Skip to main content

2010 | OriginalPaper | Buchkapitel

Biomimetic Lotus Effect Surfaces for Nanopackaging

verfasst von : Yonghao Xiu, C.P. Wong

Erschienen in: Nano-Bio- Electronic, Photonic and MEMS Packaging

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter addresses fundamentals on biomimetic nano Lotus surfaces, their chemistry, and nanostructure texture physics. In addition, preparation methodologies for various nano-textured superhydrophobic surfaces, their applications, and future researches are presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wagner T., Neinhuis C., Barthlott W., Wettability and contaminability of insect wings as a function of their surface sculptures. Acta Zoologica 1996; 77: 213–215.CrossRef Wagner T., Neinhuis C., Barthlott W., Wettability and contaminability of insect wings as a function of their surface sculptures. Acta Zoologica 1996; 77: 213–215.CrossRef
2.
Zurück zum Zitat Neinhuis C., Barthlott W., Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of Botany 1997; 79: 667–677.CrossRef Neinhuis C., Barthlott W., Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of Botany 1997; 79: 667–677.CrossRef
3.
Zurück zum Zitat Sacher E., Sapieha J.K., Schrieber H.P., Wertheimer N.R., McIntyre N.S., Silanes, Surfaces, and Interfaces, Vol. I. Taylor & Francis: London, 1986. Sacher E., Sapieha J.K., Schrieber H.P., Wertheimer N.R., McIntyre N.S., Silanes, Surfaces, and Interfaces, Vol. I. Taylor & Francis: London, 1986.
4.
Zurück zum Zitat Morra M., Occhiello E., Garbassi F., Contact-angle hysteresis in oxygen plasma treated poly(tetrafluoroethylene). Langmuir 1989; 5: 872–876.CrossRef Morra M., Occhiello E., Garbassi F., Contact-angle hysteresis in oxygen plasma treated poly(tetrafluoroethylene). Langmuir 1989; 5: 872–876.CrossRef
5.
Zurück zum Zitat Shibuichi S., Yamamoto T., Onda T., Tsujii K., Super water- and oil-repellent surfaces resulting from fractal structure. Journal of Colloid and Interface Science 1998; 208: 287–294.CrossRef Shibuichi S., Yamamoto T., Onda T., Tsujii K., Super water- and oil-repellent surfaces resulting from fractal structure. Journal of Colloid and Interface Science 1998; 208: 287–294.CrossRef
6.
Zurück zum Zitat Nosonovsky M., Bhushan B., Biologically inspired surfaces: Broadening the scope of roughness. Advanced Functional Materials 2008; 18: 843–855.CrossRef Nosonovsky M., Bhushan B., Biologically inspired surfaces: Broadening the scope of roughness. Advanced Functional Materials 2008; 18: 843–855.CrossRef
7.
Zurück zum Zitat Sun T.L., Feng L., Gao X.F., Bioinspired surfaces with special wettability. Accounts of Chemical Research 2005; 38: 644–652.CrossRef Sun T.L., Feng L., Gao X.F., Bioinspired surfaces with special wettability. Accounts of Chemical Research 2005; 38: 644–652.CrossRef
8.
Zurück zum Zitat Gao X.F., Jiang L., Water-repellent legs of water striders. Nature 2004; 432: 36.CrossRef Gao X.F., Jiang L., Water-repellent legs of water striders. Nature 2004; 432: 36.CrossRef
9.
Zurück zum Zitat Gao X.F., Yan X., Yao X., Xu L., Zhang K., Zhang J.H., Yang B., Jiang L., The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Advanced Materials 2007; 19: 2213–2217.CrossRef Gao X.F., Yan X., Yao X., Xu L., Zhang K., Zhang J.H., Yang B., Jiang L., The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Advanced Materials 2007; 19: 2213–2217.CrossRef
10.
Zurück zum Zitat Berthier S., Iridescences: the Physical Colors of Insects. Springer: New York, 2007. Berthier S., Iridescences: the Physical Colors of Insects. Springer: New York, 2007.
11.
Zurück zum Zitat Cassie A.B.D., Baxter S., Wettability of porous surfaces. Transactions of the Faraday Society 1944; 40: 0546–0550.CrossRef Cassie A.B.D., Baxter S., Wettability of porous surfaces. Transactions of the Faraday Society 1944; 40: 0546–0550.CrossRef
12.
Zurück zum Zitat Wenzel R.N., Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry 1936; 28: 988–994.CrossRef Wenzel R.N., Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry 1936; 28: 988–994.CrossRef
13.
Zurück zum Zitat Marmur A., Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be? Langmuir 2003; 19: 8343–8348.CrossRef Marmur A., Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be? Langmuir 2003; 19: 8343–8348.CrossRef
14.
