Skip to main content

2019 | OriginalPaper | Buchkapitel

Biomass Production: Biological Basics

verfasst von : Matthias Gilbert, Christian Wilhelm

Erschienen in: Energy from Organic Materials (Biomass)

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Excerpt

C3 plants
Plants using ribulose-1,5-bisphosphate-carboxylase/−oxygenase (Rubisco) as primary carboxylation enzyme to transfer CO2 on ribulose-1,5-bisphosphate to form in a first step 3-phosphoglycerate (2 × C-3). Part of the assimilated carbon is lost in C3 plants by photorespiration due to a lower CO2 concentration at the site of Rubisco than in C4 plants.
C4 plants
Plants using phosphoenol-pyruvate-(PEP)-carboxylase as primary carboxylation enzyme to transfer CO2 on PEP to form in a first step malate (C-4). Malate is transported to the bundle sheath cells (Kranz anatomy) to be decarboxylated at the site of Rubisco resulting in a high CO2 concentration and in turn very low or absent photorespiration.
Crassulacean acid metabolism (CAM) plants
Plants also using phosphoenol-pyruvate carboxylase as primary carboxylase. They fix CO2 preferentially during the night as malate that is stored in the vacuole. During the day malate is decarboxylated at the site of Rubisco resulting in high CO2 concentration and very low or absent photorespiration. Since CAM plants can keep their stomata closed during the day, they have very low transpiration rates and can survive extreme drought stress.
Harvest index
In food crops the ratio of grain yield to total plant biomass. More general, the amount of total biomass/bioenergy partitioned into the harvested portion of the crop.
Marker assisted selection (MAS)
A method in plant breeding. Screening of plant samples based on a DNA marker (sequence) linked to a trait of interest (e.g., aboveground biomass).
Net primary production (NPP)
The annual accumulation of plant organic matter per unit of land (g m−2 year−1). Net primary production (NPP) is gross primary production minus plant respiration and photorespiration. Since plant tissue typically contains about 50% carbon, division of NPP by two converts NPP to a measure of carbon fixation.
Photorespiration
Due to the dual function of ribulose-1,5-bisphosphate-carboxylase/−oxygenase (Rubisco) being a carboxylase and an oxygenase also molecular oxygen can be transferred on ribulose-1,5-bisphosphate, when CO2 concentrations are low. In a complex side reaction, the cleaved compound phosphoglycolate is decarboxylated by liberation of CO2 (“respiration in the light” = photorespiration). Photorespiration is accompanied by a net loss of carbon and results in a reduction of photosynthetic efficiency and is typical for C3 plants.
Photosynthetic efficiency
Efficiency with that photosynthesis can convert intercepted solar energy into chemical energy like carbohydrates or biomass. It is defined by the ratio of stored chemical energy to intercepted solar energy over a given time.
Plant biomass/bioenergy crops
Biomass, amount of material (fresh weight or dry weight) from living or recently living plants; bioenergy crops, plants used for biomass harvest utilized for bioenergy/biofuel production.
Water use efficiency
Ratio of CO2 assimilation or dry weight (DW) yield per unit transpired water.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hall DO (1979) Solar energy use through biology – past, present and future. Sol Energy 22:307–328CrossRef Hall DO (1979) Solar energy use through biology – past, present and future. Sol Energy 22:307–328CrossRef
2.
Zurück zum Zitat Trenberth KE, Fasullo JT, Kiehl J (2009) Earth’s global energy budget. Bull Am Meteorol Soc 90:311–323CrossRef Trenberth KE, Fasullo JT, Kiehl J (2009) Earth’s global energy budget. Bull Am Meteorol Soc 90:311–323CrossRef
3.
Zurück zum Zitat Wild M, Folini D, Schär C, Loeb N, Dutton EG, König-Langlo G (2013) The global energy balance from a surface perspective. Clim Dyn 40:3107–3134CrossRef Wild M, Folini D, Schär C, Loeb N, Dutton EG, König-Langlo G (2013) The global energy balance from a surface perspective. Clim Dyn 40:3107–3134CrossRef
4.
Zurück zum Zitat Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240CrossRef Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240CrossRef
5.
Zurück zum Zitat Townsend CR, Begon CR, Harper JL (2008) Essentials of ecology. Blackwell Publishing, Oxford (UK) Townsend CR, Begon CR, Harper JL (2008) Essentials of ecology. Blackwell Publishing, Oxford (UK)
6.
Zurück zum Zitat Wilhelm C, Weinberg J, Kaltschmitt M (2014) Conversion steps in bioenergy production – analysis of the energy flow from photon to biofuel. Biofuels 5:385–404CrossRef Wilhelm C, Weinberg J, Kaltschmitt M (2014) Conversion steps in bioenergy production – analysis of the energy flow from photon to biofuel. Biofuels 5:385–404CrossRef
7.
Zurück zum Zitat Evenson RE, Gollin D (2003) Assessing the impact of the green revolution, 1960 to 2000. Science 300:758–762CrossRef Evenson RE, Gollin D (2003) Assessing the impact of the green revolution, 1960 to 2000. Science 300:758–762CrossRef
8.
