Skip to main content

2021 | OriginalPaper | Buchkapitel

Biohydrometallurgy: A Sustainable Approach for Urban Mining of Metals and Metal Refining

verfasst von : Prashant Ram Jadhao, Snigdha Mishra, Ashish Pandey, K. K. Pant, K. D. P. Nigam

Erschienen in: Catalysis for Clean Energy and Environmental Sustainability

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Electronic waste (e-waste) is termed as “urban mines” due to high metal content. Metals are major components of e-waste and have a share of 61 wt% of e-waste. E-waste contains various valuable metals such as gold, silver, platinum, palladium, copper, nickel, etc. Therefore, metal recovery is important to conserve the resources. Apart from this, the unregulated accumulation and improper recycling of e-waste have harmful effects on human health and environment. Therefore, environmentally friendly e-waste recycling is the need of the hour to mitigate the harmful effects. Currently, pyrometallurgy and hydrometallurgy are the conventional processes employed for recovery of metals from e-waste. However, these technologies are non-selective and energy-intensive, employ hazardous chemicals, and produce toxic gases. Biohydrometallurgy is a promising alternative and is an eco-friendly approach to recycle e-waste as it employs microorganisms for metal recovery. Biohydrometallurgy employs different approaches such as autotrophic bacteria bioleaching, heterotrophic bacteria bioleaching, and heterotrophic fungi bioleaching for leaching of metals and has been discussed in this chapter. In addition, the refining of metals from metal leached solution has also been discussed in this chapter. The development of continuous process for metal recovery is important, and we have discussed a coiled flow inverter (CFI) reactor as a promising option for the same.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Forti V, Blade CP, Kuehr R, Bel G (2020) The global e-waste monitor 2020: quantities, flows and the circular economy potential, no. July. United Nations University (UNU)/United Nations Institute for Training and Research (UNITAR) – Co-hosted SCYCLE Programme, International Telecommunication Union (ITU) & International Solid Waste Association (ISWA), Geneva Forti V, Blade CP, Kuehr R, Bel G (2020) The global e-waste monitor 2020: quantities, flows and the circular economy potential, no. July. United Nations University (UNU)/United Nations Institute for Training and Research (UNITAR) – Co-hosted SCYCLE Programme, International Telecommunication Union (ITU) & International Solid Waste Association (ISWA), Geneva
2.
Zurück zum Zitat Jadhao PR, Ahmad E, Pant KK, Nigam KDP (2020) Environmentally friendly approach for the recovery of metallic fraction from waste printed circuit boards using pyrolysis and ultrasonication. Waste Manag 118:150–160CrossRef Jadhao PR, Ahmad E, Pant KK, Nigam KDP (2020) Environmentally friendly approach for the recovery of metallic fraction from waste printed circuit boards using pyrolysis and ultrasonication. Waste Manag 118:150–160CrossRef
3.
Zurück zum Zitat Kiddee P, Naidu R, Wong MH (2013) Electronic waste management approaches : an overview. Waste Manag 33:1237–1250 Kiddee P, Naidu R, Wong MH (2013) Electronic waste management approaches : an overview. Waste Manag 33:1237–1250
4.
Zurück zum Zitat Babu BR, Parande AK, Basha CA (2007) Electrical and electronic waste : a global environmental problem. Waste Manag Res 25:307–318 Babu BR, Parande AK, Basha CA (2007) Electrical and electronic waste : a global environmental problem. Waste Manag Res 25:307–318
5.
Zurück zum Zitat Ongondo FO, Williams ID, Cherrett TJ (2011) How are WEEE doing ? A global review of the management of electrical and electronic wastes. Waste Manag 31:714–730 Ongondo FO, Williams ID, Cherrett TJ (2011) How are WEEE doing ? A global review of the management of electrical and electronic wastes. Waste Manag 31:714–730
6.
Zurück zum Zitat Widmer R, Krapf H, Khetriwal D, Schnellmann M, Boni H (2005) Global perspectives on e-waste. Environ Impact Assess Rev 25:436–458CrossRef Widmer R, Krapf H, Khetriwal D, Schnellmann M, Boni H (2005) Global perspectives on e-waste. Environ Impact Assess Rev 25:436–458CrossRef
7.
Zurück zum Zitat Das A, Vidyadhar A, Mehrotra SP (2009) A novel flowsheet for the recovery of metal values from waste printed circuit boards. Resour Conserv Recycl 53:464–469CrossRef Das A, Vidyadhar A, Mehrotra SP (2009) A novel flowsheet for the recovery of metal values from waste printed circuit boards. Resour Conserv Recycl 53:464–469CrossRef
8.
Zurück zum Zitat Buekens A, Yang J (2014) Recycling of WEEE plastics: a review. J Mater Cycles Waste Manag 16:415–434CrossRef Buekens A, Yang J (2014) Recycling of WEEE plastics: a review. J Mater Cycles Waste Manag 16:415–434CrossRef
9.
Zurück zum Zitat Tuncuk A, Stazi V, Akcil A, Yazici EY, Deveci H (2012) Aqueous metal recovery techniques from e-scrap : hydrometallurgy in recycling. Miner Eng 25:28–37 Tuncuk A, Stazi V, Akcil A, Yazici EY, Deveci H (2012) Aqueous metal recovery techniques from e-scrap : hydrometallurgy in recycling. Miner Eng 25:28–37
10.
Zurück zum Zitat Kusch S, Hills CD (2017) The link between E-waste and GDP – new insights from data from the Pan-European region. Resources 6:1–10 Kusch S, Hills CD (2017) The link between E-waste and GDP – new insights from data from the Pan-European region. Resources 6:1–10
11.
Zurück zum Zitat Hsu E, Barmak K, West AC, Park A-H (2019) Advancements in the treatment and processing of electronic waste with sustainability : a review of metal extraction and recovery technologies. Green Chem 21:919–936 Hsu E, Barmak K, West AC, Park A-H (2019) Advancements in the treatment and processing of electronic waste with sustainability : a review of metal extraction and recovery technologies. Green Chem 21:919–936
12.
Zurück zum Zitat Khaliq A, Rhamdhani M, Brooks G, Masood S (2014) Metal extraction processes for electronic waste and existing industrial routes: a review and australian perspective. Resources 3:152–179CrossRef Khaliq A, Rhamdhani M, Brooks G, Masood S (2014) Metal extraction processes for electronic waste and existing industrial routes: a review and australian perspective. Resources 3:152–179CrossRef
13.
Zurück zum Zitat Hagelüken C (2007) Metals recovery from e-scrap in a global environment. In: 6th Session of OEWG Basel convention Hagelüken C (2007) Metals recovery from e-scrap in a global environment. In: 6th Session of OEWG Basel convention
14.
