanate J, Chinnacotpong K (2015) Optimal conditions for biological hydrogen production from food waste. Environ Eng Res 20(2):121–125CrossRef Wongthanate J, Chinnacotpong K (2015) Optimal conditions for biological hydrogen production from food waste. Environ Eng Res 20(2):121–125CrossRef
115.
Zurück zum Zitat De Gioannis G, Muntoni A, Polettini A, Pomi R (2013) A review of dark fermentative hydrogen production from biodegradable municipal waste fractions. Waste Manag 33(6):1345–1361CrossRef De Gioannis G, Muntoni A, Polettini A, Pomi R (2013) A review of dark fermentative hydrogen production from biodegradable municipal waste fractions. Waste Manag 33(6):1345–1361CrossRef
116.
Zurück zum Zitat Kayhanian M (1995) Biodegradability of the organic fraction of municipal solid-waste in a high-solids anaerobic digester. Waste Manag Res 13(2):123–136CrossRef Kayhanian M (1995) Biodegradability of the organic fraction of municipal solid-waste in a high-solids anaerobic digester. Waste Manag Res 13(2):123–136CrossRef
117.
Zurück zum Zitat Themelis NJ, Kim YH (2002) Material and energy balances in a large-scale aerobic bioconversion cell. Waste Manag Res 20(3):234–242CrossRef Themelis NJ, Kim YH (2002) Material and energy balances in a large-scale aerobic bioconversion cell. Waste Manag Res 20(3):234–242CrossRef
118.
Zurück zum Zitat Li SL, Kuo SC, Lin JS, Lee ZK, Wang YH, Cheng SS (2008) Process performance evaluation of intermittent-continuous stirred tank reactor for anaerobic hydrogen fermentation with kitchen waste. Int J Hydrog Energy 33(5):1522–1531CrossRef Li SL, Kuo SC, Lin JS, Lee ZK, Wang YH, Cheng SS (2008) Process performance evaluation of intermittent-continuous stirred tank reactor for anaerobic hydrogen fermentation with kitchen waste. Int J Hydrog Energy 33(5):1522–1531CrossRef
119.
Zurück zum Zitat Liu DW, Liu DP, Zeng RJ, Angelidaki I (2006) Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Res 40(11):2230–2236CrossRef Liu DW, Liu DP, Zeng RJ, Angelidaki I (2006) Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Res 40(11):2230–2236CrossRef
120.
Zurück zum Zitat Alzate-Gaviria LM, Sebastian PJ, Perez-Hernandez A, Eapen D (2007) Comparison of two anaerobic systems for hydrogen production from the organic fraction of municipal solid waste and synthetic wastewater. Int J Hydrog Energy 32(15):3141–3146CrossRef Alzate-Gaviria LM, Sebastian PJ, Perez-Hernandez A, Eapen D (2007) Comparison of two anaerobic systems for hydrogen production from the organic fraction of municipal solid waste and synthetic wastewater. Int J Hydrog Energy 32(15):3141–3146CrossRef
121.
Zurück zum Zitat Ebrahimian F, Karimi K (2020) Efficient biohydrogen and advanced biofuel coproduction from municipal solid waste through a clean process. Bioresour Technol 300:122656CrossRef Ebrahimian F, Karimi K (2020) Efficient biohydrogen and advanced biofuel coproduction from municipal solid waste through a clean process. Bioresour Technol 300:122656CrossRef
122.
Zurück zum Zitat Gomez X, Moran A, Cuetos MJ, Sanchez ME (2006) The production of hydrogen by dark fermentation of municipal solid wastes and slaughterhouse waste: a two-phase process. J Power Sources 157(2):727–732CrossRef Gomez X, Moran A, Cuetos MJ, Sanchez ME (2006) The production of hydrogen by dark fermentation of municipal solid wastes and slaughterhouse waste: a two-phase process. J Power Sources 157(2):727–732CrossRef
123.
Zurück zum Zitat Tenca A, Schievano A, Perazzolo F, Adani F, Oberti R (2011) Biohydrogen from thermophilic co-fermentation of swine manure with fruit and vegetable waste: maximizing stable production without pH control. Bioresour Technol 102(18):8582–8588CrossRef Tenca A, Schievano A, Perazzolo F, Adani F, Oberti R (2011) Biohydrogen from thermophilic co-fermentation of swine manure with fruit and vegetable waste: maximizing stable production without pH control. Bioresour Technol 102(18):8582–8588CrossRef
124.
Zurück zum Zitat Lee DY, Ebie Y, Xu KQ, Li YY, Inamori Y (2010) Continuous H2 and CH4 production from high-solid food waste in the two-stage thermophilic fermentation process with the recirculation of digester sludge. Bioresour Technol 101:S42–S47CrossRef Lee DY, Ebie Y, Xu KQ, Li YY, Inamori Y (2010) Continuous H2 and CH4 production from high-solid food waste in the two-stage thermophilic fermentation process with the recirculation of digester sludge. Bioresour Technol 101:S42–S47CrossRef
125.
Zurück zum Zitat Ueno Y, Fukui H, Goto M (2007) Operation of a two-stage fermentation process producing hydrogen and methane from organic waste. Environ Sci Technol 41(4):1413–1419CrossRef Ueno Y, Fukui H, Goto M (2007) Operation of a two-stage fermentation process producing hydrogen and methane from organic waste. Environ Sci Technol 41(4):1413–1419CrossRef
126.
Zurück zum Zitat Van Ginkel SW, Oh SE, Logan BE (2005) Biohydrogen gas production from food processing and domestic wastewaters. Int J Hydrog Energy 30(15):1535–1542CrossRef Van Ginkel SW, Oh SE, Logan BE (2005) Biohydrogen gas production from food processing and domestic wastewaters. Int J Hydrog Energy 30(15):1535–1542CrossRef
127.
Zurück zum Zitat Balin R, Raman S (2011) Biohydrogen from sugar industry waste and sewage. Proc Institution Civil Eng-Energy 164(2):78–88 Balin R, Raman S (2011) Biohydrogen from sugar industry waste and sewage. Proc Institution Civil Eng-Energy 164(2):78–88
128.
Zurück zum Zitat Ewan BCR, Allen RWK (2005) A figure of merit assessment of the routes to hydrogen. Int J Hydrog Energy 30(8):809–819CrossRef Ewan BCR, Allen RWK (2005) A figure of merit assessment of the routes to hydrogen. Int J Hydrog Energy 30(8):809–819CrossRef
129.
Zurück zum Zitat Feng XQ, Wang H, Wang Y, Wang XF, Huang JX (2010) Biohydrogen production from apple pomace by anaerobic fermentation with river sludge. Int J Hydrog Energy 35(7):3058–3064CrossRef Feng XQ, Wang H, Wang Y, Wang XF, Huang JX (2010) Biohydrogen production from apple pomace by anaerobic fermentation with river sludge. Int J Hydrog Energy 35(7):3058–3064CrossRef
130.
Zurück zum Zitat Intanoo P, Suttikul T, Leethochawalit M, Gulari E, Chavadej S (2014) Hydrogen production from alcohol wastewater with added fermentation residue by an anaerobic sequencing batch reactor (asbr) under thermophilic operation. Int J Hydrog Energy 39(18):9611–9620CrossRef Intanoo P, Suttikul T, Leethochawalit M, Gulari E, Chavadej S (2014) Hydrogen production from alcohol wastewater with added fermentation residue by an anaerobic sequencing batch reactor (asbr) under thermophilic operation. Int J Hydrog Energy 39(18):9611–9620CrossRef
131.
Zurück zum Zitat Wang CC, Chang CW, Chu CP, Lee DJ, Chang BV, Liao CS, Tay JH (2003) Using filtrate of waste biosolids to effectively produce bio-hydrogen by anaerobic fermentation. Water Res 37(11):2789–2793CrossRef Wang CC, Chang CW, Chu CP, Lee DJ, Chang BV, Liao CS, Tay JH (2003) Using filtrate of waste biosolids to effectively produce bio-hydrogen by anaerobic fermentation. Water Res 37(11):2789–2793CrossRef
132.