Zurück zum Zitat Wheeler T, von Braun J (2013) Climate change impacts on global food security. Science 341:508–513CrossRef Wheeler T, von Braun J (2013) Climate change impacts on global food security. Science 341:508–513CrossRef
9.
Zurück zum Zitat Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19:209–227CrossRef Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19:209–227CrossRef
10.
Zurück zum Zitat Bassham JA, Krause GH (1969) Free energy changes and metabolic regulation in steady-state photosynthetic carbon reduction. Biochim Biophys Acta (BBA) – Bioenergetics 189:207–221CrossRef Bassham JA, Krause GH (1969) Free energy changes and metabolic regulation in steady-state photosynthetic carbon reduction. Biochim Biophys Acta (BBA) – Bioenergetics 189:207–221CrossRef
11.
Zurück zum Zitat Voet D, Voet JG, Pratt CW (2008) Fundamentals of biochemistry. Wiley, Hoboken Voet D, Voet JG, Pratt CW (2008) Fundamentals of biochemistry. Wiley, Hoboken
12.
Zurück zum Zitat Mohapatra PK, Singh NR (2015) Teaching the Z-Scheme of electron transport in photosynthesis: a perspective. Photosynth Res 123:105–114CrossRef Mohapatra PK, Singh NR (2015) Teaching the Z-Scheme of electron transport in photosynthesis: a perspective. Photosynth Res 123:105–114CrossRef
13.
Zurück zum Zitat Jaiswal S, Bansal M, Roy S, Bharati A, Padhi B (2017) Electron flow from water to NADP+ with students acting as molecules in the chain: a Z-scheme drama in a classroom. Photosynth Res 131:351–359CrossRef Jaiswal S, Bansal M, Roy S, Bharati A, Padhi B (2017) Electron flow from water to NADP+ with students acting as molecules in the chain: a Z-scheme drama in a classroom. Photosynth Res 131:351–359CrossRef
14.
Zurück zum Zitat Govindjee, Shevela D, Björn LO (2017) Evolution of the Z-scheme of photosynthesis: a perspective. Photosynth Res 123:11 Govindjee, Shevela D, Björn LO (2017) Evolution of the Z-scheme of photosynthesis: a perspective. Photosynth Res 123:11
15.
Zurück zum Zitat Amthor JS (2010) From sunlight to phytomass: on the potential efficiency of converting solar radiation to phyto-energy. New Phytol 188:939–959CrossRef Amthor JS (2010) From sunlight to phytomass: on the potential efficiency of converting solar radiation to phyto-energy. New Phytol 188:939–959CrossRef
16.
Zurück zum Zitat Nobel PS (1991) Achievable productivities of certain CAM plants: basis for high values compared with C3 and C4 plants. New Phytol 119:183–205CrossRef Nobel PS (1991) Achievable productivities of certain CAM plants: basis for high values compared with C3 and C4 plants. New Phytol 119:183–205CrossRef
17.
Zurück zum Zitat Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329:790–792CrossRef Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329:790–792CrossRef
18.
Zurück zum Zitat Borland AM, Griffiths H, Hartwell J, Smith JAC (2009) Exploiting the potential of plants with crassulacean acid metabolism for bioenergy production on marginal lands. J Exp Bot 60:2879–2896CrossRef Borland AM, Griffiths H, Hartwell J, Smith JAC (2009) Exploiting the potential of plants with crassulacean acid metabolism for bioenergy production on marginal lands. J Exp Bot 60:2879–2896CrossRef
19.
Zurück zum Zitat Davis SC, Dohleman FG, Long SP (2011) The global potential for Agave as a biofuel feedstock. GCB Bioenergy 3:68–78CrossRef Davis SC, Dohleman FG, Long SP (2011) The global potential for Agave as a biofuel feedstock. GCB Bioenergy 3:68–78CrossRef
20.
Zurück zum Zitat Yan X, Tan DKY, Inderwildi OR, Smith JAC, King DA (2011) Life cycle energy and greenhouse gas analysis for agave-derived bioethanol. Energy Environ Sci 4:3110–3121CrossRef Yan X, Tan DKY, Inderwildi OR, Smith JAC, King DA (2011) Life cycle energy and greenhouse gas analysis for agave-derived bioethanol. Energy Environ Sci 4:3110–3121CrossRef
21.
Zurück zum Zitat Holtum JAM, Chambers DON, Morgan T, Tan DKY (2011) Agave as a biofuel feedstock in Australia. GCB Bioenergy 3:58–67CrossRef Holtum JAM, Chambers DON, Morgan T, Tan DKY (2011) Agave as a biofuel feedstock in Australia. GCB Bioenergy 3:58–67CrossRef
22.
Zurück zum Zitat Davis SC, LeBauer DS, Long SP (2014) Light to liquid fuel: theoretical and realized energy conversion efficiency of plants using Crassulacean Acid Metabolism (CAM) in arid conditions. J Exp Bot 65:3471–3478CrossRef Davis SC, LeBauer DS, Long SP (2014) Light to liquid fuel: theoretical and realized energy conversion efficiency of plants using Crassulacean Acid Metabolism (CAM) in arid conditions. J Exp Bot 65:3471–3478CrossRef
23.