Zurück zum Zitat Xiu Y., Zhu L., Hess D.W., Wong C.P., Biomimetic creation of hierarchical surface structures by combining colloidal self-assembly and Au sputter deposition. Langmuir 2006; 22: 9676–9681.CrossRef Xiu Y., Zhu L., Hess D.W., Wong C.P., Biomimetic creation of hierarchical surface structures by combining colloidal self-assembly and Au sputter deposition. Langmuir 2006; 22: 9676–9681.CrossRef
15.
Zurück zum Zitat Lu X.Y., Zhang J.L., Zhang C.C., Han Y.C., Low-density polyethylene (LDPE) surface with a wettability gradient by tuning its microstructures. Macromolecular Rapid Communications 2005; 26: 637–642.CrossRef Lu X.Y., Zhang J.L., Zhang C.C., Han Y.C., Low-density polyethylene (LDPE) surface with a wettability gradient by tuning its microstructures. Macromolecular Rapid Communications 2005; 26: 637–642.CrossRef
16.
Zurück zum Zitat Han W., Wu D., Ming W.H., Niemantsverdriet H., Thune P.C., Direct catalytic route to superhydrophobic polyethylene films. Langmuir 2006; 22: 7956–7959.CrossRef Han W., Wu D., Ming W.H., Niemantsverdriet H., Thune P.C., Direct catalytic route to superhydrophobic polyethylene films. Langmuir 2006; 22: 7956–7959.CrossRef
17.
Zurück zum Zitat Teshima K., Sugimura H., Inoue Y., Takai O., Takano A., Ultra-water-repellent poly(ethylene terephthalate) substrates. Langmuir 2003; 19: 10624–10627.CrossRef Teshima K., Sugimura H., Inoue Y., Takai O., Takano A., Ultra-water-repellent poly(ethylene terephthalate) substrates. Langmuir 2003; 19: 10624–10627.CrossRef
18.
Zurück zum Zitat Tadanaga K., Morinaga J., Matsuda A., Minami T., Superhydrophobic-superhydrophilic micropatterning on flowerlike alumina coating film by the sol-gel method. Chemistry of Materials 2000; 12: 590–592.CrossRef Tadanaga K., Morinaga J., Matsuda A., Minami T., Superhydrophobic-superhydrophilic micropatterning on flowerlike alumina coating film by the sol-gel method. Chemistry of Materials 2000; 12: 590–592.CrossRef
19.
Zurück zum Zitat Nakajima A., Fujishima A., Hashimoto K., Watanabe T., Preparation of transparent superhydrophobic boehmite and silica films by sublimation of aluminum acetylacetonate. Advanced Materials 1999; 11: 1365–1368.CrossRef Nakajima A., Fujishima A., Hashimoto K., Watanabe T., Preparation of transparent superhydrophobic boehmite and silica films by sublimation of aluminum acetylacetonate. Advanced Materials 1999; 11: 1365–1368.CrossRef
20.
Zurück zum Zitat Israelachvili J., Intermolecular and Surface Forces, 2nd ed. Academic Press: New York, 1991. Israelachvili J., Intermolecular and Surface Forces, 2nd ed. Academic Press: New York, 1991.
21.
Zurück zum Zitat Nishino T., Meguro M., Nakamae K., Matsushita M., Ueda Y., The lowest surface free energy based on -CF3 alignment. Langmuir 1999; 15: 4321–4323.CrossRef Nishino T., Meguro M., Nakamae K., Matsushita M., Ueda Y., The lowest surface free energy based on -CF3 alignment. Langmuir 1999; 15: 4321–4323.CrossRef
22.
Zurück zum Zitat Tuteja A., Choi W., Ma M., Mabry J.M., Mazzella S.A., Rutledge G.C., McKinley G.H., Cohen R.E., Designing superoleophobic surfaces. Science 2007; 318: 1618–1622.CrossRef Tuteja A., Choi W., Ma M., Mabry J.M., Mazzella S.A., Rutledge G.C., McKinley G.H., Cohen R.E., Designing superoleophobic surfaces. Science 2007; 318: 1618–1622.CrossRef
23.
Zurück zum Zitat Ahuja A., Taylor J.A., Lifton V., Sidorenko A.A., Salamon T.R., Lobaton E.J., Kolodner P., Krupenkin T.N., Nanonails: A simple geometrical approach to electrically tunable superlyophobic surfaces. Langmuir 2008; 24: 9–14.CrossRef Ahuja A., Taylor J.A., Lifton V., Sidorenko A.A., Salamon T.R., Lobaton E.J., Kolodner P., Krupenkin T.N., Nanonails: A simple geometrical approach to electrically tunable superlyophobic surfaces. Langmuir 2008; 24: 9–14.CrossRef
24.