Zurück zum Zitat Hussy I, Hawkes FR, Dinsdale R, Hawkes DL (2005) Continuous fermentative hydrogen production from sucrose and sugarbeet. Int J Hydrog Energy 30(5):471–483CrossRef Hussy I, Hawkes FR, Dinsdale R, Hawkes DL (2005) Continuous fermentative hydrogen production from sucrose and sugarbeet. Int J Hydrog Energy 30(5):471–483CrossRef
133.
Zurück zum Zitat Jung KW, Kim DH, Shin HS (2010) Continuous fermentative hydrogen production from coffee drink manufacturing wastewater by applying UASB reactor. Int J Hydrog Energy 35(24):13370–13378CrossRef Jung KW, Kim DH, Shin HS (2010) Continuous fermentative hydrogen production from coffee drink manufacturing wastewater by applying UASB reactor. Int J Hydrog Energy 35(24):13370–13378CrossRef
134.
Zurück zum Zitat Jung KW, Kim DH, Shin HS (2011) Fermentative hydrogen production from laminaria japonica and optimization of thermal pretreatment conditions. Bioresour Technol 102(3):2745–2750CrossRef Jung KW, Kim DH, Shin HS (2011) Fermentative hydrogen production from laminaria japonica and optimization of thermal pretreatment conditions. Bioresour Technol 102(3):2745–2750CrossRef
135.
Zurück zum Zitat Jung KW, Kim DH, Shin HS (2011) A simple method to reduce the start-up period in a H2-producing UASB reactor. Int J Hydrog Energy 36(2):1466–1473CrossRef Jung KW, Kim DH, Shin HS (2011) A simple method to reduce the start-up period in a H2-producing UASB reactor. Int J Hydrog Energy 36(2):1466–1473CrossRef
136.
Zurück zum Zitat Santos SC, Rosa PRF, Sakamoto IK, Varesche MBA, Silva EL (2014) Hydrogen production from diluted and raw sugarcane vinasse under thermophilic anaerobic conditions. Int J Hydrog Energy 39(18):9599–9610CrossRef Santos SC, Rosa PRF, Sakamoto IK, Varesche MBA, Silva EL (2014) Hydrogen production from diluted and raw sugarcane vinasse under thermophilic anaerobic conditions. Int J Hydrog Energy 39(18):9599–9610CrossRef
137.
Zurück zum Zitat Buitron G, Carvajal C (2010) Biohydrogen production from tequila vinasses in an anaerobic sequencing batch reactor: effect of initial substrate concentration, temperature and hydraulic retention time. Bioresour Technol 101(23):9071–9077CrossRef Buitron G, Carvajal C (2010) Biohydrogen production from tequila vinasses in an anaerobic sequencing batch reactor: effect of initial substrate concentration, temperature and hydraulic retention time. Bioresour Technol 101(23):9071–9077CrossRef
138.
Zurück zum Zitat Guo WQ, Ren NQ, Wang XJ, Xiang WS, Meng ZH, Ding J, Qu YY, Zhang LS (2008) Biohydrogen production from ethanol-type fermentation of molasses in an expanded granular sludge bed (EGSB) reactor. Int J Hydrog Energy 33(19):4981–4988CrossRef Guo WQ, Ren NQ, Wang XJ, Xiang WS, Meng ZH, Ding J, Qu YY, Zhang LS (2008) Biohydrogen production from ethanol-type fermentation of molasses in an expanded granular sludge bed (EGSB) reactor. Int J Hydrog Energy 33(19):4981–4988CrossRef
139.
Zurück zum Zitat Fan KS, Kan NR, Lay JJ (2006) Effect of hydraulic retention time on anaerobic hydrogenesis in CSTR. Bioresour Technol 97(1):84–89CrossRef Fan KS, Kan NR, Lay JJ (2006) Effect of hydraulic retention time on anaerobic hydrogenesis in CSTR. Bioresour Technol 97(1):84–89CrossRef
140.
Zurück zum Zitat Fan YT, Zhang GS, Guo XY, Xing Y, Fan MH (2006) Biohydrogen-production from beer lees biomass by cow dung compost. Biomass Bioenergy 30(5):493–496CrossRef Fan YT, Zhang GS, Guo XY, Xing Y, Fan MH (2006) Biohydrogen-production from beer lees biomass by cow dung compost. Biomass Bioenergy 30(5):493–496CrossRef
141.
Zurück zum Zitat Cui MJ, Yuan ZL, Zhi XH, Shen JQ (2009) Optimization of biohydrogen production from beer lees using anaerobic mixed bacteria. Int J Hydrog Energy 34(19):7971–7978CrossRef Cui MJ, Yuan ZL, Zhi XH, Shen JQ (2009) Optimization of biohydrogen production from beer lees using anaerobic mixed bacteria. Int J Hydrog Energy 34(19):7971–7978CrossRef
142.
Zurück zum Zitat Lay CH, Sung IY, Kumar G, Chu CY, Chen CC, Lin CY (2012) Optimizing biohydrogen production from mushroom cultivation waste using anaerobic mixed cultures. Int J Hydrog Energy 37(21):16473–16478CrossRef Lay CH, Sung IY, Kumar G, Chu CY, Chen CC, Lin CY (2012) Optimizing biohydrogen production from mushroom cultivation waste using anaerobic mixed cultures. Int J Hydrog Energy 37(21):16473–16478CrossRef
143.
Zurück zum Zitat Noike T, Ko IB, Yokoyama S, Kohno Y, Li YY (2005) Continuous hydrogen production from organic waste. Water Sci Technol 52(1–2):145–151CrossRef Noike T, Ko IB, Yokoyama S, Kohno Y, Li YY (2005) Continuous hydrogen production from organic waste. Water Sci Technol 52(1–2):145–151CrossRef
144.
Zurück zum Zitat Liu Q, Zhang XL, Yu LJ, Zhao AH, Tai J, Liu JY, Qian GR, Xu ZP (2011) Fermentative hydrogen production from fresh leachate in batch and continuous bioreactors. Bioresour Technol 102(9):5411–5417CrossRef Liu Q, Zhang XL, Yu LJ, Zhao AH, Tai J, Liu JY, Qian GR, Xu ZP (2011) Fermentative hydrogen production from fresh leachate in batch and continuous bioreactors. Bioresour Technol 102(9):5411–5417CrossRef
145.
Zurück zum Zitat Song ZX, Wang ZY, Wu LY, Fan YT, Hou HW (2012) Effect of microwave irradiation pretreatment of cow dung compost on bio-hydrogen process from corn stalk by dark fermentation. Int J Hydrog Energy 37(8):6554–6561CrossRef Song ZX, Wang ZY, Wu LY, Fan YT, Hou HW (2012) Effect of microwave irradiation pretreatment of cow dung compost on bio-hydrogen process from corn stalk by dark fermentation. Int J Hydrog Energy 37(8):6554–6561CrossRef
146.
Zurück zum Zitat Zhang ML, Fan YT, Xing Y, Pan CM, Zhang GS, Lay JJ (2007) Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass Bioenergy 31(4):250–254CrossRef Zhang ML, Fan YT, Xing Y, Pan CM, Zhang GS, Lay JJ (2007) Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass Bioenergy 31(4):250–254CrossRef
147.
Zurück zum Zitat Minon-Fuentes R, Aguilar-Juarez O (2019) Hydrogen production from coffee pulp by dark fermentation. Water Sci Technol 80(9):1692–1701CrossRef Minon-Fuentes R, Aguilar-Juarez O (2019) Hydrogen production from coffee pulp by dark fermentation. Water Sci Technol 80(9):1692–1701CrossRef
148.
Zurück zum Zitat Saraphirom P, Reungsang A (2010) Optimization of biohydrogen production from sweet sorghum syrup using statistical methods. Int J Hydrog Energy 35(24):13435–13444CrossRef Saraphirom P, Reungsang A (2010) Optimization of biohydrogen production from sweet sorghum syrup using statistical methods. Int J Hydrog Energy 35(24):13435–13444CrossRef
149.