Zurück zum Zitat Zhu X-G, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19:153–159CrossRef Zhu X-G, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19:153–159CrossRef
24.
Zurück zum Zitat Turina P, Samoray D, Gräber P (2003) H+/ATP ratio of proton transport-coupled ATP synthesis and hydrolysis catalysed by CF0F1 – liposomes. EMBO J 22:418–426CrossRef Turina P, Samoray D, Gräber P (2003) H+/ATP ratio of proton transport-coupled ATP synthesis and hydrolysis catalysed by CF0F1 – liposomes. EMBO J 22:418–426CrossRef
25.
Zurück zum Zitat Foyer CH, Neukermans J, Queval G, Noctor G, Harbinson J (2012) Photosynthetic control of electron transport and the regulation of gene expression. J Exp Bot 63:1637–1661CrossRef Foyer CH, Neukermans J, Queval G, Noctor G, Harbinson J (2012) Photosynthetic control of electron transport and the regulation of gene expression. J Exp Bot 63:1637–1661CrossRef
26.
Zurück zum Zitat Cramer WA, Zhang H, Yan J, Kurisu G, Smith JL (2006) Transmembrane traffic in the cytochrome b 6 f complex. Annu Rev Biochem 75:769–790CrossRef Cramer WA, Zhang H, Yan J, Kurisu G, Smith JL (2006) Transmembrane traffic in the cytochrome b 6 f complex. Annu Rev Biochem 75:769–790CrossRef
27.
Zurück zum Zitat Jordan DB, Ogren WL (1984) The CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase. Planta 161:308–313CrossRef Jordan DB, Ogren WL (1984) The CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase. Planta 161:308–313CrossRef
28.
Zurück zum Zitat Amthor JS (1989) Respiration and crop productivity. Springer, New YorkCrossRef Amthor JS (1989) Respiration and crop productivity. Springer, New YorkCrossRef
29.
Zurück zum Zitat Amthor JS (2000) The McCree-de Wit-Penning de Vries-Thornley respiration paradigms: 30 years later. Annals of Botany 86:1–20 Amthor JS (2000) The McCree-de Wit-Penning de Vries-Thornley respiration paradigms: 30 years later. Annals of Botany 86:1–20
30.
Zurück zum Zitat Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, Ghirardi M, Gunner MR, Junge W, Kramer DM, Melis A, Moore TA, Moser CC, Nocera DG, Nozik AJ, Ort DR, Parson WW, Prince RC, Sayre RT (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332:805–809CrossRef Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, Ghirardi M, Gunner MR, Junge W, Kramer DM, Melis A, Moore TA, Moser CC, Nocera DG, Nozik AJ, Ort DR, Parson WW, Prince RC, Sayre RT (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332:805–809CrossRef
31.
Zurück zum Zitat Hu S, Xiang C, Haussener S, Berger AD, Lewis NS (2013) An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy Environ Sci 6:2984–2993CrossRef Hu S, Xiang C, Haussener S, Berger AD, Lewis NS (2013) An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy Environ Sci 6:2984–2993CrossRef
32.
Zurück zum Zitat Rocheleau RE, Miller EL (1997) Photoelectrochemical production of hydrogen: engineering loss analysis. Int J Hydrogr Energy 22:771–782CrossRef Rocheleau RE, Miller EL (1997) Photoelectrochemical production of hydrogen: engineering loss analysis. Int J Hydrogr Energy 22:771–782CrossRef
33.
Zurück zum Zitat Seitz LC, Chen Z, Forman AJ, Pinaud BA, Benck JD, Jaramillo TF (2014) Modeling practical performance limits of photoelectrochemical water splitting based on the current state of materials research. ChemSusChem 7:1372–1385CrossRef Seitz LC, Chen Z, Forman AJ, Pinaud BA, Benck JD, Jaramillo TF (2014) Modeling practical performance limits of photoelectrochemical water splitting based on the current state of materials research. ChemSusChem 7:1372–1385CrossRef
34.
Zurück zum Zitat Nakamura A, Ota Y, Koike K, Hidaka Y, Nishioka K, Sugiyama M, Fujii K (2015) A 24.4% solar to hydrogen energy conversion efficiency by combining concentrator photovoltaic modules and electrochemical cells. Appl Phys Express 8:107101CrossRef Nakamura A, Ota Y, Koike K, Hidaka Y, Nishioka K, Sugiyama M, Fujii K (2015) A 24.4% solar to hydrogen energy conversion efficiency by combining concentrator photovoltaic modules and electrochemical cells. Appl Phys Express 8:107101CrossRef
35.
Zurück zum Zitat Jia J, Seitz LC, Benck JD, Huo Y, Chen Y, Ng JWD, Bilir T, Harris JS, Jaramillo TF (2016) Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nat Commun 7:13237CrossRef Jia J, Seitz LC, Benck JD, Huo Y, Chen Y, Ng JWD, Bilir T, Harris JS, Jaramillo TF (2016) Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nat Commun 7:13237CrossRef
36.