Zurück zum Zitat Cao L.L., Price T.P., Weiss M., Gao D., Super water- and oil-repellent surfaces on intrinsically hydrophilic and oleophilic porous silicon films. Langmuir 2008; 24: 1640–1643.CrossRef Cao L.L., Price T.P., Weiss M., Gao D., Super water- and oil-repellent surfaces on intrinsically hydrophilic and oleophilic porous silicon films. Langmuir 2008; 24: 1640–1643.CrossRef
25.
Zurück zum Zitat Cao L.L., Hu H.H., Gao D., Design and fabrication of micro-textures for inducing a superhydrophobic behavior on hydrophilic materials. Langmuir 2007; 23: 4310–4314.CrossRef Cao L.L., Hu H.H., Gao D., Design and fabrication of micro-textures for inducing a superhydrophobic behavior on hydrophilic materials. Langmuir 2007; 23: 4310–4314.CrossRef
26.
Zurück zum Zitat Patankar N.A., Transition between superhydrophobic states on rough surfaces. Langmuir 2004; 20: 7097–7102.CrossRef Patankar N.A., Transition between superhydrophobic states on rough surfaces. Langmuir 2004; 20: 7097–7102.CrossRef
27.
Zurück zum Zitat Lieberman M.A., Lichtenberg A.J., Principles of Plasma Discharges and Materials Processing, 2nd Translator. Wiley-Interscience: London, 2005.CrossRef Lieberman M.A., Lichtenberg A.J., Principles of Plasma Discharges and Materials Processing, 2nd Translator. Wiley-Interscience: London, 2005.CrossRef
28.
Zurück zum Zitat Stelmashuk V., Biederman H., Slavinska D., Zemek J., Trchova M., Plasma polymer films rf sputtered from PTFE under various argon pressures. Vacuum 2005; 77: 131–137.CrossRef Stelmashuk V., Biederman H., Slavinska D., Zemek J., Trchova M., Plasma polymer films rf sputtered from PTFE under various argon pressures. Vacuum 2005; 77: 131–137.CrossRef
29.
Zurück zum Zitat Shiu J.Y., Kuo C.W., Chen P., Fabrication of tunable superhydrophobic surfaces. Proceedings of SPIE-The International Society for Optical Engineering 2005; 5648: 325–332. Shiu J.Y., Kuo C.W., Chen P., Fabrication of tunable superhydrophobic surfaces. Proceedings of SPIE-The International Society for Optical Engineering 2005; 5648: 325–332.
30.
Zurück zum Zitat Byun D., Lee Y., Tran S.B.Q., Nugyen V.D., Kim S., Park B., Lee S., Inamdar N., Bau H.H., Electrospray on superhydrophobic nozzles treated with argon and oxygen plasma. Applied Physics Letters 2008; 92: 093507.CrossRef Byun D., Lee Y., Tran S.B.Q., Nugyen V.D., Kim S., Park B., Lee S., Inamdar N., Bau H.H., Electrospray on superhydrophobic nozzles treated with argon and oxygen plasma. Applied Physics Letters 2008; 92: 093507.CrossRef
31.
Zurück zum Zitat Larsen K.P., Petersen D.H., Hansen O., Study of the roughness in a photoresist masked, isotropic, SF6-based ICP silicon etch. Journal of the Electrochemical Society 2006; 153: G1051–G1058.CrossRef Larsen K.P., Petersen D.H., Hansen O., Study of the roughness in a photoresist masked, isotropic, SF6-based ICP silicon etch. Journal of the Electrochemical Society 2006; 153: G1051–G1058.CrossRef
32.
Zurück zum Zitat Lejeune M., Lacroix L.M., Bretagnol F., Valsesia A., Colpo P., Rossi F., Plasma-based processes for surface wettability modification. Langmuir 2006; 22: 3057–3061.CrossRef Lejeune M., Lacroix L.M., Bretagnol F., Valsesia A., Colpo P., Rossi F., Plasma-based processes for surface wettability modification. Langmuir 2006; 22: 3057–3061.CrossRef
33.
Zurück zum Zitat Teshima K., Sugimura H., Inoue Y., Takai O., Takano A., Transparent ultra water-repellent poly(ethylene terephthalate) substrates fabricated by oxygen plasma treatment and subsequent hydrophobic coating. Applied Surface Science 2005; 244: 619–622.CrossRef Teshima K., Sugimura H., Inoue Y., Takai O., Takano A., Transparent ultra water-repellent poly(ethylene terephthalate) substrates fabricated by oxygen plasma treatment and subsequent hydrophobic coating. Applied Surface Science 2005; 244: 619–622.CrossRef
34.
Zurück zum Zitat Tserepi A.D., Vlachopoulou M.E., Gogolides E., Nanotexturing of poly(dimethylsiloxane) in plasmas for creating robust super-hydrophobic surfaces. Nanotechnology 2006; 17: 3977–3983.CrossRef Tserepi A.D., Vlachopoulou M.E., Gogolides E., Nanotexturing of poly(dimethylsiloxane) in plasmas for creating robust super-hydrophobic surfaces. Nanotechnology 2006; 17: 3977–3983.CrossRef
35.
