Skip to main content

2022 | OriginalPaper | Buchkapitel

Biomechatronic Analysis of Lower Limb Exoskeletons for Augmentation and Rehabilitation Applications

verfasst von : N. A. Marafa, R. C. Sampaio, C. H. Llanos

Erschienen in: XXVII Brazilian Congress on Biomedical Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Lower limb exoskeletons are wearable robots worn by human operators for various purposes. Their design, control and biomechanical aspects have been discussed in many publications in the literature. However, there is a gap in their robotic nature analysis, and few documents discussed the biomechatronic aspect of the robotic devices. In this scenario, this paper presents a brief analysis of the biomechatronic system’s components of lower limb exoskeletons for augmentation and rehabilitation applications. In this case, the biomechatronic system is considered to have five components, which include: Mechanisms, Actuators, Sensors, Control, and Human–Robot Interaction. A literature review was initially conducted to explore documents with the highest relevance to the topic for analyses. Therefore, in Mechanisms: metabolic cost, biomechanics of walking, average human walking speed, mechanics of human movements, movements at the hip, at the knee and at the ankle joints are addressed. In Actuators, different types of actuators used by different projects from the literature such as electric motors, series electric actuators (SEAs), pneumatic, hydraulic, and pneumatic muscle actuators are analyzed. In Sensors and Control, different types of sensors and control strategies adopted by different projects are also analyzed. In Human–Robot Interaction, cognitive human–robot interaction and physical human–robot interaction are discussed. Finally, the work is concluded with some important considerations for this analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cenciarini M, Dollar AM (2011) Biomechanical considerations in the design of lower limb exoskeletons. In: IEEE international conference on rehabilitation robotics, pp 10–14 Cenciarini M, Dollar AM (2011) Biomechanical considerations in the design of lower limb exoskeletons. In: IEEE international conference on rehabilitation robotics, pp 10–14
2.
Zurück zum Zitat Jung JY, Park H, Yang HD, Chae M (2013) Brief biomechanical analysis on the walking of spinal cord injury patients with a lower limb exoskeleton robot. In: IEEE international conference on rehabilitation robotics, pp 1–4 Jung JY, Park H, Yang HD, Chae M (2013) Brief biomechanical analysis on the walking of spinal cord injury patients with a lower limb exoskeleton robot. In: IEEE international conference on rehabilitation robotics, pp 1–4
3.
Zurück zum Zitat Cardona M, Garcia Cena CE (2019) Biomechanical analysis of the lower limb: a full-body musculoskeletal model for muscle-driven simulation. IEEE Access 7:92709–92723 Cardona M, Garcia Cena CE (2019) Biomechanical analysis of the lower limb: a full-body musculoskeletal model for muscle-driven simulation. IEEE Access 7:92709–92723
4.
Zurück zum Zitat Pons JL (2008) Wearable robots: biomechtronics exoskeletons, CSIC, Madrid Pons JL (2008) Wearable robots: biomechtronics exoskeletons, CSIC, Madrid
9.
Zurück zum Zitat Yin YH, Fan YJ, Xu LD (2012) EMG and EPP-integrated human-machine interface between the paralyzed and rehabilitation exoskeleton. IEEE Trans Inf Technol Biomed 16:542–549CrossRef Yin YH, Fan YJ, Xu LD (2012) EMG and EPP-integrated human-machine interface between the paralyzed and rehabilitation exoskeleton. IEEE Trans Inf Technol Biomed 16:542–549CrossRef
10.