Zurück zum Zitat Walker DA (2009) Biofuels, facts, fantasy, and feasibility. J Appl Phycol 21:509–517CrossRef Walker DA (2009) Biofuels, facts, fantasy, and feasibility. J Appl Phycol 21:509–517CrossRef
37.
Zurück zum Zitat Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799CrossRef Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799CrossRef
38.
Zurück zum Zitat Beadle CL, Long SP (1985) Photosynthesis – is it limiting to biomass production? Biomass 8:119–168CrossRef Beadle CL, Long SP (1985) Photosynthesis – is it limiting to biomass production? Biomass 8:119–168CrossRef
39.
Zurück zum Zitat Monteith JL, Moss CJ (1977) Climate and the efficiency of crop production in Britain [and discussion]. Philos Trans R Soc London B, Biol Sci 281:277–294CrossRef Monteith JL, Moss CJ (1977) Climate and the efficiency of crop production in Britain [and discussion]. Philos Trans R Soc London B, Biol Sci 281:277–294CrossRef
40.
Zurück zum Zitat Beale CV, Long SP (1995) Can perennial C4 grasses attain high efficiencies of radiant energy conversion in cool climates? Plant Cell Environ 18:641–650CrossRef Beale CV, Long SP (1995) Can perennial C4 grasses attain high efficiencies of radiant energy conversion in cool climates? Plant Cell Environ 18:641–650CrossRef
41.
Zurück zum Zitat Piedade MTF, Junk WJ, Long SP (1991) The productivity of the C_4 grass Echinochloa Polystachya on the Amazon floodplain. Ecology 72:1456–1463CrossRef Piedade MTF, Junk WJ, Long SP (1991) The productivity of the C_4 grass Echinochloa Polystachya on the Amazon floodplain. Ecology 72:1456–1463CrossRef
42.
Zurück zum Zitat Long SP, Humphries S, Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol 45:633–662CrossRef Long SP, Humphries S, Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol 45:633–662CrossRef
43.
Zurück zum Zitat Ort DR (2001) When there is too much light. Plant Physiol 125:29–32CrossRef Ort DR (2001) When there is too much light. Plant Physiol 125:29–32CrossRef
44.
Zurück zum Zitat Demmig-Adams B, Adams WW (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol 172:11–21CrossRef Demmig-Adams B, Adams WW (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol 172:11–21CrossRef
45.
Zurück zum Zitat Zhu X-G, Long SP, Ort DR (2010) Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol 61:235–261CrossRef Zhu X-G, Long SP, Ort DR (2010) Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol 61:235–261CrossRef
46.
Zurück zum Zitat Long SP, Zhu XG, Naidu SL, Ort DR (2006) Can improvement in photosynthesis increase crop yields? Plant Cell Environ 29:315–330CrossRef Long SP, Zhu XG, Naidu SL, Ort DR (2006) Can improvement in photosynthesis increase crop yields? Plant Cell Environ 29:315–330CrossRef
47.
Zurück zum Zitat Lieth H, Whittaker RH (1975) In: Lieth H, Whittaker RH (eds) Primary productivity of the biosphere. Springer, BerlinCrossRef Lieth H, Whittaker RH (1975) In: Lieth H, Whittaker RH (eds) Primary productivity of the biosphere. Springer, BerlinCrossRef
48.
49.
Zurück zum Zitat Beale CV, Morison JIL, Long SP (1999) Water use efficiency of C4 perennial grasses in a temperate climate. Agric For Meteorol 96:103–115CrossRef Beale CV, Morison JIL, Long SP (1999) Water use efficiency of C4 perennial grasses in a temperate climate. Agric For Meteorol 96:103–115CrossRef
51.
Zurück zum Zitat Morgan PB, Bollero GA, Nelson RL, Dohleman FG, Long SP (2005) Smaller than predicted increase in aboveground net primary production and yield of field-grown soybean under fully open-air [CO2] elevation. Glob Chang Biol 11:1856–1865CrossRef Morgan PB, Bollero GA, Nelson RL, Dohleman FG, Long SP (2005) Smaller than predicted increase in aboveground net primary production and yield of field-grown soybean under fully open-air [CO2] elevation. Glob Chang Biol 11:1856–1865CrossRef
52.
Zurück zum Zitat Dermody O, Long SP, McConnaughay K, DeLucia EH (2008) How do elevated CO2 and O3 affect the interception and utilization of radiation by a soybean canopy? Glob Chang Biol 14:556–564CrossRef Dermody O, Long SP, McConnaughay K, DeLucia EH (2008) How do elevated CO2 and O3 affect the interception and utilization of radiation by a soybean canopy? Glob Chang Biol 14:556–564CrossRef
53.
Zurück zum Zitat Evans LT (1993) Crop evolution, adaptation and yield. Cambridge University Press, Cambridge Evans LT (1993) Crop evolution, adaptation and yield. Cambridge University Press, Cambridge
54.
Zurück zum Zitat Hay RKM (1995) Harvest index: a review of its use in plant breeding and crop physiology. Ann Appl Biol 126:197–216CrossRef Hay RKM (1995) Harvest index: a review of its use in plant breeding and crop physiology. Ann Appl Biol 126:197–216CrossRef
55.