Zurück zum Zitat Teshima K., Sugimura H., Inoue Y., Takai O., Takano A., Wettability of poly(ethylene terephthalate) substrates modified by a two-step plasma process: Ultra water-repellent surface fabrication. Chemical Vapor Deposition 2004; 10: 295.CrossRef Teshima K., Sugimura H., Inoue Y., Takai O., Takano A., Wettability of poly(ethylene terephthalate) substrates modified by a two-step plasma process: Ultra water-repellent surface fabrication. Chemical Vapor Deposition 2004; 10: 295.CrossRef
36.
Zurück zum Zitat Teshima K., Sugimura H., Inoue Y., Takai O., Takano A., Transparent ultra water-repellent poly(ethylene terephthalate) substrates fabricated by oxygen plasma treatment and subsequent hydrophobic coating. Applied Surface Science 2005; 244: 619–624.CrossRef Teshima K., Sugimura H., Inoue Y., Takai O., Takano A., Transparent ultra water-repellent poly(ethylene terephthalate) substrates fabricated by oxygen plasma treatment and subsequent hydrophobic coating. Applied Surface Science 2005; 244: 619–624.CrossRef
37.
Zurück zum Zitat Teshima K., Sugimura H., Takano A., Inoue Y., Takai O., Ultrahydrophobic/ultrahydrophilic micropatterning on a polymeric substrate. Chemical Vapor Deposition 2005; 11: 347–352.CrossRef Teshima K., Sugimura H., Takano A., Inoue Y., Takai O., Ultrahydrophobic/ultrahydrophilic micropatterning on a polymeric substrate. Chemical Vapor Deposition 2005; 11: 347–352.CrossRef
38.
Zurück zum Zitat Fresnais J., Chapel J.P., Poncin-Epaillard F., Synthesis of transparent superhydrophobic polyethylene surfaces. Surface & Coatings Technology 2006; 200: 5296–5305.CrossRef Fresnais J., Chapel J.P., Poncin-Epaillard F., Synthesis of transparent superhydrophobic polyethylene surfaces. Surface & Coatings Technology 2006; 200: 5296–5305.CrossRef
39.
Zurück zum Zitat Fresnais J., Benyahia L., Poncin-Epaillard F., Dynamic (de)wetting properties of superhydrophobic plasma-treated polyethylene surfaces. Surface Interface Analysis 2006; 38: 144–149.CrossRef Fresnais J., Benyahia L., Poncin-Epaillard F., Dynamic (de)wetting properties of superhydrophobic plasma-treated polyethylene surfaces. Surface Interface Analysis 2006; 38: 144–149.CrossRef
40.
Zurück zum Zitat Fresnais J., Benyahia L., Chapel J.P., Poncin-Epaillard F., Polyethylene ultrahydrophobic surface: synthesis and original properties. European Physical Journal: Applied Physics 2004; 26: 209–214.CrossRef Fresnais J., Benyahia L., Chapel J.P., Poncin-Epaillard F., Polyethylene ultrahydrophobic surface: synthesis and original properties. European Physical Journal: Applied Physics 2004; 26: 209–214.CrossRef
41.
Zurück zum Zitat Di Mundo R., Palumbo F., d’Agostino R., Nanotexturing of polystyrene surface in fluorocarbon plasmas: from sticky to slippery superhydrophobicity. Langmuir 2008; 24: 5044–5051.CrossRef Di Mundo R., Palumbo F., d’Agostino R., Nanotexturing of polystyrene surface in fluorocarbon plasmas: from sticky to slippery superhydrophobicity. Langmuir 2008; 24: 5044–5051.CrossRef
42.
Zurück zum Zitat Woodward I., Schofield W.C.E., Roucoules V., Badyal J.P.S., Super-hydrophobic surfaces produced by plasma fluorination of polybutadiene films. Langmuir 2003; 19: 3432–3438.CrossRef Woodward I., Schofield W.C.E., Roucoules V., Badyal J.P.S., Super-hydrophobic surfaces produced by plasma fluorination of polybutadiene films. Langmuir 2003; 19: 3432–3438.CrossRef
43.
Zurück zum Zitat Dorrer C., Ruhe J., Wetting of silicon nanograss: from superhydrophilic to superhydrophobic surfaces. Advanced Materials 2008; 20: 159–164.CrossRef Dorrer C., Ruhe J., Wetting of silicon nanograss: from superhydrophilic to superhydrophobic surfaces. Advanced Materials 2008; 20: 159–164.CrossRef
44.