Zurück zum Zitat Jadhao P, Chauhan G, Pant KK, Nigam KDP (2016) Greener approach for the extraction of copper metal from electronic waste. Waste Manag 57:102–112CrossRef Jadhao P, Chauhan G, Pant KK, Nigam KDP (2016) Greener approach for the extraction of copper metal from electronic waste. Waste Manag 57:102–112CrossRef
15.
Zurück zum Zitat Panda R, Jadhao PR, Pant KK, Naik SN, Bhaskar T (2020) Eco-friendly recovery of metals from waste mobile printed circuit boards using low temperature roasting. J Hazard Mater 395:122642CrossRef Panda R, Jadhao PR, Pant KK, Naik SN, Bhaskar T (2020) Eco-friendly recovery of metals from waste mobile printed circuit boards using low temperature roasting. J Hazard Mater 395:122642CrossRef
16.
Zurück zum Zitat Chauhan G, Jadhao PR, Pant KK, Nigam KDP (2018) Novel technologies and conventional processes for recovery of metals from waste electrical and electronic equipment : challenges & opportunities – a review. J Environ Chem Eng 6:1288–1304 Chauhan G, Jadhao PR, Pant KK, Nigam KDP (2018) Novel technologies and conventional processes for recovery of metals from waste electrical and electronic equipment : challenges & opportunities – a review. J Environ Chem Eng 6:1288–1304
17.
Zurück zum Zitat Baniasadi M, Vakilchap F, Bahaloo-horeh N, Mousavi SM, Farnaud S (2019) Advances in bioleaching as a sustainable method for metal recovery from e-waste : a review. J Ind Eng Chem 76:75–90 Baniasadi M, Vakilchap F, Bahaloo-horeh N, Mousavi SM, Farnaud S (2019) Advances in bioleaching as a sustainable method for metal recovery from e-waste : a review. J Ind Eng Chem 76:75–90
18.
Zurück zum Zitat Kumar A, Li J (2017) An overview of the potential of eco-friendly hybrid strategy for metal recycling from WEEE. Resour Conserv Recycl 126:228–239CrossRef Kumar A, Li J (2017) An overview of the potential of eco-friendly hybrid strategy for metal recycling from WEEE. Resour Conserv Recycl 126:228–239CrossRef
19.
Zurück zum Zitat Habibi A, Kourdestani SS, Hadadi M (2020) Biohydrometallurgy as an environmentally friendly approach in metals recovery from electrical waste : a review. Waste Manag Res 38:232–244 Habibi A, Kourdestani SS, Hadadi M (2020) Biohydrometallurgy as an environmentally friendly approach in metals recovery from electrical waste : a review. Waste Manag Res 38:232–244
20.
Zurück zum Zitat Cui J, Zhang L (2008) Metallurgical recovery of metals from electronic waste: a review. J Hazard Mater 158:228–256CrossRef Cui J, Zhang L (2008) Metallurgical recovery of metals from electronic waste: a review. J Hazard Mater 158:228–256CrossRef
21.
Zurück zum Zitat Shuey SA, Taylor P (2005) Review of pyrometallurgical treatment of electronic scrap. In: SME annual meeting, pp 1–4 Shuey SA, Taylor P (2005) Review of pyrometallurgical treatment of electronic scrap. In: SME annual meeting, pp 1–4
22.
Zurück zum Zitat Zhang Y, Liu S, Xie H, Zeng X, Li J (2012) Current status on leaching precious metals from waste printed circuit boards. Proc Environ Sci 16:560–568CrossRef Zhang Y, Liu S, Xie H, Zeng X, Li J (2012) Current status on leaching precious metals from waste printed circuit boards. Proc Environ Sci 16:560–568CrossRef
23.
Zurück zum Zitat Akcil A, Erust C, Gahan CS, Ozgun M, Sahin M, Tuncuk A (2015) Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants – a review. Waste Manag 45:258–271 Akcil A, Erust C, Gahan CS, Ozgun M, Sahin M, Tuncuk A (2015) Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants – a review. Waste Manag 45:258–271
24.
Zurück zum Zitat Morin D et al (2006) BioMinE - integrated project for the development of biotechnology for metal-bearing materials in Europe. Hydrometallurgy 83:69–76CrossRef Morin D et al (2006) BioMinE - integrated project for the development of biotechnology for metal-bearing materials in Europe. Hydrometallurgy 83:69–76CrossRef
25.
Zurück zum Zitat Jain R et al (2016) Preferential adsorption of Cu in a multi-metal mixture onto biogenic elemental selenium nanoparticles. Chem Eng J 284:917–925CrossRef Jain R et al (2016) Preferential adsorption of Cu in a multi-metal mixture onto biogenic elemental selenium nanoparticles. Chem Eng J 284:917–925CrossRef
26.
Zurück zum Zitat Muñoz AJ, Espínola F, Ruiz E (2017) Biosorption of Ag(I) from aqueous solutions by Klebsiella sp. 3S1. J Hazard Mater 329:166–177CrossRef Muñoz AJ, Espínola F, Ruiz E (2017) Biosorption of Ag(I) from aqueous solutions by Klebsiella sp. 3S1. J Hazard Mater 329:166–177CrossRef
27.
Zurück zum Zitat Ilyas S, Lee J (2014) Biometallurgical recovery of metals from waste electrical and electronic equipment: a review. ChemBioEng Rev 1:148–169CrossRef Ilyas S, Lee J (2014) Biometallurgical recovery of metals from waste electrical and electronic equipment: a review. ChemBioEng Rev 1:148–169CrossRef
28.
Zurück zum Zitat Ilyas S, Anwar MA, Niazi SB, Afzal Ghauri M (2007) Bioleaching of metals from electronic scrap by moderately thermophilic acidophilic bacteria. Hydrometallurgy 88:180–188CrossRef Ilyas S, Anwar MA, Niazi SB, Afzal Ghauri M (2007) Bioleaching of metals from electronic scrap by moderately thermophilic acidophilic bacteria. Hydrometallurgy 88:180–188CrossRef
29.
Zurück zum Zitat Beolchini F, Fonti V, Dell’Anno A, Rocchetti L, Vegliò F (2012) Assessment of biotechnological strategies for the valorization of metal bearing wastes. Waste Manag 32:949–956CrossRef Beolchini F, Fonti V, Dell’Anno A, Rocchetti L, Vegliò F (2012) Assessment of biotechnological strategies for the valorization of metal bearing wastes. Waste Manag 32:949–956CrossRef
30.
Zurück zum Zitat Orell A, Navarro CA, Arancibia R, Mobarec JC, Jerez CA (2010) Life in blue: copper resistance mechanisms of bacteria and archaea used in industrial biomining of minerals. Biotechnol Adv 28:839–848CrossRef Orell A, Navarro CA, Arancibia R, Mobarec JC, Jerez CA (2010) Life in blue: copper resistance mechanisms of bacteria and archaea used in industrial biomining of minerals. Biotechnol Adv 28:839–848CrossRef
31.
