Skip to main content

2011 | OriginalPaper | Buchkapitel

16. Biomaterials Approaches in Vascular Engineering: a Review of Past and Future Trends

verfasst von : Donny Hanjaya-Putra, Maureen Wanjare, Sharon Gerecht

Erschienen in: Biomaterials for Tissue Engineering Applications

Verlag: Springer Vienna

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Creating functional vasculatures remains one of the fundamental challenges that must be addressed before large, complex tissue-engineered constructs can be used in clinical applications. Our current understanding of stem cell biology and vascular morphogenesis has allowed tissue engineers to design biomaterials that mimic the properties of native tissue and promote vascularization. Biomaterials approaches in tissue engineering include differentiation of vascular cells, delivery of angiogenic factors, in vivo and in vitro prevascularization, as well as microfabrication of complex vascular networks. This chapter will discuss the processes involved in vascular network assembly; these processes inspire the design of biomaterials to fit tissue vascularization. Previous work in this field will be described to allow discussion of the current state of the art and to provide insights into its future directions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rouwkema, J., N.C. Rivron, and C.A. van Blitterswijk, Vascularization in tissue engineering. Trends in Biotechnology, 2008. 26(8): p. 434–441. Rouwkema, J., N.C. Rivron, and C.A. van Blitterswijk, Vascularization in tissue engineering. Trends in Biotechnology, 2008. 26(8): p. 434–441.
2.
Zurück zum Zitat Laschke, M.W., et al., Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue Engineering, 2006. 12(8): p. 2093–2104. Laschke, M.W., et al., Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue Engineering, 2006. 12(8): p. 2093–2104.
3.
Zurück zum Zitat Levenberg, S., et al., Engineering vascularized skeletal muscle tissue. Nature Biotechnology, 2005. 23(7): p. 879–884. Levenberg, S., et al., Engineering vascularized skeletal muscle tissue. Nature Biotechnology, 2005. 23(7): p. 879–884.
4.
Zurück zum Zitat Dvir, T., et al., Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106(35): p. 14990–14995. Dvir, T., et al., Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106(35): p. 14990–14995.
5.
Zurück zum Zitat Caspi, O., et al., Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circulation Research, 2007. 100(2): p. 263–272. Caspi, O., et al., Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circulation Research, 2007. 100(2): p. 263–272.
6.
Zurück zum Zitat Lesman, A., et al., Transplantation of a tissue-engineered human vascularized cardiac muscle. Tissue Engineering Part A, 2010. 16(1): p. 115–125. Lesman, A., et al., Transplantation of a tissue-engineered human vascularized cardiac muscle. Tissue Engineering Part A, 2010. 16(1): p. 115–125.
7.
Zurück zum Zitat Hungerford, J.E., et al., Development of the aortic vessel wall as defined by vascular smooth muscle and extracellular matrix markers. Developmental Biology, 1996. 178(2): p. 375–392. Hungerford, J.E., et al., Development of the aortic vessel wall as defined by vascular smooth muscle and extracellular matrix markers. Developmental Biology, 1996. 178(2): p. 375–392.
8.
Zurück zum Zitat Drake, C.J., J.E. Hungerford, and C.D. Little, Morphogenesis of the first blood vessels. Annals of the New York Academy of Sciences, 1998. 857: p. 155–179, Morphogenesis: cellular interactions. Drake, C.J., J.E. Hungerford, and C.D. Little, Morphogenesis of the first blood vessels. Annals of the New York Academy of Sciences, 1998. 857: p. 155–179, Morphogenesis: cellular interactions.
9.
Zurück zum Zitat Gerecht-Nir, S. and J. Itskovitz-Eldor, The promise of human embryonic stem cells. Best Practice & Research. Clinical Obstetrics & Gynaecology, 2004. 18(6): p. 843–852. Gerecht-Nir, S. and J. Itskovitz-Eldor, The promise of human embryonic stem cells. Best Practice & Research. Clinical Obstetrics & Gynaecology, 2004. 18(6): p. 843–852.
10.
Zurück zum Zitat Patan, S., Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. Journal of Neuro-Oncology, 2000. 50(1): p. 1–15. Patan, S., Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. Journal of Neuro-Oncology, 2000. 50(1): p. 1–15.
11.
Zurück zum Zitat Ribatti, D., Hemangioblast does exist. Leukemia Research, 2008. 32(6): p. 850–854. Ribatti, D., Hemangioblast does exist. Leukemia Research, 2008. 32(6): p. 850–854.
12.
Zurück zum Zitat Yamashita, J., Differentiation and diversification of vascular cells from embryonic stem cells. International Journal of Hematology, 2004. 80(1): p. 1–6. Yamashita, J., Differentiation and diversification of vascular cells from embryonic stem cells. International Journal of Hematology, 2004. 80(1): p. 1–6.
13.
Zurück zum Zitat Yamashita, J., et al., Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature, 2000. 408(6808): p. 92–96. Yamashita, J., et al., Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature, 2000. 408(6808): p. 92–96.
14.
Zurück zum Zitat Bai, H. and Z.Z. Wang, Directing human embryonic stem cells to generate vascular progenitor cells. Gene Therapy, 2007. 15(2): p. 89–95. Bai, H. and Z.Z. Wang, Directing human embryonic stem cells to generate vascular progenitor cells. Gene Therapy, 2007. 15(2): p. 89–95.
15.
Zurück zum Zitat Vo, E., et al., Smooth-muscle-like cells derived from human embryonic stem cells support and augment cord-like structures in vitro. Stem Cell Reviews and Reports, 2010. 6(2): p. 237–247. Vo, E., et al., Smooth-muscle-like cells derived from human embryonic stem cells support and augment cord-like structures in vitro. Stem Cell Reviews and Reports, 2010. 6(2): p. 237–247.
16.
Zurück zum Zitat Yu, J., et al., Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007. 318(5858): p. 1917–1920. Yu, J., et al., Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007. 318(5858): p. 1917–1920.
17.
Zurück zum Zitat Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007. 131(5): p. 861–872. Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007. 131(5): p. 861–872.
18.
Zurück zum Zitat Pittenger, M., et al., Multilineage potential of adult human mesenchymal stem cells. Science, 1999. 284(5411): p. 143–147. Pittenger, M., et al., Multilineage potential of adult human mesenchymal stem cells. Science, 1999. 284(5411): p. 143–147.
19.
Zurück zum Zitat Liu, D., X. Li, and Z. Zhang, Differentiation of human bone marrow mesenchymal stem cells into vascular endothelium-like cells induced by vascular endothelial growth factor and basic fibroblast growth factor in vitro. Journal of Clinical Rehabilitative Tissue Engineering Research, 2008. 12(47): p. 9216–9220. Liu, D., X. Li, and Z. Zhang, Differentiation of human bone marrow mesenchymal stem cells into vascular endothelium-like cells induced by vascular endothelial growth factor and basic fibroblast growth factor in vitro. Journal of Clinical Rehabilitative Tissue Engineering Research, 2008. 12(47): p. 9216–9220.
20.