Zurück zum Zitat Artus G.R.J., Jung S., Zimmermann J., Gautschi H.P., Marquardt K., Seeger S., Silicone nanofilaments and their application as superhydrophobic coating. Advanced Materials 2006; 18: 2758–2762.CrossRef Artus G.R.J., Jung S., Zimmermann J., Gautschi H.P., Marquardt K., Seeger S., Silicone nanofilaments and their application as superhydrophobic coating. Advanced Materials 2006; 18: 2758–2762.CrossRef
45.
Zurück zum Zitat Zimmermann J., Rabe M., Artus G.R.J., Seeger S., Patterned superfunctional surfaces based on a silicone nanofilament coating. Soft Matter 2008; 4: 450–452.CrossRef Zimmermann J., Rabe M., Artus G.R.J., Seeger S., Patterned superfunctional surfaces based on a silicone nanofilament coating. Soft Matter 2008; 4: 450–452.CrossRef
46.
Zurück zum Zitat Zhu L.B., Xiu Y.H., Xu J.W., Tamirisa P.A., Hess D.W., Wong C.P., Superhydrophobicity on two-tier rough surfaces fabricated by controlled growth of aligned carbon nanotube arrays coated with fluorocarbon. Langmuir 2005; 21: 11208–11212.CrossRef Zhu L.B., Xiu Y.H., Xu J.W., Tamirisa P.A., Hess D.W., Wong C.P., Superhydrophobicity on two-tier rough surfaces fabricated by controlled growth of aligned carbon nanotube arrays coated with fluorocarbon. Langmuir 2005; 21: 11208–11212.CrossRef
47.
Zurück zum Zitat Lau K.K.S., Bico J., Teo K.B.K., Chhowalla M., Amaratunga G.A.J., Milne W.I., McKinley G.H., Gleason K.K., Superhydrophobic carbon nanotube forests. Nano Letters 2003; 3: 1701–1705.CrossRef Lau K.K.S., Bico J., Teo K.B.K., Chhowalla M., Amaratunga G.A.J., Milne W.I., McKinley G.H., Gleason K.K., Superhydrophobic carbon nanotube forests. Nano Letters 2003; 3: 1701–1705.CrossRef
48.
Zurück zum Zitat Roig A., Molins E., Rodriguez E., Martinez S., Moreno-Manas M., Vallribera A., Superhydrophobic silica aerogels by fluorination at the gel stage. Chemical Communications 2004; 20: 2316–2317.CrossRef Roig A., Molins E., Rodriguez E., Martinez S., Moreno-Manas M., Vallribera A., Superhydrophobic silica aerogels by fluorination at the gel stage. Chemical Communications 2004; 20: 2316–2317.CrossRef
49.
Zurück zum Zitat Tadanaga K., Katata N., Minami T., Formation process of super-water-repellent Al2O3 coating films with high transparency by the sol-gel method. Journal of the American Ceramic Society 1997; 80: 3213–3216.CrossRef Tadanaga K., Katata N., Minami T., Formation process of super-water-repellent Al2O3 coating films with high transparency by the sol-gel method. Journal of the American Ceramic Society 1997; 80: 3213–3216.CrossRef
50.
Zurück zum Zitat Doshi D.A., Shah P.B., Singh S., Branson E.D., Malanoski A.P., Watkins E.B., Majewski J., van Swol F., Brinker C.J., Investigating the interface of superhydrophobic surfaces in contact with water. Langmuir 2005; 21: 7805–7811.CrossRef Doshi D.A., Shah P.B., Singh S., Branson E.D., Malanoski A.P., Watkins E.B., Majewski J., van Swol F., Brinker C.J., Investigating the interface of superhydrophobic surfaces in contact with water. Langmuir 2005; 21: 7805–7811.CrossRef
51.
Zurück zum Zitat Rao A.V., Bhagat S.D., Hirashima H., Pajonk G.M., Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor. Journal of Colloid and Interface Science 2006; 300: 279–285.CrossRef Rao A.V., Bhagat S.D., Hirashima H., Pajonk G.M., Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor. Journal of Colloid and Interface Science 2006; 300: 279–285.CrossRef
52.
Zurück zum Zitat Shirtcliffe N.J., McHale G., Newton M.I., Perry C.C., Intrinsically superhydrophobic organosilica sol-gel foams. Langmuir 2003; 19: 5626–5631.CrossRef Shirtcliffe N.J., McHale G., Newton M.I., Perry C.C., Intrinsically superhydrophobic organosilica sol-gel foams. Langmuir 2003; 19: 5626–5631.CrossRef
53.
Zurück zum Zitat Gao L.C., McCarthy T.J., A perfectly hydrophobic surface (theta(A)/theta(R)=180 degrees/180 degrees). Journal of the American Chemical Society 2006; 128: 9052.CrossRef Gao L.C., McCarthy T.J., A perfectly hydrophobic surface (theta(A)/theta(R)=180 degrees/180 degrees). Journal of the American Chemical Society 2006; 128: 9052.CrossRef
54.