Zurück zum Zitat Saraphirom P, Reungsang A (2013) Enhancement of biohydrogen production from sweet sorghum syrup by anaerobic seed sludge in an anaerobic sequencing batch reactor by nutrient and vitamin supplementations. Environ Technol 34(17):2503–2511CrossRef Saraphirom P, Reungsang A (2013) Enhancement of biohydrogen production from sweet sorghum syrup by anaerobic seed sludge in an anaerobic sequencing batch reactor by nutrient and vitamin supplementations. Environ Technol 34(17):2503–2511CrossRef
150.
Zurück zum Zitat Antonopoulou G, Gavala HN, Skiadas IV, Angelopoulos K, Lyberatos G (2008) Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresour Technol 99(1):110–119CrossRef Antonopoulou G, Gavala HN, Skiadas IV, Angelopoulos K, Lyberatos G (2008) Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresour Technol 99(1):110–119CrossRef
151.
Zurück zum Zitat Sangyoka S, Reungsang A, Moonamart S (2007) Repeated-batch fermentative for bio-hydrogen production from cassava starch manufacturing wastewater. Pak J Biol Sci 10(11):1782–1789CrossRef Sangyoka S, Reungsang A, Moonamart S (2007) Repeated-batch fermentative for bio-hydrogen production from cassava starch manufacturing wastewater. Pak J Biol Sci 10(11):1782–1789CrossRef
152.
Zurück zum Zitat Mari AG, Andreani CL, Tonello TU, Leite LCC, Fernandes JR, Lopes DD, Rodrigues JAD, Gomes SD (2020) Biohydrogen and biomethane production from cassava wastewater in a two-stage anaerobic sequencing batch biofilm reactor. Int J Hydrog Energy 45(8):5165–5174CrossRef Mari AG, Andreani CL, Tonello TU, Leite LCC, Fernandes JR, Lopes DD, Rodrigues JAD, Gomes SD (2020) Biohydrogen and biomethane production from cassava wastewater in a two-stage anaerobic sequencing batch biofilm reactor. Int J Hydrog Energy 45(8):5165–5174CrossRef
153.
Zurück zum Zitat Luo G, Xie L, Zou ZH, Wang W, Zhou Q (2010) Evaluation of pretreatment methods on mixed inoculum for both batch and continuous thermophilic biohydrogen production from cassava stillage. Bioresour Technol 101(3):959–964CrossRef Luo G, Xie L, Zou ZH, Wang W, Zhou Q (2010) Evaluation of pretreatment methods on mixed inoculum for both batch and continuous thermophilic biohydrogen production from cassava stillage. Bioresour Technol 101(3):959–964CrossRef
154.
Zurück zum Zitat Wang W, Xie L, Chen JR, Luo G, Zhou Q (2011) Biohydrogen and methane production by co-digestion of cassava stillage and excess sludge under thermophilic condition. Bioresour Technol 102(4):3833–3839CrossRef Wang W, Xie L, Chen JR, Luo G, Zhou Q (2011) Biohydrogen and methane production by co-digestion of cassava stillage and excess sludge under thermophilic condition. Bioresour Technol 102(4):3833–3839CrossRef
155.
Zurück zum Zitat Luo G, Xie L, Zhou Q, Angelidaki I (2011) Enhancement of bioenergy production from organic wastes by two-stage anaerobic hydrogen and methane production process. Bioresour Technol 102(18):8700–8706CrossRef Luo G, Xie L, Zhou Q, Angelidaki I (2011) Enhancement of bioenergy production from organic wastes by two-stage anaerobic hydrogen and methane production process. Bioresour Technol 102(18):8700–8706CrossRef
156.
Zurück zum Zitat Mohan SV, Babu ML, Reddy MV, Mohanakrishna G, Sarma PN (2009) Harnessing of biohydrogen by acidogenic fermentation of Citrus limetta peelings: effect of extraction procedure and pretreatment of biocatalyst. Int J Hydrog Energy 34(15):6149–6156CrossRef Mohan SV, Babu ML, Reddy MV, Mohanakrishna G, Sarma PN (2009) Harnessing of biohydrogen by acidogenic fermentation of Citrus limetta peelings: effect of extraction procedure and pretreatment of biocatalyst. Int J Hydrog Energy 34(15):6149–6156CrossRef
157.
Zurück zum Zitat Chuang Y-S, Chen C-C, Lay C-H, Sung I-Y, Wu J-H, Lee S-C, Sen B, Lin C-Y (2012) Optimization of incubation factors for fermentative hydrogen production from agricultural wastes. Sustain Environ Res 22(2):99–106 Chuang Y-S, Chen C-C, Lay C-H, Sung I-Y, Wu J-H, Lee S-C, Sen B, Lin C-Y (2012) Optimization of incubation factors for fermentative hydrogen production from agricultural wastes. Sustain Environ Res 22(2):99–106
158.
Zurück zum Zitat Reungsang A, Sreela-or C (2013) Bio-hydrogen production from pineapple waste extract by anaerobic mixed cultures. Energies 6(4):2175–2190CrossRef Reungsang A, Sreela-or C (2013) Bio-hydrogen production from pineapple waste extract by anaerobic mixed cultures. Energies 6(4):2175–2190CrossRef
159.
Zurück zum Zitat Kim MS, Lee DY (2010) Fermentative hydrogen production from tofu-processing waste and anaerobic digester sludge using microbial consortium. Bioresour Technol 101:S48–S52CrossRef Kim MS, Lee DY (2010) Fermentative hydrogen production from tofu-processing waste and anaerobic digester sludge using microbial consortium. Bioresour Technol 101:S48–S52CrossRef
160.
Zurück zum Zitat Stabnikova O, Wang J-Y, Ivanov V (2010) Value-added biotechnological products from organic wastes. In: Wang LK, Ivanov V, Tay J-H (eds) Environmental biotechnology. Humana Press, Totowa, pp 343–394CrossRef Stabnikova O, Wang J-Y, Ivanov V (2010) Value-added biotechnological products from organic wastes. In: Wang LK, Ivanov V, Tay J-H (eds) Environmental biotechnology. Humana Press, Totowa, pp 343–394CrossRef
161.
Zurück zum Zitat Yasin NHM, Mumtaz T, Hassan MA, Rahman NA (2013) Food waste and food processing waste for biohydrogen production: a review. J Environ Manage 130:375–385CrossRef Yasin NHM, Mumtaz T, Hassan MA, Rahman NA (2013) Food waste and food processing waste for biohydrogen production: a review. J Environ Manage 130:375–385CrossRef
162.
Zurück zum Zitat Azbar N, Dokgoz FTC, Keskin T, Korkmaz KS, Syed HM (2009) Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions. Int J Hydrog Energy 34(17):7441–7447CrossRef Azbar N, Dokgoz FTC, Keskin T, Korkmaz KS, Syed HM (2009) Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions. Int J Hydrog Energy 34(17):7441–7447CrossRef
164.
Zurück zum Zitat Diamantis VI, Vaiopoulou E, Aivasidis A (2007) Fundamentals and applications of anaerobic digestion for sustainable treatment of food industry wastewater. In: Oreopoulou V, Russ W (eds) Utilization of by-products and treatment of waste in the food industry. Springer, New York, pp 73–97CrossRef Diamantis VI, Vaiopoulou E, Aivasidis A (2007) Fundamentals and applications of anaerobic digestion for sustainable treatment of food industry wastewater. In: Oreopoulou V, Russ W (eds) Utilization of by-products and treatment of waste in the food industry. Springer, New York, pp 73–97CrossRef
166.
Zurück zum Zitat Satyawali Y, Balakrishnan M (2008) Wastewater treatment in molasses-based alcohol distilleries for cod and color removal: a review. J Environ Manag 86(3):481–497CrossRef Satyawali Y, Balakrishnan M (2008) Wastewater treatment in molasses-based alcohol distilleries for cod and color removal: a review. J Environ Manag 86(3):481–497CrossRef
167.
Zurück zum Zitat Vlissidis A, Zouboulis AI (1993) Thermophilic anaerobic-digestion of alcohol distillery wastewaters. Bioresour Technol 43(2):131–140CrossRef Vlissidis A, Zouboulis AI (1993) Thermophilic anaerobic-digestion of alcohol distillery wastewaters. Bioresour Technol 43(2):131–140CrossRef
168.