Zurück zum Zitat Gong, Z. and L.E. Niklason, Small-diameter human vessel wall engineered from bone marrow-derived mesenchymal stem cells (hMSCs). The FASEB Journal, 2008. 22(6): p. 1635–1648. Gong, Z. and L.E. Niklason, Small-diameter human vessel wall engineered from bone marrow-derived mesenchymal stem cells (hMSCs). The FASEB Journal, 2008. 22(6): p. 1635–1648.
21.
Zurück zum Zitat Miranville, A., et al., Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation, 2004. 110(3): p. 349–355. Miranville, A., et al., Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation, 2004. 110(3): p. 349–355.
22.
Zurück zum Zitat Traktuev, D.O., et al., A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circulation Research, 2008. 102(1): p. 77–85. Traktuev, D.O., et al., A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circulation Research, 2008. 102(1): p. 77–85.
23.
Zurück zum Zitat Asahara, T., et al., Isolation of putative progenitor endothelial cells for angiogenesis. Science, 1997. 275(5302): p. 964–966. Asahara, T., et al., Isolation of putative progenitor endothelial cells for angiogenesis. Science, 1997. 275(5302): p. 964–966.
24.
Zurück zum Zitat Au, P., et al., Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels. Blood, 2008. 111(3): p. 1302–1305 Au, P., et al., Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels. Blood, 2008. 111(3): p. 1302–1305
25.
Zurück zum Zitat Cherqui, S., et al., Isolation and angiogenesis by endothelial progenitors in the fetal liver. Stem Cells, 2006. 24(1): p. 44–54. Cherqui, S., et al., Isolation and angiogenesis by endothelial progenitors in the fetal liver. Stem Cells, 2006. 24(1): p. 44–54.
26.
Zurück zum Zitat Grenier, G., et al., Resident endothelial precursors in muscle, adipose, and dermis contribute to postnatal vasculogenesis. Stem Cells, 2007. 25(12): p. 3101–3110. Grenier, G., et al., Resident endothelial precursors in muscle, adipose, and dermis contribute to postnatal vasculogenesis. Stem Cells, 2007. 25(12): p. 3101–3110.
27.
Zurück zum Zitat Zengin, E., et al., Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development, 2006. 133(8): p. 1543–1551. Zengin, E., et al., Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development, 2006. 133(8): p. 1543–1551.
28.
Zurück zum Zitat Mead, L.E., et al., Isolation and characterization of endothelial progenitor cells from human blood. Current Protocols in Stem Cell Biology, 2008. Chapter 2. Mead, L.E., et al., Isolation and characterization of endothelial progenitor cells from human blood. Current Protocols in Stem Cell Biology, 2008. Chapter 2.
29.
Zurück zum Zitat Yoder, M.C., et al., Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood, 2007. 109(5): p. 1801–1809. Yoder, M.C., et al., Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood, 2007. 109(5): p. 1801–1809.
30.
Zurück zum Zitat Wu, X., et al., Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells. American Journal of Physiology. Heart and Circulatory Physiology, 2004. 287(2): p. H480–H487. Wu, X., et al., Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells. American Journal of Physiology. Heart and Circulatory Physiology, 2004. 287(2): p. H480–H487.
31.
Zurück zum Zitat Jie, L., Z. Yan-Ping, and S.K. Robert, Angiogenesis in wound repair: angiogenic growth factors and the extracellular matrix. Microscopy Research and Technique, 2003. 60(1): p. 107–114. Jie, L., Z. Yan-Ping, and S.K. Robert, Angiogenesis in wound repair: angiogenic growth factors and the extracellular matrix. Microscopy Research and Technique, 2003. 60(1): p. 107–114.
32.
Zurück zum Zitat Smith, M.K., et al., Locally enhanced angiogenesis promotes transplanted cell survival. Tissue Engineering, 2004. 10(1–2): p. 63–71. Smith, M.K., et al., Locally enhanced angiogenesis promotes transplanted cell survival. Tissue Engineering, 2004. 10(1–2): p. 63–71.
33.
Zurück zum Zitat Nomi, M., et al., Principals of neovascularization for tissue engineering. Molecular Aspects of Medicine, 2002. 23(6): p. 463–483. Nomi, M., et al., Principals of neovascularization for tissue engineering. Molecular Aspects of Medicine, 2002. 23(6): p. 463–483.
34.
Zurück zum Zitat Richardson, T.P., et al., Polymeric system for dual growth factor delivery. Nature Biotechnology, 2001. 19(11): p. 1029–1034. Richardson, T.P., et al., Polymeric system for dual growth factor delivery. Nature Biotechnology, 2001. 19(11): p. 1029–1034.
35.
Zurück zum Zitat Lee, J., M.J. Cuddihy, and N.A. Kotov, Three-dimensional cell culture matrices: state of the art. Tissue Engineering Part B: Reviews, 2008. 14(1): p. 61–86. Lee, J., M.J. Cuddihy, and N.A. Kotov, Three-dimensional cell culture matrices: state of the art. Tissue Engineering Part B: Reviews, 2008. 14(1): p. 61–86.
36.
Zurück zum Zitat Eble, J.A. and S. Niland, The extracellular matrix of blood vessels. Current Pharmaceutical Design, 2009. 15: p. 1385–1400. Eble, J.A. and S. Niland, The extracellular matrix of blood vessels. Current Pharmaceutical Design, 2009. 15: p. 1385–1400.
37.
Zurück zum Zitat Lutolf, M.P. and J.A. Hubbell, Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature Biotechnology, 2005. 23(1): p. 47–55. Lutolf, M.P. and J.A. Hubbell, Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature Biotechnology, 2005. 23(1): p. 47–55.
38.
Zurück zum Zitat Toole, B.P., Hyaluronan: from extracellular glue to pericellular cue. Nature Reviews. Cancer, 2004. 4(7): p. 528–539. Toole, B.P., Hyaluronan: from extracellular glue to pericellular cue. Nature Reviews. Cancer, 2004. 4(7): p. 528–539.
39.
Zurück zum Zitat Wijelath, E.S., et al., Heparin-II domain of fibronectin is a vascular endothelial growth factor-binding domain: enhancement of VEGF biological activity by a singular growth factor/matrix protein synergism. Circulation Research, 2006. 99(8): p. 853–860. Wijelath, E.S., et al., Heparin-II domain of fibronectin is a vascular endothelial growth factor-binding domain: enhancement of VEGF biological activity by a singular growth factor/matrix protein synergism. Circulation Research, 2006. 99(8): p. 853–860.
40.
Zurück zum Zitat Francis, S.E., et al., Central roles of alpha5beta1 integrin and fibronectin in vascular development in mouse embryos and embryoid bodies. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002. 22(6): p. 927–933. Francis, S.E., et al., Central roles of alpha5beta1 integrin and fibronectin in vascular development in mouse embryos and embryoid bodies. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002. 22(6): p. 927–933.
41.
Zurück zum Zitat Astrof, S., D. Crowley, and R.O. Hynes, Multiple cardiovascular defects caused by the absence of alternatively spliced segments of fibronectin. Developmental Biology, 2007. 311(1): p. 11–24. Astrof, S., D. Crowley, and R.O. Hynes, Multiple cardiovascular defects caused by the absence of alternatively spliced segments of fibronectin. Developmental Biology, 2007. 311(1): p. 11–24.