Zurück zum Zitat Koynov S., Brandt M.S., Stutzmann M., Black nonreflecting silicon surfaces for solar cells. Applied Physics Letters 2006; 88: 203107/1. Koynov S., Brandt M.S., Stutzmann M., Black nonreflecting silicon surfaces for solar cells. Applied Physics Letters 2006; 88: 203107/1.
55.
Zurück zum Zitat Peng K.Q., Wu Y., Fang H., Zhong X.Y., Xu Y., Zhu J., Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays. Angewandte Chemie International Edition 2005; 44: 2737–2742.CrossRef Peng K.Q., Wu Y., Fang H., Zhong X.Y., Xu Y., Zhu J., Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays. Angewandte Chemie International Edition 2005; 44: 2737–2742.CrossRef
56.
Zurück zum Zitat Peng K.Q., Yan Y.J., Gao S.P., Zhu J., Dendrite-assisted growth of silicon nanowires in electroless metal deposition. Advanced Functional Materials 2003; 13: 127–132.CrossRef Peng K.Q., Yan Y.J., Gao S.P., Zhu J., Dendrite-assisted growth of silicon nanowires in electroless metal deposition. Advanced Functional Materials 2003; 13: 127–132.CrossRef
57.
Zurück zum Zitat Xiu Y., Zhu L., Hess D.W., Wong C.P., Hierarchical silicon etched structures for controlled hydrophobicity/superhydrophobicity. Nano Letters 2007; 7: 3388–3393.CrossRef Xiu Y., Zhu L., Hess D.W., Wong C.P., Hierarchical silicon etched structures for controlled hydrophobicity/superhydrophobicity. Nano Letters 2007; 7: 3388–3393.CrossRef
58.
Zurück zum Zitat Xiu Y., Zhang S., Yelundur V., Rohatgi A., Hess D.W., Wong C.P., Superhydrophobic and low light reflectivity silicon surfaces fabricated by hierarchical etching. Langmuir 2008; 24: 10421–10426.CrossRef Xiu Y., Zhang S., Yelundur V., Rohatgi A., Hess D.W., Wong C.P., Superhydrophobic and low light reflectivity silicon surfaces fabricated by hierarchical etching. Langmuir 2008; 24: 10421–10426.CrossRef
59.
Zurück zum Zitat Qian B.T., Shen Z.Q., Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates. Langmuir 2005; 21: 9007–9009.CrossRef Qian B.T., Shen Z.Q., Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates. Langmuir 2005; 21: 9007–9009.CrossRef
60.
Zurück zum Zitat Guo Z.G., Zhou F., Hao J.C., Liu W.M., Effects of system parameters on making aluminum alloy lotus. Journal of Colloid and Interface Science 2006; 303: 298–305.CrossRef Guo Z.G., Zhou F., Hao J.C., Liu W.M., Effects of system parameters on making aluminum alloy lotus. Journal of Colloid and Interface Science 2006; 303: 298–305.CrossRef
61.
Zurück zum Zitat Shirtcliffe N.J., McHale G., Newton M.I., Perry C.C., Wetting and wetting transitions on copper-based super-hydrophobic surfaces. Langmuir 2005; 21: 937–943.CrossRef Shirtcliffe N.J., McHale G., Newton M.I., Perry C.C., Wetting and wetting transitions on copper-based super-hydrophobic surfaces. Langmuir 2005; 21: 937–943.CrossRef
62.
Zurück zum Zitat Rupp F., Scheideler L., Olshanska N., de Wild M., Wieland M., Geis-Gerstorfer J., Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces. Journal of Biomedical Materials Research Part A 2006; 76A: 323–334.CrossRef Rupp F., Scheideler L., Olshanska N., de Wild M., Wieland M., Geis-Gerstorfer J., Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces. Journal of Biomedical Materials Research Part A 2006; 76A: 323–334.CrossRef
63.
Zurück zum Zitat Lai Y.K., Lin C.J., Huang J.Y., Zhuang H.F., Sun L., Nguyen T., Markedly controllable adhesion of superhydrophobic spongelike nanostructure TiO2 films. Langmuir 2008; 24: 3867.CrossRef Lai Y.K., Lin C.J., Huang J.Y., Zhuang H.F., Sun L., Nguyen T., Markedly controllable adhesion of superhydrophobic spongelike nanostructure TiO2 films. Langmuir 2008; 24: 3867.CrossRef
64.
Zurück zum Zitat Shiu J.Y., Kuo C.W., Chen P.L., Mou C.Y., Fabrication of tunable superhydrophobic surfaces by nanosphere lithography. Chemistry of Materials 2004; 16: 561–564.CrossRef Shiu J.Y., Kuo C.W., Chen P.L., Mou C.Y., Fabrication of tunable superhydrophobic surfaces by nanosphere lithography. Chemistry of Materials 2004; 16: 561–564.CrossRef
65.