Zurück zum Zitat Işıldar A et al (2019) Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE) – a review. J Hazard Mater 362:467–481 Işıldar A et al (2019) Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE) – a review. J Hazard Mater 362:467–481
32.
Zurück zum Zitat Bas AD, Deveci H, Yazici EY (2013) Bioleaching of copper from low grade scrap TV circuit boards using mesophilic bacteria. Hydrometallurgy 138:65–70CrossRef Bas AD, Deveci H, Yazici EY (2013) Bioleaching of copper from low grade scrap TV circuit boards using mesophilic bacteria. Hydrometallurgy 138:65–70CrossRef
33.
Zurück zum Zitat Hong Y, Valix M (2014) Bioleaching of electronic waste using acidophilic sulfur oxidising bacteria. J Clean Prod 65:465–472CrossRef Hong Y, Valix M (2014) Bioleaching of electronic waste using acidophilic sulfur oxidising bacteria. J Clean Prod 65:465–472CrossRef
34.
Zurück zum Zitat Chen S, Yang Y, Liu C, Dong F, Liu B (2015) Chemosphere column bioleaching copper and its kinetics of waste printed circuit boards ( WPCBs ) by acidithiobacillus ferrooxidans. Chemosphere 141:162–168CrossRef Chen S, Yang Y, Liu C, Dong F, Liu B (2015) Chemosphere column bioleaching copper and its kinetics of waste printed circuit boards ( WPCBs ) by acidithiobacillus ferrooxidans. Chemosphere 141:162–168CrossRef
35.
Zurück zum Zitat Isildar A, Van De Vossenberg J, Rene ER, Van Hullebusch ED, Lens PNL (2016) Two-step bioleaching of copper and gold from discarded printed circuit boards (PCB). Waste Manag 57:149–157CrossRef Isildar A, Van De Vossenberg J, Rene ER, Van Hullebusch ED, Lens PNL (2016) Two-step bioleaching of copper and gold from discarded printed circuit boards (PCB). Waste Manag 57:149–157CrossRef
36.
Zurück zum Zitat Arshadi M, Mousavi SM (2015) Multi-objective optimization of heavy metals bioleaching from discarded mobile phone PCBs: simultaneous Cu and Ni recovery using Acidithiobacillus ferrooxidans. Sep Purif Technol 147:210–219CrossRef Arshadi M, Mousavi SM (2015) Multi-objective optimization of heavy metals bioleaching from discarded mobile phone PCBs: simultaneous Cu and Ni recovery using Acidithiobacillus ferrooxidans. Sep Purif Technol 147:210–219CrossRef
37.
Zurück zum Zitat Arshadi M, Mousavi SM (2014) Simultaneous recovery of Ni and Cu from computer-printed circuit boards using bioleaching: statistical evaluation and optimization. Bioresour Technol 174:233–242CrossRef Arshadi M, Mousavi SM (2014) Simultaneous recovery of Ni and Cu from computer-printed circuit boards using bioleaching: statistical evaluation and optimization. Bioresour Technol 174:233–242CrossRef
38.
Zurück zum Zitat Arshadi M, Mousavi SM (2015) Statistical evaluation of bioleaching of mobile phone and computer waste PCBs: a comparative study. Adv Mater Res 1104:87–92CrossRef Arshadi M, Mousavi SM (2015) Statistical evaluation of bioleaching of mobile phone and computer waste PCBs: a comparative study. Adv Mater Res 1104:87–92CrossRef
39.
Zurück zum Zitat Liang G, Li P, Liu W, Wang B (2016) Enhanced bioleaching efficiency of copper from waste printed circuit boards (PCBs) by dissolved oxygen-shifted strategy in Acidithiobacillus ferrooxidans. J Mater Cycles Waste Manag 18:742–751CrossRef Liang G, Li P, Liu W, Wang B (2016) Enhanced bioleaching efficiency of copper from waste printed circuit boards (PCBs) by dissolved oxygen-shifted strategy in Acidithiobacillus ferrooxidans. J Mater Cycles Waste Manag 18:742–751CrossRef
40.
Zurück zum Zitat Bajestani MI, Mousavi SM, Shojaosadati SA (2014) Bioleaching of heavy metals from spent household batteries using Acidithiobacillus ferrooxidans: statistical evaluation and optimization. Sep Purif Technol 132:309–316CrossRef Bajestani MI, Mousavi SM, Shojaosadati SA (2014) Bioleaching of heavy metals from spent household batteries using Acidithiobacillus ferrooxidans: statistical evaluation and optimization. Sep Purif Technol 132:309–316CrossRef
41.
Zurück zum Zitat Yang T, Xu Z, Wen J, Yang L (2009) Factors influencing bioleaching copper from waste printed circuit boards by Acidithiobacillus ferrooxidans. Hydrometallurgy 97:29–32CrossRef Yang T, Xu Z, Wen J, Yang L (2009) Factors influencing bioleaching copper from waste printed circuit boards by Acidithiobacillus ferrooxidans. Hydrometallurgy 97:29–32CrossRef
42.
Zurück zum Zitat Muravyov MI, Bulaev AG, Melamud VS, Kondrat’eva TF (2015) Leaching of rare earth elements from coal ashes using acidophilic chemolithotrophic microbial communities. Microbiology 84:194–201CrossRef Muravyov MI, Bulaev AG, Melamud VS, Kondrat’eva TF (2015) Leaching of rare earth elements from coal ashes using acidophilic chemolithotrophic microbial communities. Microbiology 84:194–201CrossRef
43.
Zurück zum Zitat Machado MD, Soares EV, Soares HMVM (2010) Removal of heavy metals using a Brewer’s yeast strain of Saccharomyces cerevisiae : chemical speciation as a tool in the prediction and improving of treatment efficiency of real electroplating effluents. J Hazard Mater 180:347–353CrossRef Machado MD, Soares EV, Soares HMVM (2010) Removal of heavy metals using a Brewer’s yeast strain of Saccharomyces cerevisiae : chemical speciation as a tool in the prediction and improving of treatment efficiency of real electroplating effluents. J Hazard Mater 180:347–353CrossRef
44.
Zurück zum Zitat Das N, Das D (2013) Recovery of rare earth metals through biosorption : an overview. J Rare Earths 31:933–943 Das N, Das D (2013) Recovery of rare earth metals through biosorption : an overview. J Rare Earths 31:933–943
45.
Zurück zum Zitat Burgstaller W, Schinner F (1993) Leaching of metals with fungi. J Biotechnol 27:91–116CrossRef Burgstaller W, Schinner F (1993) Leaching of metals with fungi. J Biotechnol 27:91–116CrossRef
46.