Zurück zum Zitat Sinclair TR (1998) Historical changes in harvest index and crop nitrogen accumulation. Crop Sci 38:638–643CrossRef Sinclair TR (1998) Historical changes in harvest index and crop nitrogen accumulation. Crop Sci 38:638–643CrossRef
56.
Zurück zum Zitat Bernacchi CJ, Leakey ADB, Heady LE, Morgan PB, Dohleman FG, McGrath JM, Gillespie KM, Wittig VE, Rogers A, Long SP, Ort DR (2006) Hourly and seasonal variation in photosynthesis and stomatal conductance of soybean grown at future CO2 and ozone concentrations for 3 years under fully open-air field conditions. Plant Cell Environ 29:2077–2090CrossRef Bernacchi CJ, Leakey ADB, Heady LE, Morgan PB, Dohleman FG, McGrath JM, Gillespie KM, Wittig VE, Rogers A, Long SP, Ort DR (2006) Hourly and seasonal variation in photosynthesis and stomatal conductance of soybean grown at future CO2 and ozone concentrations for 3 years under fully open-air field conditions. Plant Cell Environ 29:2077–2090CrossRef
57.
Zurück zum Zitat Leakey ADB, Xu F, Gillespie KM, McGrath JM, Ainsworth EA, Ort DR (2009) Genomic basis for stimulated respiration by plants growing under elevated carbon dioxide. Proc Natl Acad Sci 106:3597–3602CrossRef Leakey ADB, Xu F, Gillespie KM, McGrath JM, Ainsworth EA, Ort DR (2009) Genomic basis for stimulated respiration by plants growing under elevated carbon dioxide. Proc Natl Acad Sci 106:3597–3602CrossRef
58.
Zurück zum Zitat Dohleman FG, Long SP (2009) More productive than maize in the Midwest: how does Miscanthus do it? Plant Physiol 150:2104–2115CrossRef Dohleman FG, Long SP (2009) More productive than maize in the Midwest: how does Miscanthus do it? Plant Physiol 150:2104–2115CrossRef
59.
Zurück zum Zitat Baker NR, East TM, Long SP (1983) Chilling damage to photosynthesis in young Zea maysII. Photochemical function of thylakoids in vivo. J Exp Bot 34:189–197CrossRef Baker NR, East TM, Long SP (1983) Chilling damage to photosynthesis in young Zea maysII. Photochemical function of thylakoids in vivo. J Exp Bot 34:189–197CrossRef
60.
Zurück zum Zitat Long SP, Incoll LD, Woolhouse HW (1975) C4 photosynthesis in plants from cool temperate regions, with particular reference to Spartina townsendii. Nature 257:622–624CrossRef Long SP, Incoll LD, Woolhouse HW (1975) C4 photosynthesis in plants from cool temperate regions, with particular reference to Spartina townsendii. Nature 257:622–624CrossRef
61.
Zurück zum Zitat Wang D, Portis AR, Moose SP, Long SP (2008) Cool C4 photosynthesis: pyruvate Pi Dikinase expression and activity corresponds to the exceptional cold tolerance of carbon assimilation in Miscanthus × giganteus. Plant Physiol 148:557–567CrossRef Wang D, Portis AR, Moose SP, Long SP (2008) Cool C4 photosynthesis: pyruvate Pi Dikinase expression and activity corresponds to the exceptional cold tolerance of carbon assimilation in Miscanthus × giganteus. Plant Physiol 148:557–567CrossRef
62.
Zurück zum Zitat Ortiz-Lopez A, Nie GY, Ort DR, Baker NR (1990) The involvement of the photoinhibition of photosystem II and impaired membrane energization in the reduced quantum yield of carbon assimilation in chilled maize. Planta 181:78–84CrossRef Ortiz-Lopez A, Nie GY, Ort DR, Baker NR (1990) The involvement of the photoinhibition of photosystem II and impaired membrane energization in the reduced quantum yield of carbon assimilation in chilled maize. Planta 181:78–84CrossRef
63.
Zurück zum Zitat Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90CrossRef Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90CrossRef
64.
Zurück zum Zitat Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO<sub>2</sub> enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO<sub>2</sub>. New Phytol 165:351–372CrossRef Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO<sub>2</sub> enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO<sub>2</sub>. New Phytol 165:351–372CrossRef
65.
Zurück zum Zitat Niinemets Ü, Díaz-Espejo A, Flexas J, Galmés J, Warren CR (2009) Importance of mesophyll diffusion conductance in estimation of plant photosynthesis in the field. J Exp Bot 60:2271–2282CrossRef Niinemets Ü, Díaz-Espejo A, Flexas J, Galmés J, Warren CR (2009) Importance of mesophyll diffusion conductance in estimation of plant photosynthesis in the field. J Exp Bot 60:2271–2282CrossRef
66.
Zurück zum Zitat von Caemmerer S (2000) Biochemical models of leaf photosynthesis. CSIRO, Collingwood von Caemmerer S (2000) Biochemical models of leaf photosynthesis. CSIRO, Collingwood
67.