Zurück zum Zitat Guo WQ, Ren NQ, Chen ZB, Liu BF, Wang XJ, Xiang WS, Ding J (2008) Simultaneous biohydrogen production and starch wastewater treatment in an acidogenic expanded granular sludge bed reactor by mixed culture for long-term operation. Int J Hydrog Energy 33(24):7397–7404CrossRef Guo WQ, Ren NQ, Chen ZB, Liu BF, Wang XJ, Xiang WS, Ding J (2008) Simultaneous biohydrogen production and starch wastewater treatment in an acidogenic expanded granular sludge bed reactor by mixed culture for long-term operation. Int J Hydrog Energy 33(24):7397–7404CrossRef
169.
Zurück zum Zitat Wu JH, Lin CY (2004) Biohydrogen production by mesophilic fermentation of food wastewater. Water Sci Technol 49(5–6):223–228CrossRef Wu JH, Lin CY (2004) Biohydrogen production by mesophilic fermentation of food wastewater. Water Sci Technol 49(5–6):223–228CrossRef
170.
Zurück zum Zitat Ren NQ, Chua H, Chan SY, Tsang YF, Wang YJ, Sin N (2007) Assessing optimal fermentation type for bio-hydrogen production in continuous-flow acidogenic reactors. Bioresour Technol 98(9):1774–1780CrossRef Ren NQ, Chua H, Chan SY, Tsang YF, Wang YJ, Sin N (2007) Assessing optimal fermentation type for bio-hydrogen production in continuous-flow acidogenic reactors. Bioresour Technol 98(9):1774–1780CrossRef
171.
Zurück zum Zitat Ren NQ, Li JZ, Li BK, Wang Y, Liu SR (2006) Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. Int J Hydrog Energy 31(15):2147–2157CrossRef Ren NQ, Li JZ, Li BK, Wang Y, Liu SR (2006) Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. Int J Hydrog Energy 31(15):2147–2157CrossRef
172.
Zurück zum Zitat Lin YH, Juan ML, Hsien HJ (2011) Effects of temperature and initial pH on biohydrogen production from food-processing wastewater using anaerobic mixed cultures. Biodegradation 22(3):551–563CrossRef Lin YH, Juan ML, Hsien HJ (2011) Effects of temperature and initial pH on biohydrogen production from food-processing wastewater using anaerobic mixed cultures. Biodegradation 22(3):551–563CrossRef
173.
Zurück zum Zitat Aceves-Lara CA, Latrille E, Bernet N, Buffiere P, Steyer JP (2008) A pseudo-stoichiometric dynamic model of anaerobic hydrogen production from molasses. Water Res 42(10–11):2539–2550CrossRef Aceves-Lara CA, Latrille E, Bernet N, Buffiere P, Steyer JP (2008) A pseudo-stoichiometric dynamic model of anaerobic hydrogen production from molasses. Water Res 42(10–11):2539–2550CrossRef
174.
Zurück zum Zitat Chang JJ, Wu JH, Wen FS, Hung KY, Chen YT, Hsiao CL, Lin CY, Huang CC (2008) Molecular, monitoring of microbes in a continuous hydrogen-producing system with different hydraulic retention time. Int J Hydrog Energy 33(5):1579–1585CrossRef Chang JJ, Wu JH, Wen FS, Hung KY, Chen YT, Hsiao CL, Lin CY, Huang CC (2008) Molecular, monitoring of microbes in a continuous hydrogen-producing system with different hydraulic retention time. Int J Hydrog Energy 33(5):1579–1585CrossRef
175.
Zurück zum Zitat Li QY, Li YF (2019) Coproduction of hydrogen and methane in a CSTR-IC two-stage anaerobic digestion system from molasses wastewater. Water Sci Technol 79(2):270–277CrossRef Li QY, Li YF (2019) Coproduction of hydrogen and methane in a CSTR-IC two-stage anaerobic digestion system from molasses wastewater. Water Sci Technol 79(2):270–277CrossRef
176.
Zurück zum Zitat Han W, Chen H, Yao X, Li Y-f, Yang C-p (2010) Biohydrogen production with anaerobic sludge immobilized by granular activated carbon in a continuous stirred-tank. J For Res 21(4):509–513CrossRef Han W, Chen H, Yao X, Li Y-f, Yang C-p (2010) Biohydrogen production with anaerobic sludge immobilized by granular activated carbon in a continuous stirred-tank. J For Res 21(4):509–513CrossRef
178.
Zurück zum Zitat Koutrouli EC, Kalfas H, Gavala HN, Skiadas IV, Stamatelatou K, Lyberatos G (2009) Hydrogen and methane production through two-stage mesophilic anaerobic digestion of olive pulp. Bioresour Technol 100(15):3718–3723CrossRef Koutrouli EC, Kalfas H, Gavala HN, Skiadas IV, Stamatelatou K, Lyberatos G (2009) Hydrogen and methane production through two-stage mesophilic anaerobic digestion of olive pulp. Bioresour Technol 100(15):3718–3723CrossRef
179.
Zurück zum Zitat O-Thong S, Prasertsan P, Intrasungkha N, Dhamwichukorn S, Birkeland NK (2008) Optimization of simultaneous thermophilic fermentative hydrogen production and cod reduction from palm oil mill effluent by thermoanaerobacterium-rich sludge. Int J Hydrog Energy 33(4):1221–1231CrossRef O-Thong S, Prasertsan P, Intrasungkha N, Dhamwichukorn S, Birkeland NK (2008) Optimization of simultaneous thermophilic fermentative hydrogen production and cod reduction from palm oil mill effluent by thermoanaerobacterium-rich sludge. Int J Hydrog Energy 33(4):1221–1231CrossRef
180.
Zurück zum Zitat O-Thong S, Prasertsan P, Intrasungkha N, Dhamwichukom S, Birkeland NK (2007) Improvement of biohydrogen production and treatment efficiency on palm oil mill effluent with nutrient supplementation at thermophilic condition using an anaerobic sequencing batch reactor. Enzyme Microb Technol 41(5):583–590CrossRef O-Thong S, Prasertsan P, Intrasungkha N, Dhamwichukom S, Birkeland NK (2007) Improvement of biohydrogen production and treatment efficiency on palm oil mill effluent with nutrient supplementation at thermophilic condition using an anaerobic sequencing batch reactor. Enzyme Microb Technol 41(5):583–590CrossRef
181.
Zurück zum Zitat Atif AAY, Fakhru’l-Razi A, Ngan MA, Morimoto M, Iyuke SE, Veziroglu NT (2005) Fed batch production of hydrogen from palm oil mill effluent using anaerobic microflora. Int J Hydrog Energy 30(13–14):1393–1397CrossRef Atif AAY, Fakhru’l-Razi A, Ngan MA, Morimoto M, Iyuke SE, Veziroglu NT (2005) Fed batch production of hydrogen from palm oil mill effluent using anaerobic microflora. Int J Hydrog Energy 30(13–14):1393–1397CrossRef
182.
Zurück zum Zitat Mamimin C, Kongjan P, O-Thong S, Prasertsan P (2019) Enhancement of biohythane production from solid waste by co-digestion with palm oil mill effluent in two-stage thermophilic fermentation. Int J Hydrog Energy 44(32):17224–17237CrossRef Mamimin C, Kongjan P, O-Thong S, Prasertsan P (2019) Enhancement of biohythane production from solid waste by co-digestion with palm oil mill effluent in two-stage thermophilic fermentation. Int J Hydrog Energy 44(32):17224–17237CrossRef
183.
Zurück zum Zitat Seifert K, Waligorska M, Wojtowski M, Laniecki M (2009) Hydrogen generation from glycerol in batch fermentation process. Int J Hydrog Energy 34(9):3671–3678CrossRef Seifert K, Waligorska M, Wojtowski M, Laniecki M (2009) Hydrogen generation from glycerol in batch fermentation process. Int J Hydrog Energy 34(9):3671–3678CrossRef
184.
Zurück zum Zitat Akutsu Y, Lee DY, Li YY, Noike T (2009) Hydrogen production potentials and fermentative characteristics of various substrates with different heat-pretreated natural microflora. Int J Hydrog Energy 34(13):5365–5372CrossRef Akutsu Y, Lee DY, Li YY, Noike T (2009) Hydrogen production potentials and fermentative characteristics of various substrates with different heat-pretreated natural microflora. Int J Hydrog Energy 34(13):5365–5372CrossRef
185.