42.
Zurück zum Zitat Davis, G.E. and D.R. Senger, Extracellular matrix mediates a molecular balance between vascular morphogenesis and regression. Current Opinion in Hematology, 2008. 15(3): p. 197–203. Davis, G.E. and D.R. Senger, Extracellular matrix mediates a molecular balance between vascular morphogenesis and regression. Current Opinion in Hematology, 2008. 15(3): p. 197–203.
43.
Zurück zum Zitat Robins, S.P., Biochemistry and functional significance of collagen cross-linking. Biochemical Society Transactions, 2007. 35(5): p. 849–852. Robins, S.P., Biochemistry and functional significance of collagen cross-linking. Biochemical Society Transactions, 2007. 35(5): p. 849–852.
44.
Zurück zum Zitat Place, E.S., N.D. Evans, and M.M. Stevens, Complexity in biomaterials for tissue engineering. Nature Materials, 2009. 8(6): p. 457–470. Place, E.S., N.D. Evans, and M.M. Stevens, Complexity in biomaterials for tissue engineering. Nature Materials, 2009. 8(6): p. 457–470.
45.
Zurück zum Zitat Sun, G., et al., Functional groups affect physical and biological properties of dextran-based hydrogels. Journal of Biomedical Materials Research Part A, 2010. 93(3): p. 1080–1090 Sun, G., et al., Functional groups affect physical and biological properties of dextran-based hydrogels. Journal of Biomedical Materials Research Part A, 2010. 93(3): p. 1080–1090
46.
Zurück zum Zitat Keselowsky, B.G., D.M. Collard, and A.J. GarcÃa, Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(17): p. 5953–5957. Keselowsky, B.G., D.M. Collard, and A.J. GarcÃa, Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(17): p. 5953–5957.
47.
Zurück zum Zitat Ehrbar, M., et al., Cell-demanded liberation of VEGF121 from fibrin implants induces local and controlled blood vessel growth. Circulation Research, 2004. 94(8): p. 1124–1132. Ehrbar, M., et al., Cell-demanded liberation of VEGF121 from fibrin implants induces local and controlled blood vessel growth. Circulation Research, 2004. 94(8): p. 1124–1132.
48.
Zurück zum Zitat Ehrbar, M., et al., Endothelial cell proliferation and progenitor maturation by fibrin-bound VEGF variants with differential susceptibilities to local cellular activity. Journal of Controlled Release, 2005. 101(1–3): p. 93–109. Ehrbar, M., et al., Endothelial cell proliferation and progenitor maturation by fibrin-bound VEGF variants with differential susceptibilities to local cellular activity. Journal of Controlled Release, 2005. 101(1–3): p. 93–109.
49.
Zurück zum Zitat Davis, G.E., W. Kon, and A.N. Stratman, Mechanisms controlling human endothelial lumen formation and tube assembly in three-dimensional extracellular matrices. Birth Defects Research. Part C, Embryo Today: Reviews, 2007. 81(4): p. 270–285. Davis, G.E., W. Kon, and A.N. Stratman, Mechanisms controlling human endothelial lumen formation and tube assembly in three-dimensional extracellular matrices. Birth Defects Research. Part C, Embryo Today: Reviews, 2007. 81(4): p. 270–285.
50.
Zurück zum Zitat Zhou, X., et al., Fibronectin fibrillogenesis regulates three-dimensional neovessel formation. Genes & Development, 2008. 22(9): p. 1231–1243. Zhou, X., et al., Fibronectin fibrillogenesis regulates three-dimensional neovessel formation. Genes & Development, 2008. 22(9): p. 1231–1243.
51.
Zurück zum Zitat Janmey, P.A., J.P. Winer, and J.W. Weisel, Fibrin gels and their clinical and bioengineering applications. Journal of the Royal Society Interface, 2009. 6(30): p. 1–10. Janmey, P.A., J.P. Winer, and J.W. Weisel, Fibrin gels and their clinical and bioengineering applications. Journal of the Royal Society Interface, 2009. 6(30): p. 1–10.
52.
Zurück zum Zitat Bayless, K.J. and G.E. Davis, The Cdc42 and Rac1 GTPases are required for capillary lumen formation in three-dimensional extracellular matrices. Journal of Cell Science, 2002. 115(6): p. 1123–1136. Bayless, K.J. and G.E. Davis, The Cdc42 and Rac1 GTPases are required for capillary lumen formation in three-dimensional extracellular matrices. Journal of Cell Science, 2002. 115(6): p. 1123–1136.
53.
Zurück zum Zitat Kamei, M., et al., Endothelial tubes assemble from intracellular vacuoles in vivo. Nature, 2006. 442(7101): p. 453–456. Kamei, M., et al., Endothelial tubes assemble from intracellular vacuoles in vivo. Nature, 2006. 442(7101): p. 453–456.
54.
Zurück zum Zitat Ingber, D.E. and J. Folkman, Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. The Journal of Cell Biology, 1989. 109(1): p. 317–330. Ingber, D.E. and J. Folkman, Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. The Journal of Cell Biology, 1989. 109(1): p. 317–330.
55.
Zurück zum Zitat Folkman, J., C.C. Haudenschild, and B.R. Zetter, Long-term culture of capillary endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 1979. 76(10): p. 5217–5221. Folkman, J., C.C. Haudenschild, and B.R. Zetter, Long-term culture of capillary endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 1979. 76(10): p. 5217–5221.
56.
Zurück zum Zitat Davis, G.E. and C.W. Camarillo, Regulation of endothelial cell morphogenesis by integrins, mechanical forces, and matrix guidance pathways. Experimental Cell Research, 1995. 216(1): p. 113–123. Davis, G.E. and C.W. Camarillo, Regulation of endothelial cell morphogenesis by integrins, mechanical forces, and matrix guidance pathways. Experimental Cell Research, 1995. 216(1): p. 113–123.
57.
Zurück zum Zitat Rundhaug, J.E., Matrix metalloproteinases and angiogenesis. Journal of Cellular and Molecular Medicine, 2005. 9(2): p. 267–285. Rundhaug, J.E., Matrix metalloproteinases and angiogenesis. Journal of Cellular and Molecular Medicine, 2005. 9(2): p. 267–285.
58.
Zurück zum Zitat Van Hinsbergh, V.W.M., M.A. Engelse, and P.H.A. Quax, Pericellular proteases in angiogenesis and vasculogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006. 26(4): p. 716–728. Van Hinsbergh, V.W.M., M.A. Engelse, and P.H.A. Quax, Pericellular proteases in angiogenesis and vasculogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006. 26(4): p. 716–728.
59.
Zurück zum Zitat Urbich, C. and S. Dimmeler, Endothelial progenitor cells: characterization and role in vascular biology. Circulation Research, 2004. 95(4): p. 343–353. Urbich, C. and S. Dimmeler, Endothelial progenitor cells: characterization and role in vascular biology. Circulation Research, 2004. 95(4): p. 343–353.
60.