Zurück zum Zitat Lin MT, Occhialini A, Andralojc PJ, Parry MAJ, Hanson MR (2014) A faster Rubisco with potential to increase photosynthesis in crops. Nature 513:547–550CrossRef Lin MT, Occhialini A, Andralojc PJ, Parry MAJ, Hanson MR (2014) A faster Rubisco with potential to increase photosynthesis in crops. Nature 513:547–550CrossRef
68.
Zurück zum Zitat Bainbridge G, Madgwick P, Parmar S, Mitchell R, Paul M, Pitts J, Keys AJ, Parry MAJ (1995) Engineering Rubisco to change its catalytic properties. J Exp Bot 46:1269–1276CrossRef Bainbridge G, Madgwick P, Parmar S, Mitchell R, Paul M, Pitts J, Keys AJ, Parry MAJ (1995) Engineering Rubisco to change its catalytic properties. J Exp Bot 46:1269–1276CrossRef
69.
Zurück zum Zitat Zhu XG, Portis AR, Long SP (2004) Would transformation of C3 crop plants with foreign Rubisco increase productivity? A computational analysis extrapolating from kinetic properties to canopy photosynthesis. Plant Cell Environ 27:155–165CrossRef Zhu XG, Portis AR, Long SP (2004) Would transformation of C3 crop plants with foreign Rubisco increase productivity? A computational analysis extrapolating from kinetic properties to canopy photosynthesis. Plant Cell Environ 27:155–165CrossRef
70.
Zurück zum Zitat Spreitzer RJ, Salvucci ME (2002) RUBISCO: structure, regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Biol 53:449–475CrossRef Spreitzer RJ, Salvucci ME (2002) RUBISCO: structure, regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Biol 53:449–475CrossRef
71.
Zurück zum Zitat Pyke KA, Leech RM (1987) The control of chloroplast number in wheat mesophyll cells. Planta 170:416–420CrossRef Pyke KA, Leech RM (1987) The control of chloroplast number in wheat mesophyll cells. Planta 170:416–420CrossRef
72.
Zurück zum Zitat Raines CA (2003) The Calvin cycle revisited. Photosynth Res 75:1–10CrossRef Raines CA (2003) The Calvin cycle revisited. Photosynth Res 75:1–10CrossRef
73.
Zurück zum Zitat Zhu X-G, de Sturler E, Long SP (2007) Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm. Plant Physiol 145:513–526CrossRef Zhu X-G, de Sturler E, Long SP (2007) Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm. Plant Physiol 145:513–526CrossRef
74.
Zurück zum Zitat Lefebvre S, Lawson T, Fryer M, Zakhleniuk OV, Lloyd JC, Raines CA (2005) Increased sedoheptulose-1,7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development. Plant Physiol 138:451–460CrossRef Lefebvre S, Lawson T, Fryer M, Zakhleniuk OV, Lloyd JC, Raines CA (2005) Increased sedoheptulose-1,7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development. Plant Physiol 138:451–460CrossRef
75.
Zurück zum Zitat Harrison EP, Willingham NM, Lloyd JC, Raines CA (1997) Reduced sedoheptulose-1,7-bisphosphatase levels in transgenic tobacco lead to decreased photosynthetic capacity and altered carbohydrate accumulation. Planta 204:27–36CrossRef Harrison EP, Willingham NM, Lloyd JC, Raines CA (1997) Reduced sedoheptulose-1,7-bisphosphatase levels in transgenic tobacco lead to decreased photosynthetic capacity and altered carbohydrate accumulation. Planta 204:27–36CrossRef
76.
Zurück zum Zitat Peterhansel C, Horst I, Niessen M, Blume C, Kebeish R, Kürkcüoglu S, Kreuzaler F (2010) Photorespiration. Arabidopsis Book 8:e0130CrossRef Peterhansel C, Horst I, Niessen M, Blume C, Kebeish R, Kürkcüoglu S, Kreuzaler F (2010) Photorespiration. Arabidopsis Book 8:e0130CrossRef
77.
Zurück zum Zitat Kebeish R, Niessen M, Thiruveedhi K, Bari R, Hirsch H-J, Rosenkranz R, Stabler N, Schonfeld B, Kreuzaler F, Peterhansel C (2007) Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol 25:593–599CrossRef Kebeish R, Niessen M, Thiruveedhi K, Bari R, Hirsch H-J, Rosenkranz R, Stabler N, Schonfeld B, Kreuzaler F, Peterhansel C (2007) Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol 25:593–599CrossRef
78.
Zurück zum Zitat Miyao M (2003) Molecular evolution and genetic engineering of C4 photosynthetic enzymes. J Exp Bot 54:179–189CrossRef Miyao M (2003) Molecular evolution and genetic engineering of C4 photosynthetic enzymes. J Exp Bot 54:179–189CrossRef
79.
Zurück zum Zitat Matsuoka M, Furbank RT, Fukayama H, Miyao M (2001) Molecular engineering of C4 photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 52:297–314CrossRef Matsuoka M, Furbank RT, Fukayama H, Miyao M (2001) Molecular engineering of C4 photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 52:297–314CrossRef
80.