Zurück zum Zitat Shabani MA, Irannajad M, Azadmehr AR, Meshkini M (2013) Bioleaching of copper oxide ore by Pseudomonas Aeruginosa. Int J Miner Metall Mater 20:1130–1133CrossRef Shabani MA, Irannajad M, Azadmehr AR, Meshkini M (2013) Bioleaching of copper oxide ore by Pseudomonas Aeruginosa. Int J Miner Metall Mater 20:1130–1133CrossRef
47.
Zurück zum Zitat Rezza I, Salinas E, Sanz de Tosetti M, Donati E (2001) Mechanisms involved in bioleaching of an aluminosilicate by heterotrophic microorganisms. Process Biochem 36:495–500CrossRef Rezza I, Salinas E, Sanz de Tosetti M, Donati E (2001) Mechanisms involved in bioleaching of an aluminosilicate by heterotrophic microorganisms. Process Biochem 36:495–500CrossRef
48.
Zurück zum Zitat Jujun R, Xingjiong Z, Yiming Q, Jian H (2014) A new strain for recovering precious metals from waste printed circuit boards. Waste Manag 34:901–907CrossRef Jujun R, Xingjiong Z, Yiming Q, Jian H (2014) A new strain for recovering precious metals from waste printed circuit boards. Waste Manag 34:901–907CrossRef
49.
Zurück zum Zitat Chi TD, Lee JC, Pandey BD, Yoo K, Jeong J (2011) Bioleaching of gold and copper from waste mobile phone PCBs by using a cyanogenic bacterium. Miner Eng 24:1219–1222CrossRef Chi TD, Lee JC, Pandey BD, Yoo K, Jeong J (2011) Bioleaching of gold and copper from waste mobile phone PCBs by using a cyanogenic bacterium. Miner Eng 24:1219–1222CrossRef
50.
Zurück zum Zitat Marsden JO, House CI (2006) The chemistry of gold extraction, second. Society of Mining, Metallurgy, and Exploration, Inc., Englewood, CO Marsden JO, House CI (2006) The chemistry of gold extraction, second. Society of Mining, Metallurgy, and Exploration, Inc., Englewood, CO
51.
Zurück zum Zitat Rees KL, Van Deventer JSJ (1999) The role of metal-cyanide species in leaching gold from a copper concentrate. Miner Eng 12:877–892CrossRef Rees KL, Van Deventer JSJ (1999) The role of metal-cyanide species in leaching gold from a copper concentrate. Miner Eng 12:877–892CrossRef
52.
Zurück zum Zitat Kita Y, Nishikawa H, Ike M, Takemoto T (2009) Enhancement of Au dissolution by microorganisms using an accelerating cathode reaction. Metall Mater Trans B Process Metall Mater Process Sci 40B:39–44CrossRef Kita Y, Nishikawa H, Ike M, Takemoto T (2009) Enhancement of Au dissolution by microorganisms using an accelerating cathode reaction. Metall Mater Trans B Process Metall Mater Process Sci 40B:39–44CrossRef
53.
Zurück zum Zitat Marra A, Cesaro A, Rene ER, Belgiorno V, Lens PNL (2018) Bioleaching of metals from WEEE shredding dust. J Environ Manag 210:180–190CrossRef Marra A, Cesaro A, Rene ER, Belgiorno V, Lens PNL (2018) Bioleaching of metals from WEEE shredding dust. J Environ Manag 210:180–190CrossRef
54.
Zurück zum Zitat Natarajan G, Tay SB, Yew WS, Ting YP (2015) Engineered strains enhance gold biorecovery from electronic scrap. Miner Eng 75:32–37CrossRef Natarajan G, Tay SB, Yew WS, Ting YP (2015) Engineered strains enhance gold biorecovery from electronic scrap. Miner Eng 75:32–37CrossRef
55.
Zurück zum Zitat Natarajan G, Ting YP (2014) Pretreatment of e-waste and mutation of alkali-tolerant cyanogenic bacteria promote gold biorecovery. Bioresour Technol 152:80–85CrossRef Natarajan G, Ting YP (2014) Pretreatment of e-waste and mutation of alkali-tolerant cyanogenic bacteria promote gold biorecovery. Bioresour Technol 152:80–85CrossRef
56.
Zurück zum Zitat Li J, Liang C, Ma C (2015) Bioleaching of gold from waste printed circuit boards by Chromobacterium violaceum. J Mater Cycles Waste Manag 17:529–539CrossRef Li J, Liang C, Ma C (2015) Bioleaching of gold from waste printed circuit boards by Chromobacterium violaceum. J Mater Cycles Waste Manag 17:529–539CrossRef
57.
Zurück zum Zitat Pradhan JK, Kumar S (2012) Metals bioleaching from electronic waste by Chromobacterium violaceum and Pseudomonads sp. Waste Manag Res 30:1151–1159CrossRef Pradhan JK, Kumar S (2012) Metals bioleaching from electronic waste by Chromobacterium violaceum and Pseudomonads sp. Waste Manag Res 30:1151–1159CrossRef
58.
Zurück zum Zitat Faramarzi MA, Brandl H (2006) Formation of water-soluble metal cyanide complexes from solid minerals by Pseudomonas plecoglossicida. FEMS Microbiol Lett 259:47–52CrossRef Faramarzi MA, Brandl H (2006) Formation of water-soluble metal cyanide complexes from solid minerals by Pseudomonas plecoglossicida. FEMS Microbiol Lett 259:47–52CrossRef
59.
Zurück zum Zitat Lee J, Pandey BD (2012) Bio-processing of solid wastes and secondary resources for metal extraction – a review. Waste Manag 32:3–18 Lee J, Pandey BD (2012) Bio-processing of solid wastes and secondary resources for metal extraction – a review. Waste Manag 32:3–18
60.
Zurück zum Zitat Brandl H, Bosshard R, Wegmann M (2001) Computer-munching microbes : metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy 59:319–326 Brandl H, Bosshard R, Wegmann M (2001) Computer-munching microbes : metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy 59:319–326
61.
Zurück zum Zitat Brombacher C, Bachofen R, Brandl H (1998) Development of a laboratory-scale leaching plant for metal extraction from fly ash by Thiobacillus strains. Appl Environ Microbiol 64:1237–1241CrossRef Brombacher C, Bachofen R, Brandl H (1998) Development of a laboratory-scale leaching plant for metal extraction from fly ash by Thiobacillus strains. Appl Environ Microbiol 64:1237–1241CrossRef
62.
Zurück zum Zitat Bosshar PP, Bachofen R, Brandl H (1996) Metal leaching of fly ash from municipal waste incineration by Aspergillus niger. Environ Sci Technol 30:3066–3070CrossRef Bosshar PP, Bachofen R, Brandl H (1996) Metal leaching of fly ash from municipal waste incineration by Aspergillus niger. Environ Sci Technol 30:3066–3070CrossRef
63.