Zurück zum Zitat Stratman, A.N., et al., Endothelial cell lumen and vascular guidance tunnel formation requires MT1-MMP-dependent proteolysis in 3-dimensional collagen matrices. Blood, 2009. 114(2): p. 237–247. Stratman, A.N., et al., Endothelial cell lumen and vascular guidance tunnel formation requires MT1-MMP-dependent proteolysis in 3-dimensional collagen matrices. Blood, 2009. 114(2): p. 237–247.
61.
Zurück zum Zitat Chun, T.H., et al., MT1-MMP-dependent neovessel formation within the confines of the three-dimensional extracellular matrix. The Journal of Cell Biology, 2004. 167(4): p. 757–767. Chun, T.H., et al., MT1-MMP-dependent neovessel formation within the confines of the three-dimensional extracellular matrix. The Journal of Cell Biology, 2004. 167(4): p. 757–767.
62.
Zurück zum Zitat Collen, A., et al., Membrane-type matrix metalloproteinase-mediated angiogenesis in a fibrin-collagen matrix. Blood, 2003. 101(5): p. 1810–1817. Collen, A., et al., Membrane-type matrix metalloproteinase-mediated angiogenesis in a fibrin-collagen matrix. Blood, 2003. 101(5): p. 1810–1817.
63.
Zurück zum Zitat Hanjaya-Putra, D., et al., Vascular endothelial growth factor and substrate mechanics regulate in vitro tubulogenesis of endothelial progenitor cells. Journal of Cellular and Molecular Medicine, 2009. DOI: 10.1111/j.1582-4934.2009.00981.x Hanjaya-Putra, D., et al., Vascular endothelial growth factor and substrate mechanics regulate in vitro tubulogenesis of endothelial progenitor cells. Journal of Cellular and Molecular Medicine, 2009. DOI: 10.1111/j.1582-4934.2009.00981.x
64.
Zurück zum Zitat Sage, E.H. and R.B. Vernon, Regulation of angiogenesis by extracellular matrix: the growth and the glue. Journal of Hypertension, 1994. 12(10): p. S145–S152. Sage, E.H. and R.B. Vernon, Regulation of angiogenesis by extracellular matrix: the growth and the glue. Journal of Hypertension, 1994. 12(10): p. S145–S152.
65.
Zurück zum Zitat Sieminski, A.L., et al., The stiffness of three-dimensional ionic self-assembling peptide gels affects the extent of capillary-like network formation. Cell Biochemistry and Biophysics, 2007. 49(2): p. 73–83. Sieminski, A.L., et al., The stiffness of three-dimensional ionic self-assembling peptide gels affects the extent of capillary-like network formation. Cell Biochemistry and Biophysics, 2007. 49(2): p. 73–83.
66.
Zurück zum Zitat Lutolf, M.P., et al., Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proceedings of the National Academy of Sciences of the United States of America, 2003. 100(9): p. 5413–5418. Lutolf, M.P., et al., Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proceedings of the National Academy of Sciences of the United States of America, 2003. 100(9): p. 5413–5418.
67.
Zurück zum Zitat Zisch, A.H., et al., Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. The FASEB Journal, 2003. 17(15): p. 2260–2262. Zisch, A.H., et al., Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. The FASEB Journal, 2003. 17(15): p. 2260–2262.
68.
Zurück zum Zitat Seliktar, D., et al., MMP-2 sensitive, VEGF-bearing bioactive hydrogels for promotion of vascular healing. Journal of Biomedical Materials Research. Part A, 2004. 68(4): p. 704–716. Seliktar, D., et al., MMP-2 sensitive, VEGF-bearing bioactive hydrogels for promotion of vascular healing. Journal of Biomedical Materials Research. Part A, 2004. 68(4): p. 704–716.
69.
Zurück zum Zitat Zisch, A.H., M.P. Lutolf, and J.A. Hubbell, Biopolymeric delivery matrices for angiogenic growth factors. Cardiovascular Pathology, 2003. 12(6): p. 295–310. Zisch, A.H., M.P. Lutolf, and J.A. Hubbell, Biopolymeric delivery matrices for angiogenic growth factors. Cardiovascular Pathology, 2003. 12(6): p. 295–310.
70.
Zurück zum Zitat Ferrara, N., H.P. Gerber, and J. LeCouter, The biology of VEGF and its receptors. Natural Medicines, 2003. 9(6): p. 669–676. Ferrara, N., H.P. Gerber, and J. LeCouter, The biology of VEGF and its receptors. Natural Medicines, 2003. 9(6): p. 669–676.
71.
Zurück zum Zitat Fischbach, C. and D.J. Mooney, Polymers for pro- and anti-angiogenic therapy. Biomaterials, 2007. 28(12): p. 2069–2076. Fischbach, C. and D.J. Mooney, Polymers for pro- and anti-angiogenic therapy. Biomaterials, 2007. 28(12): p. 2069–2076.
72.
Zurück zum Zitat Von Degenfeld, G., et al., Microenvironmental VEGF distribution is critical for stable and functional vessel growth in ischemia. The FASEB Journal, 2006. 20(14): p. 2657–2659. Von Degenfeld, G., et al., Microenvironmental VEGF distribution is critical for stable and functional vessel growth in ischemia. The FASEB Journal, 2006. 20(14): p. 2657–2659.
73.
Zurück zum Zitat Silva, E.A. and D.J. Mooney, Effects of VEGF temporal and spatial presentation on angiogenesis. Biomaterials. 2010. 31(6): p. 1235–1241. Silva, E.A. and D.J. Mooney, Effects of VEGF temporal and spatial presentation on angiogenesis. Biomaterials. 2010. 31(6): p. 1235–1241.
74.
Zurück zum Zitat Hao, X., et al., Angiogenic effects of sequential release of VEGF-A165 and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovascular Research, 2007. 75(1): p. 178–185. Hao, X., et al., Angiogenic effects of sequential release of VEGF-A165 and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovascular Research, 2007. 75(1): p. 178–185.
75.
Zurück zum Zitat Chiu, L.L.Y. and M. Radisic, Scaffolds with covalently immobilized VEGF and Angiopoietin-1 for vascularization of engineered tissues. Biomaterials, 2010. 31(2): p. 226–241. Chiu, L.L.Y. and M. Radisic, Scaffolds with covalently immobilized VEGF and Angiopoietin-1 for vascularization of engineered tissues. Biomaterials, 2010. 31(2): p. 226–241.
76.
Zurück zum Zitat Semenza, G.L., HIF-1 and human disease: one highly involved factor. Genes & Development, 2000. 14(16): p. 1983–1991. Semenza, G.L., HIF-1 and human disease: one highly involved factor. Genes & Development, 2000. 14(16): p. 1983–1991.
77.
Zurück zum Zitat Bosch-Marce, M., et al., Effects of aging and hypoxia-inducible factor-1 activity on angiogenic cell mobilization and recovery of perfusion after limb ischemia. Circulation Research, 2007. 101(12): p. 1310–1318. Bosch-Marce, M., et al., Effects of aging and hypoxia-inducible factor-1 activity on angiogenic cell mobilization and recovery of perfusion after limb ischemia. Circulation Research, 2007. 101(12): p. 1310–1318.