Zurück zum Zitat Badger MR, Price GD (1994) The role of carbonic anhydrase in photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 45:369–392CrossRef Badger MR, Price GD (1994) The role of carbonic anhydrase in photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 45:369–392CrossRef
81.
Zurück zum Zitat Studer AJ, Gandin A, Kolbe AR, Wang L, Cousins AB, Brutnell TP (2014) A limited role for carbonic anhydrase in C4 photosynthesis as revealed by a ca1ca2 double mutant in maize. Plant Physiol 165:608–617CrossRef Studer AJ, Gandin A, Kolbe AR, Wang L, Cousins AB, Brutnell TP (2014) A limited role for carbonic anhydrase in C4 photosynthesis as revealed by a ca1ca2 double mutant in maize. Plant Physiol 165:608–617CrossRef
82.
Zurück zum Zitat Momayyezi M, Guy RD (2017) Substantial role for carbonic anhydrase in latitudinal variation in mesophyll conductance of Populus trichocarpa Torr. & Gray. Plant Cell Environ 40:138–149CrossRef Momayyezi M, Guy RD (2017) Substantial role for carbonic anhydrase in latitudinal variation in mesophyll conductance of Populus trichocarpa Torr. & Gray. Plant Cell Environ 40:138–149CrossRef
83.
Zurück zum Zitat Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246CrossRef Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246CrossRef
84.
Zurück zum Zitat Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709CrossRef Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709CrossRef
85.
Zurück zum Zitat Frommer WB, Sonnewald U (2010) Progress in physiological research and its relevance for agriculture and ecology. Curr Opin Plant Biol 13:227–232CrossRef Frommer WB, Sonnewald U (2010) Progress in physiological research and its relevance for agriculture and ecology. Curr Opin Plant Biol 13:227–232CrossRef
86.
Zurück zum Zitat Jonik C, Sonnewald U, Hajirezaei M-R, Flügge U-I, Ludewig F (2012) Simultaneous boosting of source and sink capacities doubles tuber starch yield of potato plants. Plant Biotechnol J 10:1088–1098CrossRef Jonik C, Sonnewald U, Hajirezaei M-R, Flügge U-I, Ludewig F (2012) Simultaneous boosting of source and sink capacities doubles tuber starch yield of potato plants. Plant Biotechnol J 10:1088–1098CrossRef
87.
Zurück zum Zitat Kirst H, Gabilly ST, Niyogi KK, Lemaux PG, Melis A (2017) Photosynthetic antenna engineering to improve crop yields. 245: Planta:1009–1020 Kirst H, Gabilly ST, Niyogi KK, Lemaux PG, Melis A (2017) Photosynthetic antenna engineering to improve crop yields. 245: Planta:1009–1020
88.
Zurück zum Zitat Chen X, Zhang W, Xie Y, Lu W, Zhang R (2007) Comparative proteomics of thylakoid membrane from a chlorophyll b-less rice mutant and its wild type. Plant Sci 173:397–407CrossRef Chen X, Zhang W, Xie Y, Lu W, Zhang R (2007) Comparative proteomics of thylakoid membrane from a chlorophyll b-less rice mutant and its wild type. Plant Sci 173:397–407CrossRef
89.
Zurück zum Zitat Johnson MP, Davison PA, Ruban AV, Horton P (2008) The xanthophyll cycle pool size controls the kinetics of non-photochemical quenching in Arabidopsis thaliana. FEBS Lett 582:262–266CrossRef Johnson MP, Davison PA, Ruban AV, Horton P (2008) The xanthophyll cycle pool size controls the kinetics of non-photochemical quenching in Arabidopsis thaliana. FEBS Lett 582:262–266CrossRef
90.
Zurück zum Zitat Donald CM (1968) The breeding of crop ideotypes. Euphytica 17:385–403CrossRef Donald CM (1968) The breeding of crop ideotypes. Euphytica 17:385–403CrossRef
91.
Zurück zum Zitat Allwright MR, Taylor G (2016) Molecular breeding for improved second generation bioenergy crops. Trends Plant Sci 21:43–54CrossRef Allwright MR, Taylor G (2016) Molecular breeding for improved second generation bioenergy crops. Trends Plant Sci 21:43–54CrossRef
92.
Zurück zum Zitat Wang Y, Fan C, Hu H, Li Y, Sun D, Wang Y, Peng L (2016) Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops. Biotechnol Adv 34:997–1017CrossRef Wang Y, Fan C, Hu H, Li Y, Sun D, Wang Y, Peng L (2016) Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops. Biotechnol Adv 34:997–1017CrossRef
93.
Zurück zum Zitat Grammelis P, Malliopoulou A, Basinas P, Danalatos NG (2008) Cultivation and characterization of Cynara cardunculus for solid biofuels production in the Mediterranean region. Int J Mol Sci 9:1241–1258CrossRef Grammelis P, Malliopoulou A, Basinas P, Danalatos NG (2008) Cultivation and characterization of Cynara cardunculus for solid biofuels production in the Mediterranean region. Int J Mol Sci 9:1241–1258CrossRef
94.