Zurück zum Zitat Sittijunda S, Reungsang A (2012) Biohydrogen production from waste glycerol and sludge by anaerobic mixed cultures. Int J Hydrog Energy 37(18):13789–13796CrossRef Sittijunda S, Reungsang A (2012) Biohydrogen production from waste glycerol and sludge by anaerobic mixed cultures. Int J Hydrog Energy 37(18):13789–13796CrossRef
186.
Zurück zum Zitat Selembo PA, Perez JM, Lloyd WA, Logan BE (2009) Enhanced hydrogen and 1,3-propanediol production from glycerol by fermentation using mixed cultures. Biotechnol Bioeng 104(6):1098–1106CrossRef Selembo PA, Perez JM, Lloyd WA, Logan BE (2009) Enhanced hydrogen and 1,3-propanediol production from glycerol by fermentation using mixed cultures. Biotechnol Bioeng 104(6):1098–1106CrossRef
187.
Zurück zum Zitat Rodrigues CV, Santana KO, Nespeca MG, Rodrigues AV, Pires LO, Maintinguer SI (2020) Energy valorization of crude glycerol and sanitary sewage in hydrogen generation by biological processes. Int J Hydrog Energy 45(21):11943–11953CrossRef Rodrigues CV, Santana KO, Nespeca MG, Rodrigues AV, Pires LO, Maintinguer SI (2020) Energy valorization of crude glycerol and sanitary sewage in hydrogen generation by biological processes. Int J Hydrog Energy 45(21):11943–11953CrossRef
188.
Zurück zum Zitat Ito T, Nakashimada Y, Senba K, Matsui T, Nishio N (2005) Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. J Biosci Bioeng 100(3):260–265CrossRef Ito T, Nakashimada Y, Senba K, Matsui T, Nishio N (2005) Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. J Biosci Bioeng 100(3):260–265CrossRef
189.
Zurück zum Zitat Sakai S, Yagishita T (2007) Microbial production of hydrogen and ethanol from glycerol-containing wastes discharged from a biodiesel fuel production plant in a bioelectrochemical reactor with thionine. Biotechnol Bioeng 98(2):340–348CrossRef Sakai S, Yagishita T (2007) Microbial production of hydrogen and ethanol from glycerol-containing wastes discharged from a biodiesel fuel production plant in a bioelectrochemical reactor with thionine. Biotechnol Bioeng 98(2):340–348CrossRef
190.
Zurück zum Zitat Chong ML, Sabaratnam V, Shirai Y, Hassan MA (2009) Biohydrogen production from biomass and industrial wastes by dark fermentation. Int J Hydrog Energy 34(8):3277–3287CrossRef Chong ML, Sabaratnam V, Shirai Y, Hassan MA (2009) Biohydrogen production from biomass and industrial wastes by dark fermentation. Int J Hydrog Energy 34(8):3277–3287CrossRef
191.
Zurück zum Zitat Mohan SV, Babu VL, Sarma PN (2007) Anaerobic biohydrogen production from dairy wastewater treatment in sequencing batch reactor (ANSBR): effect of organic loading rate. Enzyme Microb Technol 41(4):506–515CrossRef Mohan SV, Babu VL, Sarma PN (2007) Anaerobic biohydrogen production from dairy wastewater treatment in sequencing batch reactor (ANSBR): effect of organic loading rate. Enzyme Microb Technol 41(4):506–515CrossRef
192.
Zurück zum Zitat Yang PF, Zhang RH, MeGarvey JA, Benernann JR (2007) Biohydrogen production from cheese processing wastewater by anaerobic fermentation using mixed microbial communities. Int J Hydrog Energy 32(18):4761–4771CrossRef Yang PF, Zhang RH, MeGarvey JA, Benernann JR (2007) Biohydrogen production from cheese processing wastewater by anaerobic fermentation using mixed microbial communities. Int J Hydrog Energy 32(18):4761–4771CrossRef
193.
Zurück zum Zitat Davila-Vazquez G, Alatriste-Mondragon F, de Leon-Rodriguez A, Razo-Flores E (2008) Fermentative hydrogen production in batch experiments using lactose, cheese whey and glucose: influence of initial substrate concentration and pH. Int J Hydrog Energy 33(19):4989–4997CrossRef Davila-Vazquez G, Alatriste-Mondragon F, de Leon-Rodriguez A, Razo-Flores E (2008) Fermentative hydrogen production in batch experiments using lactose, cheese whey and glucose: influence of initial substrate concentration and pH. Int J Hydrog Energy 33(19):4989–4997CrossRef
194.
Zurück zum Zitat Antonopoulou G, Stamatelatou K, Venetsaneas N, Kornaros M, Lyberatos G (2008) Biohydrogen and methane production from cheese whey in a two-stage anaerobic process. Ind Eng Chem Res 47(15):5227–5233CrossRef Antonopoulou G, Stamatelatou K, Venetsaneas N, Kornaros M, Lyberatos G (2008) Biohydrogen and methane production from cheese whey in a two-stage anaerobic process. Ind Eng Chem Res 47(15):5227–5233CrossRef
195.
Zurück zum Zitat Venetsaneas N, Antonopoulou G, Stamatelatou K, Kornaros M, Lyberatos G (2009) Using cheese whey for hydrogen and methane generation in a two-stage continuous process with alternative pH controlling approaches. Bioresour Technol 100(15):3713–3717CrossRef Venetsaneas N, Antonopoulou G, Stamatelatou K, Kornaros M, Lyberatos G (2009) Using cheese whey for hydrogen and methane generation in a two-stage continuous process with alternative pH controlling approaches. Bioresour Technol 100(15):3713–3717CrossRef
196.
Zurück zum Zitat Romao BB, Batista FRX, Ferreira JS, Costa HCB, Resende MM, Cardoso VL (2014) Biohydrogen production through dark fermentation by a microbial consortium using whey permeate as substrate. Appl Biochem Biotechnol 172(7):3670–3685CrossRef Romao BB, Batista FRX, Ferreira JS, Costa HCB, Resende MM, Cardoso VL (2014) Biohydrogen production through dark fermentation by a microbial consortium using whey permeate as substrate. Appl Biochem Biotechnol 172(7):3670–3685CrossRef
197.
Zurück zum Zitat Thompson RS (2008) Hydrogen production by anaerobic fermentation using agricultural and food processing wastes utilizing a two-stage digestion system. Utah State University Thompson RS (2008) Hydrogen production by anaerobic fermentation using agricultural and food processing wastes utilizing a two-stage digestion system. Utah State University
198.
Zurück zum Zitat Wong YM, Show PL, Wu TY, Leong HY, Ibrahim S, Juan JC (2019) Production of bio-hydrogen from dairy wastewater using pretreated landfill leachate sludge as an inoculum. J Biosci Bioeng 127(2):150–159CrossRef Wong YM, Show PL, Wu TY, Leong HY, Ibrahim S, Juan JC (2019) Production of bio-hydrogen from dairy wastewater using pretreated landfill leachate sludge as an inoculum. J Biosci Bioeng 127(2):150–159CrossRef
199.
Zurück zum Zitat Tang GL, Huang J, Sun ZJ, Tang QQ, Yan CH, Liu GQ (2008) Biohydrogen production from cattle wastewater by enriched anaerobic mixed consortia: influence of fermentation temperature and pH. J Biosci Bioeng 106(1):80–87CrossRef Tang GL, Huang J, Sun ZJ, Tang QQ, Yan CH, Liu GQ (2008) Biohydrogen production from cattle wastewater by enriched anaerobic mixed consortia: influence of fermentation temperature and pH. J Biosci Bioeng 106(1):80–87CrossRef
200.
Zurück zum Zitat Yokoyama H, Waki M, Moriya N, Yasuda T, Tanaka Y, Haga K (2007) Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry. Appl Microbiol Biotechnol 74(2):474–483CrossRef Yokoyama H, Waki M, Moriya N, Yasuda T, Tanaka Y, Haga K (2007) Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry. Appl Microbiol Biotechnol 74(2):474–483CrossRef
201.