78.
Zurück zum Zitat Lee, K., et al., Anthracycline chemotherapy inhibits HIF-1 transcriptional activity and tumor-induced mobilization of circulating angiogenic cells. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106(7): p. 2353–2358. Lee, K., et al., Anthracycline chemotherapy inhibits HIF-1 transcriptional activity and tumor-induced mobilization of circulating angiogenic cells. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106(7): p. 2353–2358.
79.
Zurück zum Zitat Lee, K., et al., Acriflavine inhibits HIF-1 dimerization, tumor growth, and vascularization. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106(42): p. 17910–17915. Lee, K., et al., Acriflavine inhibits HIF-1 dimerization, tumor growth, and vascularization. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106(42): p. 17910–17915.
80.
Zurück zum Zitat Abaci, H.E., et al., Adaptation to oxygen deprivation in cultures of human pluripotent stem cells, endothelial progenitor cells, and umbilical vein endothelial cells. American Journal of Physiology. Cell Physiology, 2010. 298(6): p. C1527–C1537. Abaci, H.E., et al., Adaptation to oxygen deprivation in cultures of human pluripotent stem cells, endothelial progenitor cells, and umbilical vein endothelial cells. American Journal of Physiology. Cell Physiology, 2010. 298(6): p. C1527–C1537.
81.
Zurück zum Zitat Hirschi, K.K. and P.A. D’Amore, Pericytes in the microvasculature. Cardiovascular Research, 1996. 32(4): p. 687–698. Hirschi, K.K. and P.A. D’Amore, Pericytes in the microvasculature. Cardiovascular Research, 1996. 32(4): p. 687–698.
82.
Zurück zum Zitat Hirschi, K.K., S.A. Rohovsky, and P.A. D’Amore, PDGF, TGF-Î2, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. The Journal of Cell Biology, 1998. 141(3): p. 805–814. Hirschi, K.K., S.A. Rohovsky, and P.A. D’Amore, PDGF, TGF-Î2, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. The Journal of Cell Biology, 1998. 141(3): p. 805–814.
83.
Zurück zum Zitat Hirschi, K.K. and M.W. Majesky, Smooth muscle stem cells. Anatomical Record. Part A Discoveries in Molecular, Cellular, and Evolutionary Biology, 2004. 276(1): p. 22–33. Hirschi, K.K. and M.W. Majesky, Smooth muscle stem cells. Anatomical Record. Part A Discoveries in Molecular, Cellular, and Evolutionary Biology, 2004. 276(1): p. 22–33.
84.
Zurück zum Zitat Davis, G.E. and W.B. Saunders, Molecular balance of capillary tube formation versus regression in wound repair: role of matrix metalloproteinases and their inhibitors. The Journal of Investigative Dermatology. Symposium Proceedings, 2006. 11(1): p. 44–56. Davis, G.E. and W.B. Saunders, Molecular balance of capillary tube formation versus regression in wound repair: role of matrix metalloproteinases and their inhibitors. The Journal of Investigative Dermatology. Symposium Proceedings, 2006. 11(1): p. 44–56.
85.
Zurück zum Zitat Saunders, W.B., et al., Coregulation of vascular tube stabilization by endothelial cell TIMP-2 and pericyte TIMP-3. The Journal of Cell Biology, 2006. 175(1): p. 179–191. Saunders, W.B., et al., Coregulation of vascular tube stabilization by endothelial cell TIMP-2 and pericyte TIMP-3. The Journal of Cell Biology, 2006. 175(1): p. 179–191.
86.
Zurück zum Zitat Koike, N., et al., Tissue engineering: creation of long-lasting blood vessels. Nature, 2004. 428(6979): p. 138–139. Koike, N., et al., Tissue engineering: creation of long-lasting blood vessels. Nature, 2004. 428(6979): p. 138–139.
87.
Zurück zum Zitat Au, P., et al., Bone marrow derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood, 2008. 111(9): p. 4551–4558. Au, P., et al., Bone marrow derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood, 2008. 111(9): p. 4551–4558.
88.
Zurück zum Zitat Soucy, P.A. and L.H. Romer, Endothelial cell adhesion, signaling, and morphogenesis in fibroblast-derived matrix. Matrix Biology, 2009. 28(5): p. 273–283. Soucy, P.A. and L.H. Romer, Endothelial cell adhesion, signaling, and morphogenesis in fibroblast-derived matrix. Matrix Biology, 2009. 28(5): p. 273–283.
89.
Zurück zum Zitat Sorrell, J.M., M.A. Baber, and A.I. Caplan, A self-assembled fibroblast-endothelial cell co-culture system that supports in vitro vasculogenesis by both human umbilical vein endothelial cells and human dermal microvascular endothelial cells. Cells, Tissues, Organs, 2007. 186(3): p. 157–168. Sorrell, J.M., M.A. Baber, and A.I. Caplan, A self-assembled fibroblast-endothelial cell co-culture system that supports in vitro vasculogenesis by both human umbilical vein endothelial cells and human dermal microvascular endothelial cells. Cells, Tissues, Organs, 2007. 186(3): p. 157–168.
90.
Zurück zum Zitat Sottile, J. and D.C. Hocking, Fibronectin polymerization regulates the composition and stability of extracellular matrix fibrils and cell-matrix adhesions. Molecular Biology of the Cell, 2002. 13(10): p. 3546–3559. Sottile, J. and D.C. Hocking, Fibronectin polymerization regulates the composition and stability of extracellular matrix fibrils and cell-matrix adhesions. Molecular Biology of the Cell, 2002. 13(10): p. 3546–3559.
91.
Zurück zum Zitat Romer, L.H., K.G. Birukov, and J.G. Garcia, Focal adhesions: paradigm for a signaling nexus. Circulation Research, 2006. 98(5): p. 606–616. Romer, L.H., K.G. Birukov, and J.G. Garcia, Focal adhesions: paradigm for a signaling nexus. Circulation Research, 2006. 98(5): p. 606–616.
92.
Zurück zum Zitat Bettinger, C.J., Z. Zhang, S. Gerecht, J. Borenstein, and R. Langer, Enhancement of in vitro capillary tube formation by substrate nanotopography. Advanced Materials, 2008. 20: p. 99–103. Bettinger, C.J., Z. Zhang, S. Gerecht, J. Borenstein, and R. Langer, Enhancement of in vitro capillary tube formation by substrate nanotopography. Advanced Materials, 2008. 20: p. 99–103.
93.
Zurück zum Zitat Gafni, Y., et al., Design of a filamentous polymeric scaffold for in vivo guided angiogenesis. Tissue Engineering, 2006. 12(11): p. 3021–3034. Gafni, Y., et al., Design of a filamentous polymeric scaffold for in vivo guided angiogenesis. Tissue Engineering, 2006. 12(11): p. 3021–3034.
94.
Zurück zum Zitat Igarashi, S., J. Tanaka, and H. Kobayashi, Micro-patterned nanofibrous biomaterials. Journal of Nanoscience and Nanotechnology, 2007. 7(3): p. 814–817. Igarashi, S., J. Tanaka, and H. Kobayashi, Micro-patterned nanofibrous biomaterials. Journal of Nanoscience and Nanotechnology, 2007. 7(3): p. 814–817.