Zurück zum Zitat Desouky OA, El-Mougith AA, Hassanien WA, Awadalla GS, Hussien SS (2016) Extraction of some strategic elements from thorium – uranium concentrate using bioproducts of Aspergillus ficuum and Pseudomonas Aeruginosa. Arab J Chem 9:S795–S805CrossRef Desouky OA, El-Mougith AA, Hassanien WA, Awadalla GS, Hussien SS (2016) Extraction of some strategic elements from thorium – uranium concentrate using bioproducts of Aspergillus ficuum and Pseudomonas Aeruginosa. Arab J Chem 9:S795–S805CrossRef
64.
Zurück zum Zitat Hassanien WAG, Desouky OAN, Hussien SSE (2014) Bioleaching of some rare earth elements from Egyptian Monazite using Aspergillus ficuum and Pseudomonas Aeruginosa. Walailak J Sci Tech 11:809–823 Hassanien WAG, Desouky OAN, Hussien SSE (2014) Bioleaching of some rare earth elements from Egyptian Monazite using Aspergillus ficuum and Pseudomonas Aeruginosa. Walailak J Sci Tech 11:809–823
65.
Zurück zum Zitat Lu N, Hu T, Zhai Y, Qin H, Aliyeva J, Zhang H (2020) Fungal cell with artificial metal container for heavy metals biosorption: equilibrium, kinetics study and mechanisms analysis. Environ Res 182:109061CrossRef Lu N, Hu T, Zhai Y, Qin H, Aliyeva J, Zhang H (2020) Fungal cell with artificial metal container for heavy metals biosorption: equilibrium, kinetics study and mechanisms analysis. Environ Res 182:109061CrossRef
66.
Zurück zum Zitat Arshadi M, Mousavi SM, Rasoulnia P (2016) Enhancement of simultaneous gold and copper recovery from discarded mobile phone PCBs using Bacillus megaterium: RSM based optimization of effective factors and evaluation of their interactions. Waste Manag 57:158–167CrossRef Arshadi M, Mousavi SM, Rasoulnia P (2016) Enhancement of simultaneous gold and copper recovery from discarded mobile phone PCBs using Bacillus megaterium: RSM based optimization of effective factors and evaluation of their interactions. Waste Manag 57:158–167CrossRef
67.
Zurück zum Zitat Huang H et al (2016) A novel Pseudomonas Gessardii strain LZ-E simultaneously degrades naphthalene and reduces hexavalent chromium. Bioresour Technol 207:370–378CrossRef Huang H et al (2016) A novel Pseudomonas Gessardii strain LZ-E simultaneously degrades naphthalene and reduces hexavalent chromium. Bioresour Technol 207:370–378CrossRef
68.
Zurück zum Zitat Mahmoud A, Cezac P, Hoadley AFA, Contamine F, D’Hugues P (2017) A review of sulfide minerals microbially assisted leaching in stirred tank reactors. Int Biodeterior Biodegradation 119:118–146CrossRef Mahmoud A, Cezac P, Hoadley AFA, Contamine F, D’Hugues P (2017) A review of sulfide minerals microbially assisted leaching in stirred tank reactors. Int Biodeterior Biodegradation 119:118–146CrossRef
69.
Zurück zum Zitat Xia M et al (2018) Bioleaching of low-grade waste printed circuit boards by mixed fungal culture and its community structure analysis. Resour Conserv Recycl 136:267–275CrossRef Xia M et al (2018) Bioleaching of low-grade waste printed circuit boards by mixed fungal culture and its community structure analysis. Resour Conserv Recycl 136:267–275CrossRef
70.
Zurück zum Zitat Veglio F, Beolchini F (1997) Removal of metals by biosorption : a review. Hydrometallurgy 44:301–316 Veglio F, Beolchini F (1997) Removal of metals by biosorption : a review. Hydrometallurgy 44:301–316
71.
Zurück zum Zitat Ahmad A, Bhat AH, Buang A (2018) Biosorption of transition metals by freely suspended and Ca-alginate immobilised with chlorella vulgaris : kinetic and equilibrium modeling. J Clean Prod 171:1361–1375 Ahmad A, Bhat AH, Buang A (2018) Biosorption of transition metals by freely suspended and Ca-alginate immobilised with chlorella vulgaris : kinetic and equilibrium modeling. J Clean Prod 171:1361–1375
72.
Zurück zum Zitat Ilyas S, Lee J, Chi R (2013) Bioleaching of metals from electronic scrap and its potential for commercial exploitation. Hydrometallurgy 131–132:138–143CrossRef Ilyas S, Lee J, Chi R (2013) Bioleaching of metals from electronic scrap and its potential for commercial exploitation. Hydrometallurgy 131–132:138–143CrossRef
73.
Zurück zum Zitat Salvadori MR, Ando RA, Nascimento CAO, Correa B (2017) Dead biomass of Amazon yeast : a new insight into bioremediation and recovery of silver by intracellular synthesis of nanoparticles. J Environ Sci Heal A 52:1–9 Salvadori MR, Ando RA, Nascimento CAO, Correa B (2017) Dead biomass of Amazon yeast : a new insight into bioremediation and recovery of silver by intracellular synthesis of nanoparticles. J Environ Sci Heal A 52:1–9
74.
Zurück zum Zitat Paknikar KM, Pethkar AV, Puranik PR (2003) Bioremediation of metalliferous wastes and products using inactivated microbial biomass. Indian J Biotechnol 2:426–443 Paknikar KM, Pethkar AV, Puranik PR (2003) Bioremediation of metalliferous wastes and products using inactivated microbial biomass. Indian J Biotechnol 2:426–443
75.
Zurück zum Zitat Baran MF (2019) Biosorption of Pb 2 + from aqueous solutions by Bacillus licheniformis Isolated from Tigris River with a comparative study. Int J Latest Eng Manag Res 4:108–121 Baran MF (2019) Biosorption of Pb 2 + from aqueous solutions by Bacillus licheniformis Isolated from Tigris River with a comparative study. Int J Latest Eng Manag Res 4:108–121
76.
Zurück zum Zitat Joo JH, Hassan SHA, Oh SE (2010) Comparative study of biosorption of Zn2+ by Pseudomonas aeruginosa and Bacillus cereus. Int Biodeterior Biodegrad 64:734–741CrossRef Joo JH, Hassan SHA, Oh SE (2010) Comparative study of biosorption of Zn2+ by Pseudomonas aeruginosa and Bacillus cereus. Int Biodeterior Biodegrad 64:734–741CrossRef
77.
Zurück zum Zitat Sahmoune MN (2018) Performance of Streptomyces Rimosus biomass in biosorption of heavy metals from aqueous solutions. Microchem J 141:87–95CrossRef Sahmoune MN (2018) Performance of Streptomyces Rimosus biomass in biosorption of heavy metals from aqueous solutions. Microchem J 141:87–95CrossRef
78.
