Skip to main content
Erschienen in: Pattern Recognition and Image Analysis 1/2021

01.01.2021 | PATTERN RECOGNITION AND IMAGE ANALYSIS MILIEU

Biomedical Image Recognition in Pulmonology and Oncology with the Use of Deep Learning

verfasst von: V. A. Kovalev, V. A. Liauchuk, D. M. Voynov, A. V. Tuzikov

Erschienen in: Pattern Recognition and Image Analysis | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The study is dedicated to solving the image processing tasks of different types, including detection and analysis of lesions, segmentation and recognition of biomedical images with the use of deep learning methods in computerized disease diagnosis. With the use of large datasets consisting of hundreds of thousands of medical images of different modalities we demonstrate the efficiency of the deep learning methods and state-of-the-art architectures of deep convolutional neural networks applied to solve different types of problems in pulmonology and oncology. Moreover, we show the examples of applying the neural networks for the generation of realistic, i.e., visually plausible and spatially close in feature space of medical images for their subsequent use in training classification neural networks and in any other areas with legal and/or ethical restrictions on the dissemination of personal data. We analyze the problem of the security of using the neural networks in the context of possible malicious adversarial attacks on deep neural networks in solving the tasks of diagnosing pulmonological and oncological diseases and present the corresponding quantitative estimates of their potential danger.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G. Litjens, T. Kooi, B. Ehteshami Bejnordi, et al., “A survey on deep learning in medical image analysis,” Med. Image Anal. 42, 60–88 (2017).CrossRef G. Litjens, T. Kooi, B. Ehteshami Bejnordi, et al., “A survey on deep learning in medical image analysis,” Med. Image Anal. 42, 60–88 (2017).CrossRef
2.
Zurück zum Zitat J. Ker, L. Wang, J. Rao, and T. Lim, “Deep learning applications in medical image analysis,” IEEE Access 6, 9375–9389 (2018).CrossRef J. Ker, L. Wang, J. Rao, and T. Lim, “Deep learning applications in medical image analysis,” IEEE Access 6, 9375–9389 (2018).CrossRef
3.
Zurück zum Zitat M. Haloi, R. Rajalakshmi, and P. Walia, “Towards radiologist-level accurate deep learning system for pulmonary screening” (2018). https://arxiv.org/pdf/1807.03120. Accessed September 30, 2020. M. Haloi, R. Rajalakshmi, and P. Walia, “Towards radiologist-level accurate deep learning system for pulmonary screening” (2018). https://​arxiv.​org/​pdf/​1807.​03120.​ Accessed September 30, 2020.
4.
Zurück zum Zitat B. van Ginneken and B. ter Haar Romeny, “Multi-scale texture classification from generalized locally orderless images,” Pattern Recognit. 36 (4), 899–911 (2003).CrossRef B. van Ginneken and B. ter Haar Romeny, “Multi-scale texture classification from generalized locally orderless images,” Pattern Recognit. 36 (4), 899–911 (2003).CrossRef
5.
Zurück zum Zitat V. Liauchuk, A. Tarasau, E. Snezhko, and V. Kovalev, “ImageCLEF 2018: Lesion-based TB-descriptor for CT image analysis,” in CLEF2018 Working Notes. CEUR Workshop Proceedings (Avignon, 2018). V. Liauchuk, A. Tarasau, E. Snezhko, and V. Kovalev, “ImageCLEF 2018: Lesion-based TB-descriptor for CT image analysis,” in CLEF2018 Working Notes. CEUR Workshop Proceedings (Avignon, 2018).
6.
Zurück zum Zitat Y. Dicente Cid, V. Liauchuk, V. Kovalev, and H. Müller, “Overview of Image CLEF tuberculosis 2018–detecting multi-drug resistance, classifying tuberculosis type, and assessing severity score,” in CEUR Workshop Proceedings (Avignon, 2018). Y. Dicente Cid, V. Liauchuk, V. Kovalev, and H. Müller, “Overview of Image CLEF tuberculosis 2018–detecting multi-drug resistance, classifying tuberculosis type, and assessing severity score,” in CEUR Workshop Proceedings (Avignon, 2018).
7.
Zurück zum Zitat V. Kovalev and S. Kazlouski, “Examining the capability of GANs to replace real biomedical images in classification models training,” in Pattern Recognition and Information Processing, Ed. by S. Ablameyko (Springer, 2019), Vol. 1055, pp. 98–107. V. Kovalev and S. Kazlouski, “Examining the capability of GANs to replace real biomedical images in classification models training,” in Pattern Recognition and Information Processing, Ed. by S. Ablameyko (Springer, 2019), Vol. 1055, pp. 98–107.
8.
Zurück zum Zitat I. J. Goodfellow, J. Pouget-Adabie, M. Mirza, B. Xu, D. Warde-Farley, and Y. Bengio, “Generative adversarial networks” (2014). https://arxiv.org/pdf/1406.2661. Accessed September 30, 2020. I. J. Goodfellow, J. Pouget-Adabie, M. Mirza, B. Xu, D. Warde-Farley, and Y. Bengio, “Generative adversarial networks” (2014). https://​arxiv.​org/​pdf/​1406.​2661.​ Accessed September 30, 2020.