95.
Zurück zum Zitat Ingber, D.E., Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circulation Research, 2002. 91(10): p. 877–887. Ingber, D.E., Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circulation Research, 2002. 91(10): p. 877–887.
96.
Zurück zum Zitat Kilarski, W.W., et al., Biomechanical regulation of blood vessel growth during tissue vascularization. Nature Medicine, 2009. 15(6): p. 657–664. Kilarski, W.W., et al., Biomechanical regulation of blood vessel growth during tissue vascularization. Nature Medicine, 2009. 15(6): p. 657–664.
97.
Zurück zum Zitat Mammoto, A., et al., A mechanosensitive transcriptional mechanism that controls angiogenesis. Nature, 2009. 457(7233): p. 1103–1108. Mammoto, A., et al., A mechanosensitive transcriptional mechanism that controls angiogenesis. Nature, 2009. 457(7233): p. 1103–1108.
98.
Zurück zum Zitat Sieminski, A.L., R.P. Hebbel, and K.J. Gooch, The relative magnitudes of endothelial force generation and matrix stiffness modulate capillary morphogenesis in vitro. Experimental Cell Research, 2004. 297(2): p. 574–584. Sieminski, A.L., R.P. Hebbel, and K.J. Gooch, The relative magnitudes of endothelial force generation and matrix stiffness modulate capillary morphogenesis in vitro. Experimental Cell Research, 2004. 297(2): p. 574–584.
99.
Zurück zum Zitat Deroanne, C.F., C.M. Lapiere, and B.V. Nusgens, In vitro tubulogenesis of endothelial cells by relaxation of the coupling extracellular matrix-cytoskeleton. Cardiovascular Research, 2001. 49(3): p. 647–658. Deroanne, C.F., C.M. Lapiere, and B.V. Nusgens, In vitro tubulogenesis of endothelial cells by relaxation of the coupling extracellular matrix-cytoskeleton. Cardiovascular Research, 2001. 49(3): p. 647–658.
100.
Zurück zum Zitat Stephanou, A., et al., The rigidity in fibrin gels as a contributing factor to the dynamics of in vitro vascular cord formation. Microvascular Research, 2007. 73(3): p. 182–190. Stephanou, A., et al., The rigidity in fibrin gels as a contributing factor to the dynamics of in vitro vascular cord formation. Microvascular Research, 2007. 73(3): p. 182–190.
101.
Zurück zum Zitat Kniazeva, E. and A.J. Putnam, Endothelial cell traction and ECM density influence both capillary morphogenesis and maintenance in 3-D. American Journal of Physiology. Cell Physiology, 2009. 297(1): p. C179–C187. Kniazeva, E. and A.J. Putnam, Endothelial cell traction and ECM density influence both capillary morphogenesis and maintenance in 3-D. American Journal of Physiology. Cell Physiology, 2009. 297(1): p. C179–C187.
102.
Zurück zum Zitat Singer, A.J. and R.A.F. Clark, Cutaneous wound healing. The New England Journal of Medicine, 1999. 341(10): p. 738–746. Singer, A.J. and R.A.F. Clark, Cutaneous wound healing. The New England Journal of Medicine, 1999. 341(10): p. 738–746.
103.
Zurück zum Zitat Eiselt, P., et al., Porous carriers for biomedical applications based on alginate hydrogels. Biomaterials, 2000. 21(19): p. 1921–1927. Eiselt, P., et al., Porous carriers for biomedical applications based on alginate hydrogels. Biomaterials, 2000. 21(19): p. 1921–1927.
104.
Zurück zum Zitat Lim, F. and A.M. Sun, Microencapsulated islets as bioartificial endocrine pancreas. Science, 1980. 210(4472): p. 908–910. Lim, F. and A.M. Sun, Microencapsulated islets as bioartificial endocrine pancreas. Science, 1980. 210(4472): p. 908–910.
105.
Zurück zum Zitat Figliuzzi, M., et al., Biocompatibility and function of microencapsulated pancreatic islets. Acta Biomaterialia, 2006. 2(2): p. 221–227. Figliuzzi, M., et al., Biocompatibility and function of microencapsulated pancreatic islets. Acta Biomaterialia, 2006. 2(2): p. 221–227.
106.
Zurück zum Zitat Dean, S.K., et al., Differentiation of encapsulated embryonic stem cells after transplantation. Transplantation, 2006. 82(9): p. 1175–1184. Dean, S.K., et al., Differentiation of encapsulated embryonic stem cells after transplantation. Transplantation, 2006. 82(9): p. 1175–1184.
107.
Zurück zum Zitat Gerecht-Nir, S., et al., Three-dimensional porous alginate scaffolds provide a conducive environment for generation of well-vascularized embryoid bodies from human embryonic stem cells. Biotechnology and Bioengineering, 2004. 88(3): p. 313–320. Gerecht-Nir, S., et al., Three-dimensional porous alginate scaffolds provide a conducive environment for generation of well-vascularized embryoid bodies from human embryonic stem cells. Biotechnology and Bioengineering, 2004. 88(3): p. 313–320.
108.
Zurück zum Zitat Perets, A., et al., Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. Journal of Biomedical Materials Research. Part A, 2003. 65(4): p. 489–497. Perets, A., et al., Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. Journal of Biomedical Materials Research. Part A, 2003. 65(4): p. 489–497.
109.
Zurück zum Zitat Almond, A., Hyaluronan. Cellular and Molecular Life Sciences, 2007. 64(13): p. 1591–1596. Almond, A., Hyaluronan. Cellular and Molecular Life Sciences, 2007. 64(13): p. 1591–1596.
110.
Zurück zum Zitat Dickinson, L.E., et al., Functional surfaces for high-resolution analysis of cancer cell interactions on exogenous hyaluronic acid. Biomaterials, 2010. 31(20): p. 5472–5478. Dickinson, L.E., et al., Functional surfaces for high-resolution analysis of cancer cell interactions on exogenous hyaluronic acid. Biomaterials, 2010. 31(20): p. 5472–5478.
111.
Zurück zum Zitat Liu, D., et al., Expression of hyaluronidase by tumor cells induces angiogenesis in vivo. Proceedings of the National Academy of Sciences of the United States of America, 1996. 93(15): p. 7832–7837. Liu, D., et al., Expression of hyaluronidase by tumor cells induces angiogenesis in vivo. Proceedings of the National Academy of Sciences of the United States of America, 1996. 93(15): p. 7832–7837.
112.
Zurück zum Zitat Toole, B.P., T.N. Wight, and M.I. Tammi, Hyaluronan-cell interactions in cancer and vascular disease. The Journal of Biological Chemistry, 2002. 277(7): p. 4593–4596. Toole, B.P., T.N. Wight, and M.I. Tammi, Hyaluronan-cell interactions in cancer and vascular disease. The Journal of Biological Chemistry, 2002. 277(7): p. 4593–4596.
113.