Zurück zum Zitat Selatnia A, Bakhti MZ, Madani A, Kertous L, Mansouri Y (2004) Biosorption of Cd2+ from aqueous solution by a NaOH-treated bacterial dead Streptomyces rimosus biomass. Hydrometallurgy 75:11–24CrossRef Selatnia A, Bakhti MZ, Madani A, Kertous L, Mansouri Y (2004) Biosorption of Cd2+ from aqueous solution by a NaOH-treated bacterial dead Streptomyces rimosus biomass. Hydrometallurgy 75:11–24CrossRef
79.
Zurück zum Zitat Ahmady-Asbchin S, Safari M, Tabaraki R (2015) Biosorption of Zn (II) by Pseudomonas aeruginosa isolated from a site contaminated with petroleum. Desalin Water Treat 54:3372–3379CrossRef Ahmady-Asbchin S, Safari M, Tabaraki R (2015) Biosorption of Zn (II) by Pseudomonas aeruginosa isolated from a site contaminated with petroleum. Desalin Water Treat 54:3372–3379CrossRef
80.
Zurück zum Zitat Mulligan CN, Yong RN, Gibbs BF (2001) An evaluation of technologies for the heavy metal remediation of dredged sediments. J Hazard Mater 85:145–163CrossRef Mulligan CN, Yong RN, Gibbs BF (2001) An evaluation of technologies for the heavy metal remediation of dredged sediments. J Hazard Mater 85:145–163CrossRef
81.
Zurück zum Zitat Park D, Yun YS, Park JM (2010) The past, present, and future trends of biosorption. Biotechnol Bioprocess Eng 15:86–102CrossRef Park D, Yun YS, Park JM (2010) The past, present, and future trends of biosorption. Biotechnol Bioprocess Eng 15:86–102CrossRef
82.
Zurück zum Zitat Dursun AY, Uslu G, Tepe O, Cuci Y, Ekiz HI (2003) A comparative investigation on the bioaccumulation of heavy metal ions by growing Rhizopus arrhizus and Aspergillus niger. Biochem Eng J 15:87–92CrossRef Dursun AY, Uslu G, Tepe O, Cuci Y, Ekiz HI (2003) A comparative investigation on the bioaccumulation of heavy metal ions by growing Rhizopus arrhizus and Aspergillus niger. Biochem Eng J 15:87–92CrossRef
83.
Zurück zum Zitat Say R, Yilmaz N, Denizli A (2003) Removal of heavy metal ions using the fungus Penicillium canescens. Adsorpt Sci Technol 21:643–650CrossRef Say R, Yilmaz N, Denizli A (2003) Removal of heavy metal ions using the fungus Penicillium canescens. Adsorpt Sci Technol 21:643–650CrossRef
84.
Zurück zum Zitat Leitão AL (2009) Potential of Penicillium species in the bioremediation field. Int J Environ Res Public Health 6:1393–1417CrossRef Leitão AL (2009) Potential of Penicillium species in the bioremediation field. Int J Environ Res Public Health 6:1393–1417CrossRef
85.
Zurück zum Zitat Ponce de León CA, Bayón MM, Paquin C, Caruso JA (2002) Selenium incorporation into Saccharomyces cerevisiae cells: a study of different incorporation methods. J Appl Microbiol 92:602–610CrossRef Ponce de León CA, Bayón MM, Paquin C, Caruso JA (2002) Selenium incorporation into Saccharomyces cerevisiae cells: a study of different incorporation methods. J Appl Microbiol 92:602–610CrossRef
86.
Zurück zum Zitat Munoz AJ, Espínola F, Ruiz E (2017) Biosorption of Ag (I) from aqueous solutions by Klebsiella sp . 3S1. J Hazard Mater 329:166–177CrossRef Munoz AJ, Espínola F, Ruiz E (2017) Biosorption of Ag (I) from aqueous solutions by Klebsiella sp . 3S1. J Hazard Mater 329:166–177CrossRef
87.
Zurück zum Zitat Chatterjee A, Das R, Abraham J (2020) Bioleaching of heavy metals from spent batteries using Aspergillus nomius JAMK1. Int J Environ Sci Technol 17:49–66CrossRef Chatterjee A, Das R, Abraham J (2020) Bioleaching of heavy metals from spent batteries using Aspergillus nomius JAMK1. Int J Environ Sci Technol 17:49–66CrossRef
88.
Zurück zum Zitat Abdallah MAM, Mahmoud ME, Osman MM, Ahmed SB (2017) New Biosorbent in removing some metals from industrial wastewater in El Mex Bay, Egypt. Appl Water Sci 7:1931–1942CrossRef Abdallah MAM, Mahmoud ME, Osman MM, Ahmed SB (2017) New Biosorbent in removing some metals from industrial wastewater in El Mex Bay, Egypt. Appl Water Sci 7:1931–1942CrossRef
89.
Zurück zum Zitat Escudero LB, Quintas PY, Wuilloud RG, Dotto GL (2019) Recent advances on elemental biosorption. Environ Chem Lett 17:409–427CrossRef Escudero LB, Quintas PY, Wuilloud RG, Dotto GL (2019) Recent advances on elemental biosorption. Environ Chem Lett 17:409–427CrossRef
90.
Zurück zum Zitat Vieira RHSF, Volesky B (2000) Biosorption: a solution to pollution? Int Microbiol 3:17–24 Vieira RHSF, Volesky B (2000) Biosorption: a solution to pollution? Int Microbiol 3:17–24
91.
Zurück zum Zitat Kalak T, Dudczak-Halabuda J, Tachibana Y, Cierpiszewski R (2020) Effective use of elderberry ( Sambucus nigra ) pomace in biosorption processes of Fe (III) Ions. Chemosphere 246:125744CrossRef Kalak T, Dudczak-Halabuda J, Tachibana Y, Cierpiszewski R (2020) Effective use of elderberry ( Sambucus nigra ) pomace in biosorption processes of Fe (III) Ions. Chemosphere 246:125744CrossRef
92.
Zurück zum Zitat Vendruscolo F, Ferreira GLR, Filho NRA (2017) Biosorption of hexavalent chromium by microorganisms. Int Biodeterior Biodegradation 119:87–95CrossRef Vendruscolo F, Ferreira GLR, Filho NRA (2017) Biosorption of hexavalent chromium by microorganisms. Int Biodeterior Biodegradation 119:87–95CrossRef
93.
Zurück zum Zitat Li L, Hu Q, Zeng J, Qi H, Zhuang G (2011) Resistance and biosorption mechanism of silver ions by Bacillus cereus biomass. J Environ Sci 23:108–111CrossRef Li L, Hu Q, Zeng J, Qi H, Zhuang G (2011) Resistance and biosorption mechanism of silver ions by Bacillus cereus biomass. J Environ Sci 23:108–111CrossRef
94.