Zurück zum Zitat Gilroyed BH, Chang C, Chu A, Hao XY (2008) Effect of temperature on anaerobic fermentative hydrogen gas production from feedlot cattle manure using mixed microflora. Int J Hydrog Energy 33(16):4301–4308CrossRef Gilroyed BH, Chang C, Chu A, Hao XY (2008) Effect of temperature on anaerobic fermentative hydrogen gas production from feedlot cattle manure using mixed microflora. Int J Hydrog Energy 33(16):4301–4308CrossRef
202.
Zurück zum Zitat Xing Y, Li Z, Fan YT, Hou HW (2010) Biohydrogen production from dairy manures with acidification pretreatment by anaerobic fermentation. Environ Sci Pollut Res 17(2):392–399CrossRef Xing Y, Li Z, Fan YT, Hou HW (2010) Biohydrogen production from dairy manures with acidification pretreatment by anaerobic fermentation. Environ Sci Pollut Res 17(2):392–399CrossRef
203.
Zurück zum Zitat Guo XM, Trably E, Latrille E, Carrere H, Steyer JP (2010) Hydrogen production from agricultural waste by dark fermentation: a review. Int J Hydrog Energy 35(19):10660–10673CrossRef Guo XM, Trably E, Latrille E, Carrere H, Steyer JP (2010) Hydrogen production from agricultural waste by dark fermentation: a review. Int J Hydrog Energy 35(19):10660–10673CrossRef
204.
Zurück zum Zitat Lateef SA, Beneragama N, Yamashiro T, Iwasaki M, Ying C, Umetsu K (2012) Biohydrogen production from co-digestion of cow manure and waste milk under thermophilic temperature. Bioresour Technol 110:251–257CrossRef Lateef SA, Beneragama N, Yamashiro T, Iwasaki M, Ying C, Umetsu K (2012) Biohydrogen production from co-digestion of cow manure and waste milk under thermophilic temperature. Bioresour Technol 110:251–257CrossRef
205.
Zurück zum Zitat Perera KRJ, Nirmalakhandan N (2011) Evaluation of dairy cattle manure as a supplement to improve net energy gain in fermentative hydrogen production from sucrose. Bioresour Technol 102(18):8688–8695CrossRef Perera KRJ, Nirmalakhandan N (2011) Evaluation of dairy cattle manure as a supplement to improve net energy gain in fermentative hydrogen production from sucrose. Bioresour Technol 102(18):8688–8695CrossRef
206.
Zurück zum Zitat Zhu J, Li YC, Wu X, Miller C, Chen P, Ruan R (2009) Swine manure fermentation for hydrogen production. Bioresour Technol 100(22):5472–5477CrossRef Zhu J, Li YC, Wu X, Miller C, Chen P, Ruan R (2009) Swine manure fermentation for hydrogen production. Bioresour Technol 100(22):5472–5477CrossRef
207.
Zurück zum Zitat Kotsopoulos TA, Fotidis IA, Tsolakis N, Martzopoulos GG (2009) Biohydrogen production from pig slurry in a CSTR reactor system with mixed cultures under hyper-thermophilic temperature (70 degrees c). Biomass Bioenergy 33(9):1168–1174CrossRef Kotsopoulos TA, Fotidis IA, Tsolakis N, Martzopoulos GG (2009) Biohydrogen production from pig slurry in a CSTR reactor system with mixed cultures under hyper-thermophilic temperature (70 degrees c). Biomass Bioenergy 33(9):1168–1174CrossRef
208.
Zurück zum Zitat Li YC, Zhu J, Wu XA, Miller C, Wang LA (2010) The effect of pH on continuous biohydrogen production from swine wastewater supplemented with glucose. Appl Biochem Biotechnol 162(5):1286–1296CrossRef Li YC, Zhu J, Wu XA, Miller C, Wang LA (2010) The effect of pH on continuous biohydrogen production from swine wastewater supplemented with glucose. Appl Biochem Biotechnol 162(5):1286–1296CrossRef
209.
Zurück zum Zitat Wu XA, Yao WY, Zhu J (2010) Effect of pH on continuous biohydrogen production from liquid swine manure with glucose supplement using an anaerobic sequencing batch reactor. Int J Hydrog Energy 35(13):6592–6599CrossRef Wu XA, Yao WY, Zhu J (2010) Effect of pH on continuous biohydrogen production from liquid swine manure with glucose supplement using an anaerobic sequencing batch reactor. Int J Hydrog Energy 35(13):6592–6599CrossRef
210.
Zurück zum Zitat Saady NMC, Chaganti SR, Lalman JA, Heath D (2012) Impact of culture source and linoleic acid (c18:2) on biohydrogen production from glucose under mesophilic conditions. Int J Hydrog Energy 37(5):4036–4045CrossRef Saady NMC, Chaganti SR, Lalman JA, Heath D (2012) Impact of culture source and linoleic acid (c18:2) on biohydrogen production from glucose under mesophilic conditions. Int J Hydrog Energy 37(5):4036–4045CrossRef
211.
Zurück zum Zitat Iyer P, Bruns MA, Zhang HS, Van Ginkel S, Logan BE (2004) H-2-producing bacterial communities from a heat-treated soil inoculum. Appl Microbiol Biotechnol 66(2):166–173CrossRef Iyer P, Bruns MA, Zhang HS, Van Ginkel S, Logan BE (2004) H-2-producing bacterial communities from a heat-treated soil inoculum. Appl Microbiol Biotechnol 66(2):166–173CrossRef
212.
Zurück zum Zitat Sreethawong T, Chatsiriwatana S, Rangsunvigit P, Chavadej S (2010) Hydrogen production from cassava wastewater using an anaerobic sequencing batch reactor: effects of operational parameters, cod:N ratio, and organic acid composition. Int J Hydrog Energy 35(9):4092–4102CrossRef Sreethawong T, Chatsiriwatana S, Rangsunvigit P, Chavadej S (2010) Hydrogen production from cassava wastewater using an anaerobic sequencing batch reactor: effects of operational parameters, cod:N ratio, and organic acid composition. Int J Hydrog Energy 35(9):4092–4102CrossRef
213.
Zurück zum Zitat Lay J (2004) Factors affecting hydrogen production from high-solid organic wastes. In: Proceedings of 2nd international workshop on innovative anaerobic technology, Sendai Lay J (2004) Factors affecting hydrogen production from high-solid organic wastes. In: Proceedings of 2nd international workshop on innovative anaerobic technology, Sendai
214.
Zurück zum Zitat Griffin ME, McMahon KD, Mackie RI, Raskin L (1998) Methanogenic population dynamics during start-up of anaerobic digesters treating municipal solid waste and biosolids. Biotechnol Bioeng 57(3):342–355CrossRef Griffin ME, McMahon KD, Mackie RI, Raskin L (1998) Methanogenic population dynamics during start-up of anaerobic digesters treating municipal solid waste and biosolids. Biotechnol Bioeng 57(3):342–355CrossRef
215.
Zurück zum Zitat Radjaram B, Saravanane R (2011) Start up study of UASB reactor treating press mud for biohydrogen production. Biomass Bioenergy 35(7):2721–2728CrossRef Radjaram B, Saravanane R (2011) Start up study of UASB reactor treating press mud for biohydrogen production. Biomass Bioenergy 35(7):2721–2728CrossRef
216.
Zurück zum Zitat Fangkum A, Reungsang A (2011) Biohydrogen production from mixed xylose/arabinose at thermophilic temperature by anaerobic mixed cultures in elephant dung. Int J Hydrog Energy 36(21):13928–13938CrossRef Fangkum A, Reungsang A (2011) Biohydrogen production from mixed xylose/arabinose at thermophilic temperature by anaerobic mixed cultures in elephant dung. Int J Hydrog Energy 36(21):13928–13938CrossRef
217.
Zurück zum Zitat Logan BE, Oh SE, Kim IS, Van Ginkel S (2002) Biological hydrogen production measured in batch anaerobic respirometers. Environ Sci Technol 36(11):2530–2535CrossRef Logan BE, Oh SE, Kim IS, Van Ginkel S (2002) Biological hydrogen production measured in batch anaerobic respirometers. Environ Sci Technol 36(11):2530–2535CrossRef
218.