Zurück zum Zitat Burdick, J.A., et al., Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules, 2004. 6(1): p. 386–391. Burdick, J.A., et al., Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules, 2004. 6(1): p. 386–391.
114.
Zurück zum Zitat Gerecht, S., et al., Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(27): p. 11298–11303. Gerecht, S., et al., Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(27): p. 11298–11303.
115.
Zurück zum Zitat Stephen, P.M. and S. John, Immobilized RGD peptides on surface-grafted dextran promote biospecific cell attachment. Journal of Biomedical Materials Research, 2001. 56(3): p. 390–399. Stephen, P.M. and S. John, Immobilized RGD peptides on surface-grafted dextran promote biospecific cell attachment. Journal of Biomedical Materials Research, 2001. 56(3): p. 390–399.
116.
Zurück zum Zitat Lévesque, S.G., R.M. Lim, and M.S. Shoichet, Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications. Biomaterials, 2005. 26(35): p. 7436–7446. Lévesque, S.G., R.M. Lim, and M.S. Shoichet, Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications. Biomaterials, 2005. 26(35): p. 7436–7446.
117.
Zurück zum Zitat Ferreira, L., M.H. Gil, and J.S. Dordick, Enzymatic synthesis of dextran-containing hydrogels. Biomaterials, 2002. 23(19): p. 3957–3967. Ferreira, L., M.H. Gil, and J.S. Dordick, Enzymatic synthesis of dextran-containing hydrogels. Biomaterials, 2002. 23(19): p. 3957–3967.
118.
Zurück zum Zitat Ferreira, L.S., et al., Bioactive hydrogel scaffolds for controllable vascular differentiation of human embryonic stem cells. Biomaterials, 2007. 28(17): p. 2706–2717. Ferreira, L.S., et al., Bioactive hydrogel scaffolds for controllable vascular differentiation of human embryonic stem cells. Biomaterials, 2007. 28(17): p. 2706–2717.
119.
Zurück zum Zitat Darland, D.C. and P.A. D’Amore, TGFÎ2 is required for the formation of capillary-like structures in three-dimensional cocultures of 10T1/2 and endothelial cells. Angiogenesis, 2001. 4(1): p. 11–20. Darland, D.C. and P.A. D’Amore, TGFÎ2 is required for the formation of capillary-like structures in three-dimensional cocultures of 10T1/2 and endothelial cells. Angiogenesis, 2001. 4(1): p. 11–20.
120.
Zurück zum Zitat Jain, R.K., Molecular regulation of vessel maturation. Nature Medicine, 2003. 9(6): p. 685–693. Jain, R.K., Molecular regulation of vessel maturation. Nature Medicine, 2003. 9(6): p. 685–693.
121.
Zurück zum Zitat Dery, M.A., M.D. Michaud, and D.E. Richard, Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. The International Journal of Biochemistry & Cell Biology, 2005. 37(3): p. 535–540. Dery, M.A., M.D. Michaud, and D.E. Richard, Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. The International Journal of Biochemistry & Cell Biology, 2005. 37(3): p. 535–540.
122.
Zurück zum Zitat Pola, R., et al., The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nature Medicine, 2001. 7(6): p. 706–711. Pola, R., et al., The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nature Medicine, 2001. 7(6): p. 706–711.
123.
Zurück zum Zitat Deckers, M.M., et al., Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology, 2002. 143(4): p. 1545–1553. Deckers, M.M., et al., Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology, 2002. 143(4): p. 1545–1553.
124.
Zurück zum Zitat Trentin, D., et al., Peptide-matrix-mediated gene transfer of an oxygen-insensitive hypoxia-inducible factor-1alpha variant for local induction of angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(8): p. 2506–2511. Trentin, D., et al., Peptide-matrix-mediated gene transfer of an oxygen-insensitive hypoxia-inducible factor-1alpha variant for local induction of angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(8): p. 2506–2511.
125.
Zurück zum Zitat Zhang, Q.-X., et al., Vascular endothelial growth factor is the major angiogenic factor in omentum: mechanism of the omentum-mediated angiogenesis. The Journal of Surgical Research, 1997. 67(2): p. 147–154. Zhang, Q.-X., et al., Vascular endothelial growth factor is the major angiogenic factor in omentum: mechanism of the omentum-mediated angiogenesis. The Journal of Surgical Research, 1997. 67(2): p. 147–154.
126.
Zurück zum Zitat Suh, S., et al., Use of omentum as an in vivo cell culture system in tissue engineering. ASAIO Journal, 2004. 50(5): p. 464–467. Suh, S., et al., Use of omentum as an in vivo cell culture system in tissue engineering. ASAIO Journal, 2004. 50(5): p. 464–467.
127.
Zurück zum Zitat Lokmic, Z., et al., An arteriovenous loop in a protected space generates a permanent, highly vascular, tissue-engineered construct. The FASEB Journal, 2007. 21(2): p. 511–522. Lokmic, Z., et al., An arteriovenous loop in a protected space generates a permanent, highly vascular, tissue-engineered construct. The FASEB Journal, 2007. 21(2): p. 511–522.
128.
Zurück zum Zitat Mian, R., et al., Formation of new tissue from an arteriovenous loop in the absence of added extracellular matrix. Tissue Engineering, 2000. 6(6): p. 595–603. Mian, R., et al., Formation of new tissue from an arteriovenous loop in the absence of added extracellular matrix. Tissue Engineering, 2000. 6(6): p. 595–603.
129.
Zurück zum Zitat Cassell, O.C., et al., The influence of extracellular matrix on the generation of vascularized, engineered, transplantable tissue. Annals of the New York Academy of Sciences, 2001. 944: p. 429–442. Cassell, O.C., et al., The influence of extracellular matrix on the generation of vascularized, engineered, transplantable tissue. Annals of the New York Academy of Sciences, 2001. 944: p. 429–442.
130.
Zurück zum Zitat Manasseri, B., et al., Microsurgical arterovenous loops and biological templates: a novel in vivo chamber for tissue engineering. Microsurgery, 2007. 27(7): p. 623–629. Manasseri, B., et al., Microsurgical arterovenous loops and biological templates: a novel in vivo chamber for tissue engineering. Microsurgery, 2007. 27(7): p. 623–629.
131.
Zurück zum Zitat Morritt, A.N., et al., Cardiac tissue engineering in an in vivo vascularized chamber. Circulation, 2007. 115(3): p. 353–360. Morritt, A.N., et al., Cardiac tissue engineering in an in vivo vascularized chamber. Circulation, 2007. 115(3): p. 353–360.
132.
Zurück zum Zitat Kneser, U., et al., Engineering of vascularized transplantable bone tissues: induction of axial vascularization in an osteoconductive matrix using an arteriovenous loop. Tissue Engineering, 2006. 12(7): p. 1721–1731. Kneser, U., et al., Engineering of vascularized transplantable bone tissues: induction of axial vascularization in an osteoconductive matrix using an arteriovenous loop. Tissue Engineering, 2006. 12(7): p. 1721–1731.
133.