Zurück zum Zitat Nicomel NR et al (2020) Microalgae : a sustainable adsorbent with high potential for upconcentration of indium (III) from liquid process and waste streams. Green Chem 22:1985–1995 Nicomel NR et al (2020) Microalgae : a sustainable adsorbent with high potential for upconcentration of indium (III) from liquid process and waste streams. Green Chem 22:1985–1995
95.
Zurück zum Zitat Saranya K, Sundaramanickam A, Shekhar S, Meena M, Sathishkumar RS, Balasubramanian T (2018) Biosorption of multi-heavy metals by coral associated phosphate solubilising Bacteria Cronobacter Muytjensii KSCAS2. J Environ Manag 222:396–401CrossRef Saranya K, Sundaramanickam A, Shekhar S, Meena M, Sathishkumar RS, Balasubramanian T (2018) Biosorption of multi-heavy metals by coral associated phosphate solubilising Bacteria Cronobacter Muytjensii KSCAS2. J Environ Manag 222:396–401CrossRef
96.
Zurück zum Zitat De Freitas F, Battirola LD, Arruda R, de Andrade RT (2019) Assessment of the Cu ( II ) and Pb ( II ) removal efficiency of aqueous solutions by the dry biomass Aguapé : kinetics of adsorption. Env Monit Assess 191:751 De Freitas F, Battirola LD, Arruda R, de Andrade RT (2019) Assessment of the Cu ( II ) and Pb ( II ) removal efficiency of aqueous solutions by the dry biomass Aguapé : kinetics of adsorption. Env Monit Assess 191:751
97.
Zurück zum Zitat Cid H, Ortiz C, Pizarro J, Moreno-piraján JC (2020) Effect of copper (ii) biosorption over light metal cation desorption in the surface of Macrocystis Pyrifera Biomass. J Environ Chem Eng 8:103729CrossRef Cid H, Ortiz C, Pizarro J, Moreno-piraján JC (2020) Effect of copper (ii) biosorption over light metal cation desorption in the surface of Macrocystis Pyrifera Biomass. J Environ Chem Eng 8:103729CrossRef
98.
Zurück zum Zitat Moghaddam SAE, Harun R, Mokhtar MN, Zakaria R (2020) Kinetic and equilibrium modeling for the biosorption of metal ion by zeolite 13X-algal-alginate beads (ZABs). J Water Process Eng 33:101057CrossRef Moghaddam SAE, Harun R, Mokhtar MN, Zakaria R (2020) Kinetic and equilibrium modeling for the biosorption of metal ion by zeolite 13X-algal-alginate beads (ZABs). J Water Process Eng 33:101057CrossRef
99.
Zurück zum Zitat Sheel A, Pant D (2018) Recovery of Gold from Electronic Waste using Chemical Assisted Microbial Biosorption ( hybrid ) Technique. Bioresour Technol 247:1189–1192CrossRef Sheel A, Pant D (2018) Recovery of Gold from Electronic Waste using Chemical Assisted Microbial Biosorption ( hybrid ) Technique. Bioresour Technol 247:1189–1192CrossRef
100.
Zurück zum Zitat Ai C et al (2020) Recovery of metals from acid mine drainage by bioelectrochemical system Inoculated with a Novel Exoelectrogen, Pseudomonas sp. E8. Microorganisms 8:1–16 Ai C et al (2020) Recovery of metals from acid mine drainage by bioelectrochemical system Inoculated with a Novel Exoelectrogen, Pseudomonas sp. E8. Microorganisms 8:1–16
101.
Zurück zum Zitat Chaturvedi V, Verma P (2016) Microbial fuel cell: a green approach for the utilization of waste for the generation of bioelectricity. Bioresour Bioprocess 3:1–14CrossRef Chaturvedi V, Verma P (2016) Microbial fuel cell: a green approach for the utilization of waste for the generation of bioelectricity. Bioresour Bioprocess 3:1–14CrossRef
102.
Zurück zum Zitat Tugtas AE, Calli B (2018) Removal and recovery of metals by using bio-electrochemical system. In: Das D (ed) Microbial fuel cell. New Delhi, Capital Publishing Company, pp 307–333CrossRef Tugtas AE, Calli B (2018) Removal and recovery of metals by using bio-electrochemical system. In: Das D (ed) Microbial fuel cell. New Delhi, Capital Publishing Company, pp 307–333CrossRef
103.
Zurück zum Zitat Huang T, Liu L, Zhang S (2019) Microbial fuel cells coupled with the bioleaching technique that enhances the recovery of cu from the secondary mine tailings in the bio-electrochemical system. Environ Prog Sustain Energy 38:1–9CrossRef Huang T, Liu L, Zhang S (2019) Microbial fuel cells coupled with the bioleaching technique that enhances the recovery of cu from the secondary mine tailings in the bio-electrochemical system. Environ Prog Sustain Energy 38:1–9CrossRef
104.
Zurück zum Zitat Velvizhi G, Goud RK, Mohan SV (2014) Anoxic bio-electrochemical system for treatment of complex chemical wastewater with simultaneous bioelectricity generation. Bioresour Technol 151:214–220CrossRef Velvizhi G, Goud RK, Mohan SV (2014) Anoxic bio-electrochemical system for treatment of complex chemical wastewater with simultaneous bioelectricity generation. Bioresour Technol 151:214–220CrossRef
105.
Zurück zum Zitat Nancharaiah YV, Mohan SV, Lens PNL (2015) Metals removal and recovery in bioelectrochemical systems: a review. Bioresour Technol 195:102–114CrossRef Nancharaiah YV, Mohan SV, Lens PNL (2015) Metals removal and recovery in bioelectrochemical systems: a review. Bioresour Technol 195:102–114CrossRef
106.
Zurück zum Zitat Huang L, Yao B, Wu D, Quan X (2014) Complete cobalt recovery from lithium cobalt oxide in self-driven microbial fuel cell - microbial electrolysis cell systems. J Power Sources 259:54–64CrossRef Huang L, Yao B, Wu D, Quan X (2014) Complete cobalt recovery from lithium cobalt oxide in self-driven microbial fuel cell - microbial electrolysis cell systems. J Power Sources 259:54–64CrossRef
107.
Zurück zum Zitat Ter Heijne A, Liu F, Van Der Weijden R, Weijma J, Buisman CJN, Hamelers HVM (2010) Copper recovery combined with electricity production in a microbial fuel cell. Environ Sci Technol 44:4376–4381CrossRef Ter Heijne A, Liu F, Van Der Weijden R, Weijma J, Buisman CJN, Hamelers HVM (2010) Copper recovery combined with electricity production in a microbial fuel cell. Environ Sci Technol 44:4376–4381CrossRef
108.