Zurück zum Zitat Saady NMC, Chaganti SR, Lalman JA, Veeravalli SS, Shanmugam SR, Heath DD (2012) Effects of linoleic acid and its degradation by-products on mesophilic hydrogen production using flocculated and granular mixed anaerobic cultures. Int J Hydrog Energy 37(24):18747–18760CrossRef Saady NMC, Chaganti SR, Lalman JA, Veeravalli SS, Shanmugam SR, Heath DD (2012) Effects of linoleic acid and its degradation by-products on mesophilic hydrogen production using flocculated and granular mixed anaerobic cultures. Int J Hydrog Energy 37(24):18747–18760CrossRef
219.
Zurück zum Zitat Saady NMC, Chaganti SR, Lalman JA, Veeravalli SS, Shanmugam SR, Heath DD (2012) Assessing the impact of palmitic, myristic and lauric acids on hydrogen production from glucose fermentation by mixed anaerobic granular cultures. Int J Hydrog Energy 37(24):18761–18772CrossRef Saady NMC, Chaganti SR, Lalman JA, Veeravalli SS, Shanmugam SR, Heath DD (2012) Assessing the impact of palmitic, myristic and lauric acids on hydrogen production from glucose fermentation by mixed anaerobic granular cultures. Int J Hydrog Energy 37(24):18761–18772CrossRef
220.
Zurück zum Zitat Mohan SV, Babu VL, Sarma PN (2008) Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate. Bioresour Technol 99(1):59–67CrossRef Mohan SV, Babu VL, Sarma PN (2008) Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate. Bioresour Technol 99(1):59–67CrossRef
221.
Zurück zum Zitat Elbeshbishy E, Hafez H, Nakhla G (2011) Ultrasonication for biohydrogen production from food waste. Int J Hydrog Energy 36(4):2896–2903CrossRef Elbeshbishy E, Hafez H, Nakhla G (2011) Ultrasonication for biohydrogen production from food waste. Int J Hydrog Energy 36(4):2896–2903CrossRef
222.
Zurück zum Zitat Lee KS, Lo YS, Lo YC, Lin PJ, Chang JS (2004) Operation strategies for biohydrogen production with a high-rate anaerobic granular sludge bed bioreactor. Enzyme Microb Technol 35(6–7):605–612CrossRef Lee KS, Lo YS, Lo YC, Lin PJ, Chang JS (2004) Operation strategies for biohydrogen production with a high-rate anaerobic granular sludge bed bioreactor. Enzyme Microb Technol 35(6–7):605–612CrossRef
223.
Zurück zum Zitat Thompson LJ, Gray VM, Kalala B, Lindsay D, Reynolds K, von Holy A (2008) Biohydrogen production by enterobacter cloacae and citrobacter freundii in carrier induced granules. Biotechnol Lett 30(2):271–274CrossRef Thompson LJ, Gray VM, Kalala B, Lindsay D, Reynolds K, von Holy A (2008) Biohydrogen production by enterobacter cloacae and citrobacter freundii in carrier induced granules. Biotechnol Lett 30(2):271–274CrossRef
224.
Zurück zum Zitat Chen SD, Lo YC, Lee KS, Huang TI, Chang JS (2009) Sequencing batch reactor enhances bacterial hydrolysis of starch promoting continuous bio-hydrogen production from starch feedstock. Int J Hydrog Energy 34(20):8549–8557CrossRef Chen SD, Lo YC, Lee KS, Huang TI, Chang JS (2009) Sequencing batch reactor enhances bacterial hydrolysis of starch promoting continuous bio-hydrogen production from starch feedstock. Int J Hydrog Energy 34(20):8549–8557CrossRef
225.
Zurück zum Zitat Baghchehsaraee B, Nakhla G, Karamanev D, Margaritis A, Reid G (2008) The effect of heat pretreatment temperature on fermentative hydrogen production using mixed cultures. Int J Hydrog Energy 33(15):4064–4073CrossRef Baghchehsaraee B, Nakhla G, Karamanev D, Margaritis A, Reid G (2008) The effect of heat pretreatment temperature on fermentative hydrogen production using mixed cultures. Int J Hydrog Energy 33(15):4064–4073CrossRef
226.
Zurück zum Zitat Xiao BY, Liu JX (2009) Effects of various pretreatments on biohydrogen production from sewage sludge. Chin Sci Bull 54(12):2038–2044 Xiao BY, Liu JX (2009) Effects of various pretreatments on biohydrogen production from sewage sludge. Chin Sci Bull 54(12):2038–2044
227.
Zurück zum Zitat Ren NQ, Cao GL, Wang AJ, Lee DJ, Guo WQ, Zhu YH (2008) Dark fermentation of xylose and glucose mix using isolated thermoanaerobacterium thermosaccharolyticum w16. Int J Hydrog Energy 33(21):6124–6132CrossRef Ren NQ, Cao GL, Wang AJ, Lee DJ, Guo WQ, Zhu YH (2008) Dark fermentation of xylose and glucose mix using isolated thermoanaerobacterium thermosaccharolyticum w16. Int J Hydrog Energy 33(21):6124–6132CrossRef
228.
Zurück zum Zitat O-Thong S, Prasertsan P, Birkeland NK (2009) Evaluation of methods for preparing hydrogen-producing seed inocula under thermophilic condition by process performance and microbial community analysis. Bioresour Technol 100(2):909–918CrossRef O-Thong S, Prasertsan P, Birkeland NK (2009) Evaluation of methods for preparing hydrogen-producing seed inocula under thermophilic condition by process performance and microbial community analysis. Bioresour Technol 100(2):909–918CrossRef
229.
Zurück zum Zitat Ljunggren M, Zacchi G (2010) Techno-economic analysis of a two-step biological process producing hydrogen and methane. Bioresour Technol 101(20):7780–7788CrossRef Ljunggren M, Zacchi G (2010) Techno-economic analysis of a two-step biological process producing hydrogen and methane. Bioresour Technol 101(20):7780–7788CrossRef
230.
Zurück zum Zitat Pendyala B, Chaganti SR, Lalman JA, Heath DD (2012) Evaluation of food waste and paper-cardboard waste blend for biohydrogen and methane production using mixed microbial consortia Pendyala B, Chaganti SR, Lalman JA, Heath DD (2012) Evaluation of food waste and paper-cardboard waste blend for biohydrogen and methane production using mixed microbial consortia
231.
Zurück zum Zitat Han W, Wang ZQ, Chen H, Yao X, Li YF (2011) Simultaneous biohydrogen and bioethanol production from anaerobic fermentation with immobilized sludge. J Biomed Biotechnol 2011:343791CrossRef Han W, Wang ZQ, Chen H, Yao X, Li YF (2011) Simultaneous biohydrogen and bioethanol production from anaerobic fermentation with immobilized sludge. J Biomed Biotechnol 2011:343791CrossRef
232.
Zurück zum Zitat Spagni A, Casu S, Farina R (2010) Effect of the organic loading rate on biogas composition in continuous fermentative hydrogen production. J Environ Sci Health Part A-Toxic/Hazardous Substances & Environmental Engineering 45(12):1475–1481 Spagni A, Casu S, Farina R (2010) Effect of the organic loading rate on biogas composition in continuous fermentative hydrogen production. J Environ Sci Health Part A-Toxic/Hazardous Substances & Environmental Engineering 45(12):1475–1481
233.
Zurück zum Zitat Bhaskar YV, Mohan SV, Sarma PN (2008) Effect of substrate loading rate of chemical wastewater on fermentative biohydrogen production in biofilm configured sequencing batch reactor. Bioresour Technol 99(15):6941–6948CrossRef Bhaskar YV, Mohan SV, Sarma PN (2008) Effect of substrate loading rate of chemical wastewater on fermentative biohydrogen production in biofilm configured sequencing batch reactor. Bioresour Technol 99(15):6941–6948CrossRef
234.
Zurück zum Zitat Kongjan P, O-Thong S, Kotay M, Min B, Angelidaki I (2010) Biohydrogen production from wheat straw hydrolysate by dark fermentation using extreme thermophilic mixed culture. Biotechnol Bioeng 105(5):899–908 Kongjan P, O-Thong S, Kotay M, Min B, Angelidaki I (2010) Biohydrogen production from wheat straw hydrolysate by dark fermentation using extreme thermophilic mixed culture. Biotechnol Bioeng 105(5):899–908
235.