Zurück zum Zitat Dollar AM, Herr H (2008) Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art. IEEE Trans Rob 24:144–158CrossRef Dollar AM, Herr H (2008) Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art. IEEE Trans Rob 24:144–158CrossRef
11.
Zurück zum Zitat Huo W, Mohammed S, Moreno JC, Amirat Y (2016) Lower limb wearable robots for assistance and rehabilitation: a state of the art. IEEE Syst J 10:1068–1081CrossRef Huo W, Mohammed S, Moreno JC, Amirat Y (2016) Lower limb wearable robots for assistance and rehabilitation: a state of the art. IEEE Syst J 10:1068–1081CrossRef
12.
Zurück zum Zitat Zoss A, Chu A, Kazerooni H (2006) Biomechanical design of the Berkeley Lower Extremity Exoskeleton (BLEEX). IEEE/ASME Trans Mechatron 11:128–138CrossRef Zoss A, Chu A, Kazerooni H (2006) Biomechanical design of the Berkeley Lower Extremity Exoskeleton (BLEEX). IEEE/ASME Trans Mechatron 11:128–138CrossRef
13.
Zurück zum Zitat Mcdaid AJ, Xing S, Xie SQ (2013) Brain controlled robotic exoskeleton for neurorehabilitation. In: 2013 IEEE/ASME international conference on advanced intelligent mechatronics, pp 1039–1044 Mcdaid AJ, Xing S, Xie SQ (2013) Brain controlled robotic exoskeleton for neurorehabilitation. In: 2013 IEEE/ASME international conference on advanced intelligent mechatronics, pp 1039–1044
14.
Zurück zum Zitat Vinoj PG, Jacob S, Menon VG (2019) Brain-controlled adaptive lower limb exoskeleton for rehabilitation of post-stroke paralyzed. IEEE Access 7:132628–132648CrossRef Vinoj PG, Jacob S, Menon VG (2019) Brain-controlled adaptive lower limb exoskeleton for rehabilitation of post-stroke paralyzed. IEEE Access 7:132628–132648CrossRef
15.
Zurück zum Zitat Aguilar-Sierra H, Yu W, Salazar S, Lopez R (2015) Design and control of hybrid actuation lower limb exoskeleton. Adv Mech Eng 7:1–13CrossRef Aguilar-Sierra H, Yu W, Salazar S, Lopez R (2015) Design and control of hybrid actuation lower limb exoskeleton. Adv Mech Eng 7:1–13CrossRef
16.
Zurück zum Zitat Kim J, Han JW, Kim DY et al (2013) Design of a walking assistance lower limb exoskeleton for paraplegic patients and hardware validation using CoP Regular Paper. v. 10 Kim J, Han JW, Kim DY et al (2013) Design of a walking assistance lower limb exoskeleton for paraplegic patients and hardware validation using CoP Regular Paper. v. 10
17.
Zurück zum Zitat Long Y, Du ZJ, Wang W, Dong W (2016) Development of a wearable exoskeleton rehabilitation system based on hybrid control mode. Int J Adv Rob Syst 13:1–10CrossRef Long Y, Du ZJ, Wang W, Dong W (2016) Development of a wearable exoskeleton rehabilitation system based on hybrid control mode. Int J Adv Rob Syst 13:1–10CrossRef
18.
Zurück zum Zitat Onen U, Botsali FM, Kalyoncu M et al (2014) Design and actuator selection of a lower extremity exoskeleton. IEEE/ASME Trans Mechatron 19:623–632CrossRef Onen U, Botsali FM, Kalyoncu M et al (2014) Design and actuator selection of a lower extremity exoskeleton. IEEE/ASME Trans Mechatron 19:623–632CrossRef
19.
Zurück zum Zitat Griffin TM, Roberts TJ, Kram R (2003) Metabolic cost of generating muscular force in human walking: Insights from load-carrying and speed experiments. J Appl Physiol 95:172–183CrossRef Griffin TM, Roberts TJ, Kram R (2003) Metabolic cost of generating muscular force in human walking: Insights from load-carrying and speed experiments. J Appl Physiol 95:172–183CrossRef
21.
Zurück zum Zitat Donelan JM, Kram R, Kuo AD (2002) Mechanical work for step-tostep transitions is a major determinant of the metabolic cost of human walking. J Exp Biol 205(3717):3727 Donelan JM, Kram R, Kuo AD (2002) Mechanical work for step-tostep transitions is a major determinant of the metabolic cost of human walking. J Exp Biol 205(3717):3727
23.