Zurück zum Zitat Hu N, Cui Y, Choi C (2019) Recovery of platinum-group metals using a microbial fuel cell. Trends Diabetes Metab 2:1–9CrossRef Hu N, Cui Y, Choi C (2019) Recovery of platinum-group metals using a microbial fuel cell. Trends Diabetes Metab 2:1–9CrossRef
109.
Zurück zum Zitat Vural Gürsel I, Kockmann N, Hessel V (2017) Fluidic separation in microstructured devices – concepts and their integration into process flow networks. Chem Eng Sci 169:3–17 Vural Gürsel I, Kockmann N, Hessel V (2017) Fluidic separation in microstructured devices – concepts and their integration into process flow networks. Chem Eng Sci 169:3–17
110.
Zurück zum Zitat Kurt SK, Vural Gürsel I, Hessel V, Nigam KDP, Kockmann N (2016) Liquid-liquid extraction system with microstructured coiled flow inverter and other capillary setups for single-stage extraction applications. Chem Eng J 284:764–777CrossRef Kurt SK, Vural Gürsel I, Hessel V, Nigam KDP, Kockmann N (2016) Liquid-liquid extraction system with microstructured coiled flow inverter and other capillary setups for single-stage extraction applications. Chem Eng J 284:764–777CrossRef
111.
Zurück zum Zitat Kurt SK, Akhtar M, Nigam KDP, Kockmann N (2016) Modular concept of a smart scale helically coiled tubular reactor for continuous operation of multiphase reaction systems. In: Proceedings of the ASME 2016 14th international conference on nanochannels, microchannels, and minichannels, pp 1–12 Kurt SK, Akhtar M, Nigam KDP, Kockmann N (2016) Modular concept of a smart scale helically coiled tubular reactor for continuous operation of multiphase reaction systems. In: Proceedings of the ASME 2016 14th international conference on nanochannels, microchannels, and minichannels, pp 1–12
112.
Zurück zum Zitat Vural Gürsel I et al (2016) Utilization of milli-scale coiled flow inverter in combination with phase separator for continuous flow liquid-liquid extraction processes. Chem Eng J 283:855–868CrossRef Vural Gürsel I et al (2016) Utilization of milli-scale coiled flow inverter in combination with phase separator for continuous flow liquid-liquid extraction processes. Chem Eng J 283:855–868CrossRef
113.
Zurück zum Zitat Chauhan G, Kaur P, Pant KK, Nigam KDP (2020) Sustainable metal extraction from waste streams. WILEY-VCH Verlag GmbH, BerlinCrossRef Chauhan G, Kaur P, Pant KK, Nigam KDP (2020) Sustainable metal extraction from waste streams. WILEY-VCH Verlag GmbH, BerlinCrossRef
114.
Zurück zum Zitat Soni S, Sharma L, Meena P, Roy S, Nigam KDP (2019) Compact coiled flow inverter for process intensification. Chem Eng Sci 193:312–324CrossRef Soni S, Sharma L, Meena P, Roy S, Nigam KDP (2019) Compact coiled flow inverter for process intensification. Chem Eng Sci 193:312–324CrossRef
115.
Zurück zum Zitat Mandal MM, Aggarwal P, Nigam KDP (2011) Liquid-liquid mixing in coiled flow inverter. Ind Eng Chem Res 50:13230–13235CrossRef Mandal MM, Aggarwal P, Nigam KDP (2011) Liquid-liquid mixing in coiled flow inverter. Ind Eng Chem Res 50:13230–13235CrossRef
116.
Zurück zum Zitat Singh J, Nigam KDP (2016) Pilot plant study for effective heat transfer area of coiled flow inverter. Chem Eng Process Process Intensif 102:219–228CrossRef Singh J, Nigam KDP (2016) Pilot plant study for effective heat transfer area of coiled flow inverter. Chem Eng Process Process Intensif 102:219–228CrossRef
117.
Zurück zum Zitat Singh J, Choudhary N, Nigam KDP (2014) The thermal and transport characteristics of nanofluids in a novel three-dimensional device. Can J Chem Eng 92:2185–2201CrossRef Singh J, Choudhary N, Nigam KDP (2014) The thermal and transport characteristics of nanofluids in a novel three-dimensional device. Can J Chem Eng 92:2185–2201CrossRef
118.
Zurück zum Zitat Kateja N, Agarwal H, Saraswat A, Bhat M, Rathore AS (2016) Continuous precipitation of process related impurities from clarified cell culture supernatant using a novel coiled flow inversion reactor (CFIR). Biotechnol J 11:1320–1331CrossRef Kateja N, Agarwal H, Saraswat A, Bhat M, Rathore AS (2016) Continuous precipitation of process related impurities from clarified cell culture supernatant using a novel coiled flow inversion reactor (CFIR). Biotechnol J 11:1320–1331CrossRef
119.
Zurück zum Zitat Parida D et al (2014) Coil flow inversion as a route to control polymerization in microreactors. Macromolecules 47:3282–3287CrossRef Parida D et al (2014) Coil flow inversion as a route to control polymerization in microreactors. Macromolecules 47:3282–3287CrossRef
120.
Zurück zum Zitat Vashisth S, Nigam KDP (2008) Experimental investigation of void fraction and flow patterns in coiled flow inverter. Chem Eng Process Process Intensif 47:1281–1291CrossRef Vashisth S, Nigam KDP (2008) Experimental investigation of void fraction and flow patterns in coiled flow inverter. Chem Eng Process Process Intensif 47:1281–1291CrossRef
121.
Zurück zum Zitat Zhang L, Hessel V, Peng J, Wang Q, Zhang L (2017) Co and Ni extraction and separation in segmented micro-flow using a coiled flow inverter. Chem Eng J 307:1–8CrossRef Zhang L, Hessel V, Peng J, Wang Q, Zhang L (2017) Co and Ni extraction and separation in segmented micro-flow using a coiled flow inverter. Chem Eng J 307:1–8CrossRef
122.
Zurück zum Zitat Gürsel IV, Aldiansyah F, Wang Q, Noël T, Hessel V (2015) Continuous metal scavenging and coupling to one-pot copper-catalyzed azide-alkyne cycloaddition click reaction in flow. Chem Eng J 270:468–475CrossRef Gürsel IV, Aldiansyah F, Wang Q, Noël T, Hessel V (2015) Continuous metal scavenging and coupling to one-pot copper-catalyzed azide-alkyne cycloaddition click reaction in flow. Chem Eng J 270:468–475CrossRef
Metadaten
Titel
Biohydrometallurgy: A Sustainable Approach for Urban Mining of Metals and Metal Refining
verfasst von
Prashant Ram Jadhao
Snigdha Mishra
Ashish Pandey
K. K. Pant
K. D. P. Nigam
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-65017-9_27