Zurück zum Zitat Sun C.H., Jiang P., Jiang B., Broadband moth-eye antireflection coatings on silicon. Applied Physics Letters 2008; 92: 051107.CrossRef Sun C.H., Jiang P., Jiang B., Broadband moth-eye antireflection coatings on silicon. Applied Physics Letters 2008; 92: 051107.CrossRef
66.
Zurück zum Zitat Zheng H., Okada H., Nojima S., Suye S., Hori T., Layer-by-layer assembly of enzymes and polymerized mediator on electrode surface by electrostatic adsorption. Science and Technology of Advanced Materials 2004; 5: 371–376.CrossRef Zheng H., Okada H., Nojima S., Suye S., Hori T., Layer-by-layer assembly of enzymes and polymerized mediator on electrode surface by electrostatic adsorption. Science and Technology of Advanced Materials 2004; 5: 371–376.CrossRef
67.
Zurück zum Zitat Ji J., Fu J.H., Shen J.C., Fabrication of a superhydrophobic surface from the amplified exponential growth of a multilayer. Advanced Materials 2006; 18: 1441–1444.CrossRef Ji J., Fu J.H., Shen J.C., Fabrication of a superhydrophobic surface from the amplified exponential growth of a multilayer. Advanced Materials 2006; 18: 1441–1444.CrossRef
68.
Zurück zum Zitat Zhai L., Cebeci F.C., Cohen R.E., Rubner M.F., Stable superhydrophobic coatings from polyelectrolyte multilayers. Nano Letters 2004; 4: 1349–1353.CrossRef Zhai L., Cebeci F.C., Cohen R.E., Rubner M.F., Stable superhydrophobic coatings from polyelectrolyte multilayers. Nano Letters 2004; 4: 1349–1353.CrossRef
69.
Zurück zum Zitat Yabu H., Shimomura M., Single-step fabrication of transparent superhydrophobic porous polymer films. Chemistry of Materials 2005; 17: 5231–5234.CrossRef Yabu H., Shimomura M., Single-step fabrication of transparent superhydrophobic porous polymer films. Chemistry of Materials 2005; 17: 5231–5234.CrossRef
70.
Zurück zum Zitat Feng L., Zhang Z.Y., Mai Z.H., Ma Y.M., Liu B.Q., Jiang L., Zhu D.B., A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angewandte Chemie International Edition 2004; 43: 2012–2014.CrossRef Feng L., Zhang Z.Y., Mai Z.H., Ma Y.M., Liu B.Q., Jiang L., Zhu D.B., A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angewandte Chemie International Edition 2004; 43: 2012–2014.CrossRef
71.
Zurück zum Zitat Barkhudarov P.M., Shah P.B., Watkins E.B., Corrosion inhibition using superhydrophobic films. Corrosion Science 2008; 50: 897–902.CrossRef Barkhudarov P.M., Shah P.B., Watkins E.B., Corrosion inhibition using superhydrophobic films. Corrosion Science 2008; 50: 897–902.CrossRef
72.
Zurück zum Zitat Ashurst W.R., Yau C., Carraro C., Lee C., Kluth G.J., Howe R.T., Maboudian R., Alkene based monolayer films as anti-stiction coatings for polysilicon MEMS. Sensors and Actuators: A, Physical 2001; 91: 239–248.CrossRef Ashurst W.R., Yau C., Carraro C., Lee C., Kluth G.J., Howe R.T., Maboudian R., Alkene based monolayer films as anti-stiction coatings for polysilicon MEMS. Sensors and Actuators: A, Physical 2001; 91: 239–248.CrossRef
73.
Zurück zum Zitat Mastrangelo C.H., Hsu C.H., Mechanical stability and adhesion of microstructures under capillary forces: Part I: basic theory. IEEE Journal of Microelectromechanical Systems 1993; 2: 33–43.CrossRef Mastrangelo C.H., Hsu C.H., Mechanical stability and adhesion of microstructures under capillary forces: Part I: basic theory. IEEE Journal of Microelectromechanical Systems 1993; 2: 33–43.CrossRef
74.
Zurück zum Zitat Mastrangelo C.H., Hsu C.H., Mechanical stability and adhesion of microstructures under capillary forces – Part II: experiments. Journal of Microelectromechanical Systems 1993; 2: 44–55.CrossRef Mastrangelo C.H., Hsu C.H., Mechanical stability and adhesion of microstructures under capillary forces – Part II: experiments. Journal of Microelectromechanical Systems 1993; 2: 44–55.CrossRef
75.
Zurück zum Zitat Kulkarni S.A., Mirji S.A., Mandale A.B., Thermal stability of self-assembled octadecyltrichlorosilane monolayers on planar and curved silica surfaces. Thin Solid Films 2006; 496: 420–425.CrossRef Kulkarni S.A., Mirji S.A., Mandale A.B., Thermal stability of self-assembled octadecyltrichlorosilane monolayers on planar and curved silica surfaces. Thin Solid Films 2006; 496: 420–425.CrossRef
76.