Zurück zum Zitat Zhang K, Ren NQ, Guo CH, Wang AJ, Cao GL (2011) Effects of various pretreatment methods on mixed microflora to enhance biohydrogen production from corn stover hydrolysate. J Environ Sci 23(12):1929–1936CrossRef Zhang K, Ren NQ, Guo CH, Wang AJ, Cao GL (2011) Effects of various pretreatment methods on mixed microflora to enhance biohydrogen production from corn stover hydrolysate. J Environ Sci 23(12):1929–1936CrossRef
236.
Zurück zum Zitat Mohammadi P, Ibrahim S, Annuar MSM (2012) Comparative study on the effect of various pretreatment methods on the enrichment of hydrogen producing bacteria in anaerobic granulated sludge from brewery wastewater. Korean J Chem Eng 29(10):1347–1351CrossRef Mohammadi P, Ibrahim S, Annuar MSM (2012) Comparative study on the effect of various pretreatment methods on the enrichment of hydrogen producing bacteria in anaerobic granulated sludge from brewery wastewater. Korean J Chem Eng 29(10):1347–1351CrossRef
237.
Zurück zum Zitat Rossi DM, da Costa JB, de Souza EA, Peralba MDR, Samios D, Ayub MAZ (2011) Comparison of different pretreatment methods for hydrogen production using environmental microbial consortia on residual glycerol from biodiesel. Int J Hydrog Energy 36(8):4814–4819CrossRef Rossi DM, da Costa JB, de Souza EA, Peralba MDR, Samios D, Ayub MAZ (2011) Comparison of different pretreatment methods for hydrogen production using environmental microbial consortia on residual glycerol from biodiesel. Int J Hydrog Energy 36(8):4814–4819CrossRef
238.
Zurück zum Zitat Hu B, Chen SL (2007) Pretreatment of methanogenic granules for immobilized hydrogen fermentation. Int J Hydrog Energy 32(15):3266–3273CrossRef Hu B, Chen SL (2007) Pretreatment of methanogenic granules for immobilized hydrogen fermentation. Int J Hydrog Energy 32(15):3266–3273CrossRef
239.
Zurück zum Zitat Mu Y, Yu HQ, Wang Y (2006) The role of pH in the fermentative H2 production from an acidogenic granule-based reactor. Chemosphere 64(3):350–358CrossRef Mu Y, Yu HQ, Wang Y (2006) The role of pH in the fermentative H2 production from an acidogenic granule-based reactor. Chemosphere 64(3):350–358CrossRef
240.
Zurück zum Zitat Das D (2009) Advances in biohydrogen production processes: an approach towards commercialization. Int J Hydrog Energy 34(17):7349–7357CrossRef Das D (2009) Advances in biohydrogen production processes: an approach towards commercialization. Int J Hydrog Energy 34(17):7349–7357CrossRef
241.
Zurück zum Zitat Hay JXW, Wu TY, Juan JC, Jahim JM (2013) Biohydrogen production through photo fermentation or dark fermentation using waste as a substrate: overview, economics, and future prospects of hydrogen usage. Biofuels Bioprod Biorefin 7(3):334–352CrossRef Hay JXW, Wu TY, Juan JC, Jahim JM (2013) Biohydrogen production through photo fermentation or dark fermentation using waste as a substrate: overview, economics, and future prospects of hydrogen usage. Biofuels Bioprod Biorefin 7(3):334–352CrossRef
242.
Zurück zum Zitat Ljunggren M, Wallberg O, Zacchi G (2011) Techno-economic comparison of a biological hydrogen process and a 2nd generation ethanol process using barley straw as feedstock. Bioresour Technol 102(20):9524–9531CrossRef Ljunggren M, Wallberg O, Zacchi G (2011) Techno-economic comparison of a biological hydrogen process and a 2nd generation ethanol process using barley straw as feedstock. Bioresour Technol 102(20):9524–9531CrossRef
243.
Zurück zum Zitat Chang PL, Hsu CW (2012) Value analysis for commercialization of fermentative hydrogen production from biomass. Int J Hydrog Energy 37(20):15746–15752CrossRef Chang PL, Hsu CW (2012) Value analysis for commercialization of fermentative hydrogen production from biomass. Int J Hydrog Energy 37(20):15746–15752CrossRef
244.
Zurück zum Zitat Li YC, Liu YF, Chu CY, Chang PL, Hsu CW, Lin PJ, Wu SY (2012) Techno-economic evaluation of biohydrogen production from wastewater and agricultural waste. Int J Hydrog Energy 37(20):15704–15710CrossRef Li YC, Liu YF, Chu CY, Chang PL, Hsu CW, Lin PJ, Wu SY (2012) Techno-economic evaluation of biohydrogen production from wastewater and agricultural waste. Int J Hydrog Energy 37(20):15704–15710CrossRef
245.
Zurück zum Zitat Shi Y, Zhao XT, Cao P, Hu YY, Zhang L, Jia Y, Lu ZQ (2009) Hydrogen bio-production through anaerobic microorganism fermentation using kitchen wastes as substrate. Biotechnol Lett 31(9):1327–1333CrossRef Shi Y, Zhao XT, Cao P, Hu YY, Zhang L, Jia Y, Lu ZQ (2009) Hydrogen bio-production through anaerobic microorganism fermentation using kitchen wastes as substrate. Biotechnol Lett 31(9):1327–1333CrossRef
246.
Zurück zum Zitat Sen U, Shakdwipee M, Banerjee R (2008) Status of biological hydrogen production. J Sci Ind Res 67(11):980–993 Sen U, Shakdwipee M, Banerjee R (2008) Status of biological hydrogen production. J Sci Ind Res 67(11):980–993
247.
Zurück zum Zitat Pandu K, Joseph S (2012) Comparisons and limitations of biohydrogen production processes: a review. Int J Adv Eng Tech 2(1):342 Pandu K, Joseph S (2012) Comparisons and limitations of biohydrogen production processes: a review. Int J Adv Eng Tech 2(1):342
248.
Zurück zum Zitat Mohan SV, Reddy MV, Subhash GV, Sarma PN (2010) Fermentative effluents from hydrogen producing bioreactor as substrate for poly(beta-oh) butyrate production with simultaneous treatment: an integrated approach. Bioresour Technol 101(23):9382–9386CrossRef Mohan SV, Reddy MV, Subhash GV, Sarma PN (2010) Fermentative effluents from hydrogen producing bioreactor as substrate for poly(beta-oh) butyrate production with simultaneous treatment: an integrated approach. Bioresour Technol 101(23):9382–9386CrossRef
249.
Zurück zum Zitat Mohan SV, Devi MP (2012) Fatty acid rich effluent from acidogenic biohydrogen reactor as substrate for lipid accumulation in heterotrophic microalgae with simultaneous treatment. Bioresour Technol 123:627–635CrossRef Mohan SV, Devi MP (2012) Fatty acid rich effluent from acidogenic biohydrogen reactor as substrate for lipid accumulation in heterotrophic microalgae with simultaneous treatment. Bioresour Technol 123:627–635CrossRef
250.
Zurück zum Zitat Kumar G, Cho SK, Sivagurunathan P, Anburajan P, Mahapatra DM, Park JH, Pugazhendhi A (2018) Insights into evolutionary trends in molecular biology tools in microbial screening for biohydrogen production through dark fermentation. Int J Hydrog Energy 43(43):19885–19901CrossRef Kumar G, Cho SK, Sivagurunathan P, Anburajan P, Mahapatra DM, Park JH, Pugazhendhi A (2018) Insights into evolutionary trends in molecular biology tools in microbial screening for biohydrogen production through dark fermentation. Int J Hydrog Energy 43(43):19885–19901CrossRef
Metadaten
Titel
Biohydrogen Production Through Mixed Culture Dark Anaerobic Fermentation of Industrial Waste
verfasst von
Abdollah Hajizadeh
Noori M. Cata Saady
Sohrab Zendehboudi
Rajinikanth Rajagopal
Yung-Tse Hung
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-55172-8_8