Zurück zum Zitat Bouton JH (2007) Molecular breeding of switchgrass for use as a biofuel crop. Curr Opin Genet Dev 17:553–558CrossRef Bouton JH (2007) Molecular breeding of switchgrass for use as a biofuel crop. Curr Opin Genet Dev 17:553–558CrossRef
95.
Zurück zum Zitat Casler MD, Stendal CA, Kapich L, Vogel KP (2007) Genetic diversity, plant adaptation regions, and gene pools for switchgrass all rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permission for printing and for reprinting the material contained herein has been obtained by the publisher. Crop Sci 47:2261–2273CrossRef Casler MD, Stendal CA, Kapich L, Vogel KP (2007) Genetic diversity, plant adaptation regions, and gene pools for switchgrass all rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permission for printing and for reprinting the material contained herein has been obtained by the publisher. Crop Sci 47:2261–2273CrossRef
96.
Zurück zum Zitat Sannigrahi P, Ragauskas AJ, Tuskan GA (2010) Poplar as a feedstock for biofuels: a review of compositional characteristics. Biofuels Bioprod Biorefin 4:209–226CrossRef Sannigrahi P, Ragauskas AJ, Tuskan GA (2010) Poplar as a feedstock for biofuels: a review of compositional characteristics. Biofuels Bioprod Biorefin 4:209–226CrossRef
97.
Zurück zum Zitat van Eijck J, Romijn H, Balkema A, Faaij A (2014) Global experience with jatropha cultivation for bioenergy: an assessment of socio-economic and environmental aspects. Renew Sust Energ Rev 32:869–889CrossRef van Eijck J, Romijn H, Balkema A, Faaij A (2014) Global experience with jatropha cultivation for bioenergy: an assessment of socio-economic and environmental aspects. Renew Sust Energ Rev 32:869–889CrossRef
98.
Zurück zum Zitat Jones M (2017) Perennial biomass crops for a resource-constrained world. GCB Bioenergy 9:4–5CrossRef Jones M (2017) Perennial biomass crops for a resource-constrained world. GCB Bioenergy 9:4–5CrossRef
99.
Zurück zum Zitat Schrama M, Vandecasteele B, Carvalho S, Muylle H, van der Putten WH (2016) Effects of first- and second-generation bioenergy crops on soil processes and legacy effects on a subsequent crop. GCB Bioenergy 8:136–147CrossRef Schrama M, Vandecasteele B, Carvalho S, Muylle H, van der Putten WH (2016) Effects of first- and second-generation bioenergy crops on soil processes and legacy effects on a subsequent crop. GCB Bioenergy 8:136–147CrossRef
100.
Zurück zum Zitat Ribaut J-M, Hoisington D (1998) Marker-assisted selection: new tools and strategies. Trends Plant Sci 3:236–239CrossRef Ribaut J-M, Hoisington D (1998) Marker-assisted selection: new tools and strategies. Trends Plant Sci 3:236–239CrossRef
101.
Zurück zum Zitat Miles C, Wayne M (2008) Quantitative trait locus (QTL) analysis. Nat Educ 1:208 Miles C, Wayne M (2008) Quantitative trait locus (QTL) analysis. Nat Educ 1:208
102.
Zurück zum Zitat Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93:1156–1160CrossRef Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93:1156–1160CrossRef
103.
Zurück zum Zitat Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761CrossRef Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761CrossRef
104.
Zurück zum Zitat Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52CrossRef Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52CrossRef
Zurück zum Zitat Hall DO, Rao KK (1999) Photosynthesis, 6th edn. Cambridge University Press, Cambridge, UK Hall DO, Rao KK (1999) Photosynthesis, 6th edn. Cambridge University Press, Cambridge, UK
Zurück zum Zitat Nabors MW (2004) Introduction to botany. Pearson Benjamin Cummings, San Francisco Nabors MW (2004) Introduction to botany. Pearson Benjamin Cummings, San Francisco
Zurück zum Zitat Nobel PS (2005) Physicochemical and environmental plant physiology, 3rd edn. Elsevier Academic Press, Burlington Nobel PS (2005) Physicochemical and environmental plant physiology, 3rd edn. Elsevier Academic Press, Burlington
Zurück zum Zitat Pessarakli M (2016) Handbook of photosynthesis, 3rd edn. CRC Press, Boca Raton Pessarakli M (2016) Handbook of photosynthesis, 3rd edn. CRC Press, Boca Raton
Zurück zum Zitat Schlesinger WH, Bernhardt ES (2013) Biogeochemistry: an analysis of global change. Academic, OxfordCrossRef Schlesinger WH, Bernhardt ES (2013) Biogeochemistry: an analysis of global change. Academic, OxfordCrossRef
Zurück zum Zitat Taiz L, Zeiger E (eds) (2015) Plant physiology, 6th edn. Sinauer Associates, Sunderland Taiz L, Zeiger E (eds) (2015) Plant physiology, 6th edn. Sinauer Associates, Sunderland
Metadaten
Titel
Biomass Production: Biological Basics
verfasst von
Matthias Gilbert
Christian Wilhelm
Copyright-Jahr
2019
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-7813-7_985