Zurück zum Zitat Bach, A.D., et al., A new approach to tissue engineering of vascularized skeletal muscle. Journal of Cellular and Molecular Medicine, 2006. 10(3): p. 716–726. Bach, A.D., et al., A new approach to tissue engineering of vascularized skeletal muscle. Journal of Cellular and Molecular Medicine, 2006. 10(3): p. 716–726.
134.
Zurück zum Zitat Black, A.F., et al., In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. The FASEB Journal, 1998. 12(13): p. 1331–1340. Black, A.F., et al., In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. The FASEB Journal, 1998. 12(13): p. 1331–1340.
135.
Zurück zum Zitat Tremblay, P.L., et al., In vitro evaluation of the angiostatic potential of drugs using an endothelialized tissue-engineered connective tissue. The Journal of Pharmacology and Experimental Therapeutics, 2005. 315(2): p. 510–516. Tremblay, P.L., et al., In vitro evaluation of the angiostatic potential of drugs using an endothelialized tissue-engineered connective tissue. The Journal of Pharmacology and Experimental Therapeutics, 2005. 315(2): p. 510–516.
136.
Zurück zum Zitat Melero-Martin, J.M., et al., Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circulation Research, 2008. 103(2): p. 194–202. Melero-Martin, J.M., et al., Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circulation Research, 2008. 103(2): p. 194–202.
137.
Zurück zum Zitat Bettinger, C.J., et al., Microfabrication of poly (glycerol-sebacate) for contact guidance applications. Biomaterials, 2006. 27(12): p. 2558–2565. Bettinger, C.J., et al., Microfabrication of poly (glycerol-sebacate) for contact guidance applications. Biomaterials, 2006. 27(12): p. 2558–2565.
138.
Zurück zum Zitat Fidkowski, C., et al., Endothelialized microvasculature based on a biodegradable elastomer. Tissue Engineering, 2005. 11(1–2): p. 302–309. Fidkowski, C., et al., Endothelialized microvasculature based on a biodegradable elastomer. Tissue Engineering, 2005. 11(1–2): p. 302–309.
139.
Zurück zum Zitat Bettinger, C.J., et al., Silk Fibroin Microfluidic Devices. Advanced Materials (Deerfield Beach, Fla.), 2007. 19(5): p. 2847–2850. Bettinger, C.J., et al., Silk Fibroin Microfluidic Devices. Advanced Materials (Deerfield Beach, Fla.), 2007. 19(5): p. 2847–2850.
140.
Zurück zum Zitat Altman, G.H., et al., Silk-based biomaterials. Biomaterials, 2003. 24(3): p. 401–416. Altman, G.H., et al., Silk-based biomaterials. Biomaterials, 2003. 24(3): p. 401–416.
141.
Zurück zum Zitat Therriault, D., S.R. White, and J.A. Lewis, Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nature Materials, 2003. 2(4): p. 265–271. Therriault, D., S.R. White, and J.A. Lewis, Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nature Materials, 2003. 2(4): p. 265–271.
142.
Zurück zum Zitat Nahmias, Y., et al., Laser-guided direct writing for three-dimensional tissue engineering. Biotechnology and Bioengineering, 2005. 92(2): p. 129–136. Nahmias, Y., et al., Laser-guided direct writing for three-dimensional tissue engineering. Biotechnology and Bioengineering, 2005. 92(2): p. 129–136.
143.
Zurück zum Zitat Cho, H., et al., How the capillary burst microvalve works. Journal of Colloid and Interface Science, 2007. 306(2): p. 379–385. Cho, H., et al., How the capillary burst microvalve works. Journal of Colloid and Interface Science, 2007. 306(2): p. 379–385.
144.
Zurück zum Zitat Choi, C.H., et al., Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device. Biomedical Microdevices, 2007. 9(6): p. 855–862. Choi, C.H., et al., Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device. Biomedical Microdevices, 2007. 9(6): p. 855–862.
145.
Zurück zum Zitat Golden, A.P. and J. Tien, Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab on a Chip, 2007. 7(6): p. 720–725. Golden, A.P. and J. Tien, Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab on a Chip, 2007. 7(6): p. 720–725.
146.
Zurück zum Zitat Park, T.G. and A.S. Hoffman, Synthesis and characterization of pH- and or temperature-sensitive hydrogels. Journal of Applied Polymer Science, 1992. 46(4): p. 659–671. Park, T.G. and A.S. Hoffman, Synthesis and characterization of pH- and or temperature-sensitive hydrogels. Journal of Applied Polymer Science, 1992. 46(4): p. 659–671.
147.
Zurück zum Zitat Sun, G.M., X.Z. Zhang, and C.C. Chu, Formulation and characterization of chitosan-based hydrogel films having both temperature and pH sensitivity. Journal of Materials Science. Materials in Medicine, 2007. 18(8): p. 1563–1577. Sun, G.M., X.Z. Zhang, and C.C. Chu, Formulation and characterization of chitosan-based hydrogel films having both temperature and pH sensitivity. Journal of Materials Science. Materials in Medicine, 2007. 18(8): p. 1563–1577.
148.
Zurück zum Zitat Klumb, L.A. and T.A. Horbett, Design of insulin delivery devices based on glucose sensitive membranes. Journal of Controlled Release, 1992. 18(1): p. 59–80. Klumb, L.A. and T.A. Horbett, Design of insulin delivery devices based on glucose sensitive membranes. Journal of Controlled Release, 1992. 18(1): p. 59–80.
149.
Zurück zum Zitat Khetan, S., C. Chung, and J.A. Burdick, Tuning hydrogel properties for applications in tissue engineering. Conference Proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 2009. 1: p. 2094–2096. Khetan, S., C. Chung, and J.A. Burdick, Tuning hydrogel properties for applications in tissue engineering. Conference Proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 2009. 1: p. 2094–2096.
150.
Zurück zum Zitat Chung, S. and D.J. Andrew, The formation of epithelial tubes. Journal of Cell Science, 2008. 121(21): p. 3501–3504. Chung, S. and D.J. Andrew, The formation of epithelial tubes. Journal of Cell Science, 2008. 121(21): p. 3501–3504.
151.
Zurück zum Zitat Lubarsky, B. and M.A. Krasnow, Tube morphogenesis: making and shaping biological tubes. Cell, 2003. 112(1): p. 19–28. Lubarsky, B. and M.A. Krasnow, Tube morphogenesis: making and shaping biological tubes. Cell, 2003. 112(1): p. 19–28.
152.
Zurück zum Zitat Lutolf, M.P., Biomaterials: spotlight on hydrogels. Nature Materials, 2009. 8(6): p. 451–453. Lutolf, M.P., Biomaterials: spotlight on hydrogels. Nature Materials, 2009. 8(6): p. 451–453.
153.
Zurück zum Zitat Kloxin, A.M., et al., Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science, 2009. 324(5923): p. 59–63. Kloxin, A.M., et al., Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science, 2009. 324(5923): p. 59–63.
Metadaten
Titel
Biomaterials Approaches in Vascular Engineering: a Review of Past and Future Trends
verfasst von
Donny Hanjaya-Putra
Maureen Wanjare
Sharon Gerecht
Copyright-Jahr
2011
Verlag
Springer Vienna
DOI
https://doi.org/10.1007/978-3-7091-0385-2_16

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.