Zurück zum Zitat Lee C.C., Hsu W., Method on surface roughness modification to alleviate stiction of microstructures. Journal of Vacuum Science & Technology B 2003; 21: 1505–1510.CrossRef Lee C.C., Hsu W., Method on surface roughness modification to alleviate stiction of microstructures. Journal of Vacuum Science & Technology B 2003; 21: 1505–1510.CrossRef
77.
Zurück zum Zitat Cottin-Bizonne C., Barrat J.L., Bocquet L., Low-friction flows of liquid at nanopatterned interfaces. Nature Materials 2003; 2: 237–240.CrossRef Cottin-Bizonne C., Barrat J.L., Bocquet L., Low-friction flows of liquid at nanopatterned interfaces. Nature Materials 2003; 2: 237–240.CrossRef
78.
Zurück zum Zitat Mahdavi A., Ferreira L., Sundback C., Nichol J.W. et al., A biodegradable and biocompatible gecko-inspired tissue adhesive. Proceedings of the National Academy of Sciences 2008; 105: 2307–2312.CrossRef Mahdavi A., Ferreira L., Sundback C., Nichol J.W. et al., A biodegradable and biocompatible gecko-inspired tissue adhesive. Proceedings of the National Academy of Sciences 2008; 105: 2307–2312.CrossRef
79.
Zurück zum Zitat Zhang X.T., Jin M., Liu Z.Y., Nishimoto S., Saito H., Murakami T., Fujishima A., Preparation and photocatalytic wettability conversion of TiO2-based superhydrophobic surfaces. Langmuir 2006; 22: 9477–9479.CrossRef Zhang X.T., Jin M., Liu Z.Y., Nishimoto S., Saito H., Murakami T., Fujishima A., Preparation and photocatalytic wettability conversion of TiO2-based superhydrophobic surfaces. Langmuir 2006; 22: 9477–9479.CrossRef
80.
Zurück zum Zitat Wang J.X., Wen Y.Q., Feng X.J., Control over the wettability of colloidal crystal films by assembly temperature. Macromolecular Rapid Communications 2006; 27: 188–192.CrossRef Wang J.X., Wen Y.Q., Feng X.J., Control over the wettability of colloidal crystal films by assembly temperature. Macromolecular Rapid Communications 2006; 27: 188–192.CrossRef
81.
Zurück zum Zitat Li X., Bohn P.W., Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Applied Physics Letters 2000; 77: 2572–2574.CrossRef Li X., Bohn P.W., Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Applied Physics Letters 2000; 77: 2572–2574.CrossRef
82.
Zurück zum Zitat Chattopadhyay S., Li X.L., Bohn P.W., In-plane control of morphology and tunable photoluminescence in porous silicon produced by metal-assisted electroless chemical etching. Journal of Applied Physics 2002; 91: 6134–6140.CrossRef Chattopadhyay S., Li X.L., Bohn P.W., In-plane control of morphology and tunable photoluminescence in porous silicon produced by metal-assisted electroless chemical etching. Journal of Applied Physics 2002; 91: 6134–6140.CrossRef
83.
Zurück zum Zitat Peng K.Q., Xu Y., Wu Y., Yan Y.J., Lee S.T., Zhu J., Aligned single-crystalline Si nanowire arrays for photovoltaic applications. Small 2005; 1: 1062–1067.CrossRef Peng K.Q., Xu Y., Wu Y., Yan Y.J., Lee S.T., Zhu J., Aligned single-crystalline Si nanowire arrays for photovoltaic applications. Small 2005; 1: 1062–1067.CrossRef
84.
Zurück zum Zitat Deegan R.D., Bakajin O., Dupont T.F., Huber G., Nagel S.R., Witten T.A., Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997; 389: 827–829.CrossRef Deegan R.D., Bakajin O., Dupont T.F., Huber G., Nagel S.R., Witten T.A., Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997; 389: 827–829.CrossRef
85.
Zurück zum Zitat Xiu Y.H., Hess D.W., Wong C.P., UV and thermally stable superhydrophobic coatings from sol-gel processing. Journal of Colloid and Interface Science 2008; 326: 465–470.CrossRef Xiu Y.H., Hess D.W., Wong C.P., UV and thermally stable superhydrophobic coatings from sol-gel processing. Journal of Colloid and Interface Science 2008; 326: 465–470.CrossRef
Metadaten
Titel
Biomimetic Lotus Effect Surfaces for Nanopackaging
verfasst von
Yonghao Xiu
C.P. Wong
Copyright-Jahr
2010
Verlag
Springer US
DOI
https://doi.org/10.1007/978-1-4419-0040-1_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.