9.
Zurück zum Zitat A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep convolutional generative adversarial networks” (2016). https://arxiv.org/abs/1511.06434. Accessed September 30, 2020. A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep convolutional generative adversarial networks” (2016). https://​arxiv.​org/​abs/​1511.​06434.​ Accessed September 30, 2020.
10.
Zurück zum Zitat T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of GANs for improved quality, stability, and variation” (2018). https://arxiv.org/abs/1710.10196. Accessed September 30, 2020. T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of GANs for improved quality, stability, and variation” (2018). https://​arxiv.​org/​abs/​1710.​10196.​ Accessed September 30, 2020.
11.
Zurück zum Zitat B. A. Beckwith, “Standards for digital pathology and whole slide imaging,” in Digital Pathology: Historical Perspectives, Current Concepts and Future Applications, Ed. by J. K. Kaplan and K. F. L. Rao (Springer Int. Publ., 2016), pp. 87–97. B. A. Beckwith, “Standards for digital pathology and whole slide imaging,” in Digital Pathology: Historical Perspectives, Current Concepts and Future Applications, Ed. by J. K. Kaplan and K. F. L. Rao (Springer Int. Publ., 2016), pp. 87–97.
12.
Zurück zum Zitat B. E. Bejnordi et al., “Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer,” J. Am. Med. Assoc. 318 (22), 2199–2210 (2017).CrossRef B. E. Bejnordi et al., “Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer,” J. Am. Med. Assoc. 318 (22), 2199–2210 (2017).CrossRef
13.
Zurück zum Zitat P. Rawla, “Epidemiology of prostate cancer,” World J. Oncol. 10 (2), 63–89 (2019).CrossRef P. Rawla, “Epidemiology of prostate cancer,” World J. Oncol. 10 (2), 63–89 (2019).CrossRef
14.
Zurück zum Zitat J. I. Epstein, W. C. Allsbrook, Jr., M. B. Amin, and L. L. Egevad, “ISUP Grading Committee. The 2005 International Society of Urological Pathology (ISUP). Consensus Conference on Gleason Grading of Prostatic Carcinoma,” Am. J. Surg. Pathol. 29 (9), 1228–1242 (2005).CrossRef J. I. Epstein, W. C. Allsbrook, Jr., M. B. Amin, and L. L. Egevad, “ISUP Grading Committee. The 2005 International Society of Urological Pathology (ISUP). Consensus Conference on Gleason Grading of Prostatic Carcinoma,” Am. J. Surg. Pathol. 29 (9), 1228–1242 (2005).CrossRef
15.
Zurück zum Zitat Prostate cANcer graDe Assessment (PANDA) Challenge. https://panda.grand-challenge.org/. Accessed September 29, 2020. Prostate cANcer graDe Assessment (PANDA) Challenge. https://​panda.​grand-challenge.​org/​.​ Accessed September 29, 2020.
16.
Zurück zum Zitat N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,” in Security and Privacy (SP), IEEE Symposium (2017), pp. 39–57. N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,” in Security and Privacy (SP), IEEE Symposium (2017), pp. 39–57.
17.
Zurück zum Zitat D. M. Voynov and V. A. Kovalev, “Experimental assessment of adversarial attacks to the deep neural networks in medical image recognition,” Informatika (Minsk) 16 (3), 14–22 (2019). D. M. Voynov and V. A. Kovalev, “Experimental assessment of adversarial attacks to the deep neural networks in medical image recognition,” Informatika (Minsk) 16 (3), 14–22 (2019).
18.
Zurück zum Zitat D. M. Voynov and V. A. Kovalev, “A comparative study of white-box and black-box adversarial attacks to the deep neural networks with different architectures,” in Computer Technologies and Data Analysis, CTDA International Conference, Ed. by V. V. Skakun et al. (Minsk, 2020), pp. 185–189. D. M. Voynov and V. A. Kovalev, “A comparative study of white-box and black-box adversarial attacks to the deep neural networks with different architectures,” in Computer Technologies and Data Analysis, CTDA International Conference, Ed. by V. V. Skakun et al. (Minsk, 2020), pp. 185–189.
Metadaten
Titel
Biomedical Image Recognition in Pulmonology and Oncology with the Use of Deep Learning
verfasst von
V. A. Kovalev
V. A. Liauchuk
D. M. Voynov
A. V. Tuzikov
Publikationsdatum
01.01.2021
Verlag
Pleiades Publishing
Erschienen in
Pattern Recognition and Image Analysis / Ausgabe 1/2021
Print ISSN: 1054-6618
Elektronische ISSN: 1555-6212
DOI
https://doi.org/10.1134/S1054661821010120

Weitere Artikel der Ausgabe 1/2021

Pattern Recognition and Image Analysis 1/2021 Zur Ausgabe

MATHEMATICAL THEORY OF IMAGES AND SIGNALS REPRESENTING, PROCESSING, ANALYSIS, RECOGNITION, AND UNDERSTANDING

A Hybrid Single Image Super-Resolution Technique Using Fractal Interpolation and Convolutional Neural Network

PATTERN RECOGNITION AND IMAGE ANALYSIS MILIEU

Deep Neural Networks: Selected Aspects of Learning and Application