Zurück zum Zitat Luca RS (2016) Lower limbs robot motion based on the probabilistic estimation of the joint angles starting from EMG data of an injured subject. 2015. Thesis (Master's Degree in Bioengineering), College of Engineering, University of Padua, Italy Luca RS (2016) Lower limbs robot motion based on the probabilistic estimation of the joint angles starting from EMG data of an injured subject. 2015. Thesis (Master's Degree in Bioengineering), College of Engineering, University of Padua, Italy
25.
Zurück zum Zitat Novaes DR, Miranda AS, Dourado VZ (2011) Velocidade usual da marcha em brasileiros de meia idade e idosos. Revista Brasileira de Fisioterapia, São Carlos 15:117–122CrossRef Novaes DR, Miranda AS, Dourado VZ (2011) Velocidade usual da marcha em brasileiros de meia idade e idosos. Revista Brasileira de Fisioterapia, São Carlos 15:117–122CrossRef
28.
Zurück zum Zitat Hall SJ (2015) Basic biomechanics. McGraw Hill, New York Hall SJ (2015) Basic biomechanics. McGraw Hill, New York
29.
Zurück zum Zitat Sankai Y (2006) Leading edge of cybernics: robot suit HAL. In: 2006 SICE-ICASE international joint conference, vol 10, pp 1–2 Sankai Y (2006) Leading edge of cybernics: robot suit HAL. In: 2006 SICE-ICASE international joint conference, vol 10, pp 1–2
30.
Zurück zum Zitat Beyl P (2010) Design and control of a knee exoskeleton powered by pleated pneumatic artificial muscles for robot assisted gait rehabilitation Chair. Ph.D. thesis, Vrije Universiteit Brussel Beyl P (2010) Design and control of a knee exoskeleton powered by pleated pneumatic artificial muscles for robot assisted gait rehabilitation Chair. Ph.D. thesis, Vrije Universiteit Brussel
31.
Zurück zum Zitat Young AJ, Ferris DP (2017) Analysis of state of the art and future directions for robotic exoskeletons. IEEE Trans Neural Syst Rehabil Eng 25:171–182CrossRef Young AJ, Ferris DP (2017) Analysis of state of the art and future directions for robotic exoskeletons. IEEE Trans Neural Syst Rehabil Eng 25:171–182CrossRef
32.
Zurück zum Zitat Van Der Kooij H, Veneman J, Ekkelenkamp R (2006) Design of a compliantly actuated exo-skeleton for an impedance controlled gait trainer robot. In: Annual international conference of the IEEE engineering in medicine and biology, pp 189–193 Van Der Kooij H, Veneman J, Ekkelenkamp R (2006) Design of a compliantly actuated exo-skeleton for an impedance controlled gait trainer robot. In: Annual international conference of the IEEE engineering in medicine and biology, pp 189–193
33.
Zurück zum Zitat Winfree KN, Stegall P, Agrawal SK (2011) Design of a minimally constraining, passively supported gait training exoskeleton. In: IEEE international conference on rehabilitation robotics, pp 5975499 Winfree KN, Stegall P, Agrawal SK (2011) Design of a minimally constraining, passively supported gait training exoskeleton. In: IEEE international conference on rehabilitation robotics, pp 5975499
34.
Zurück zum Zitat Kawamoto H, Lee SLS, Kanbe S, Sankai Y (2003) Power assist method for HAL-3 using EMG-based feedback controller. In: SMC’03 Conference Proceedings. 2003 IEEE international conference on systems, man and cybernetics. Conference theme—system security and assurance, vol 2, pp 1648–1653 Kawamoto H, Lee SLS, Kanbe S, Sankai Y (2003) Power assist method for HAL-3 using EMG-based feedback controller. In: SMC’03 Conference Proceedings. 2003 IEEE international conference on systems, man and cybernetics. Conference theme—system security and assurance, vol 2, pp 1648–1653
Metadaten
Titel
Biomechatronic Analysis of Lower Limb Exoskeletons for Augmentation and Rehabilitation Applications
verfasst von
N. A. Marafa
R. C. Sampaio
C. H. Llanos
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-70601-2_99

Neuer Inhalt