Skip to main content

2020 | OriginalPaper | Buchkapitel

Bionanocomposites from Biofibers and Biopolymers

verfasst von : Muhammad Bilal, Tahir Rasheed, Faran Nabeel, Hafiz M. N. Iqbal

Erschienen in: Biofibers and Biopolymers for Biocomposites

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This particular chapter focuses on bionanocomposites, an emergent group of bio-hybrid materials at nanostructured level, as a concept of environmental, bioinspired, and functional hybrid materials. Bionanocomposites represents at least their one dimension on a nanometer scale and can be engineered using naturally occurring biofibers and/or biopolymers either in pristine form or the combination of both along with other inorganic elements. Nanoscale cues/constructs have now become a high requisite for new applications. Likewise, synthetic polymer-based nanocomposites, bionanocomposites (based on biofibers or biopolymers) also exhibit inherited or improved structural and multifunctional characteristics, such as renewability, recyclability, biocompatibility, biodegradability, (re)-generatability, high and efficient functionality against various substrates, induced turn-over, and overall cost-effectiveness are of high interest for numerous applications. Individually or collectively, all those properties of bionanocomposites open new and interesting perspectives with notable incidences in the environmental, biomedical, and biotechnological sector of the contemporary world. In this context, research is underway, around the globe, on the positioning of bionanocomposites as a new interdisciplinary area that could cover significant topics such as bioinspired biomaterials, green composites, bio-nanofabrication strategies and/or engineering processes, and biomimetic systems. Briefly, this chapter discusses various perspectives related to the biofibers and biopolymers, such as cellulose, chitosan, and polyhydroxyalkanoates, as building blocks of bionanocomposites, their sources, and classification along with the development of bionanocomposites using those fibers and polymers. Further to this end, the applied standpoints in relation to environmental and biomedical applications of bionanocomposites are also given with suitable examples.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Essabir, H., Raji, M., Laaziz, S. A., Rodrique, D., Bouhfid, R., & el kacem Qaiss, A. (2018). Thermo-mechanical performances of polypropylene biocomposites based on untreated, treated and compatibilized spent coffee grounds. Composites Part B: Engineering, 149, 1–11. Essabir, H., Raji, M., Laaziz, S. A., Rodrique, D., Bouhfid, R., & el kacem Qaiss, A. (2018). Thermo-mechanical performances of polypropylene biocomposites based on untreated, treated and compatibilized spent coffee grounds. Composites Part B: Engineering149, 1–11.
2.
Zurück zum Zitat Lau, K. T., Hung, P. Y., Zhu, M. H., & Hui, D. (2018). Properties of natural fiber composites for structural engineering applications. Composites Part B: Engineering, 136, 222–233.CrossRef Lau, K. T., Hung, P. Y., Zhu, M. H., & Hui, D. (2018). Properties of natural fiber composites for structural engineering applications. Composites Part B: Engineering, 136, 222–233.CrossRef
3.
Zurück zum Zitat Rhim, J. W., Park, H. M., & Ha, C. S. (2013). Bio-nanocomposites for food packaging applications. Progress in Polymer Science, 38(10–11), 1629–1652.CrossRef Rhim, J. W., Park, H. M., & Ha, C. S. (2013). Bio-nanocomposites for food packaging applications. Progress in Polymer Science, 38(10–11), 1629–1652.CrossRef
4.
Zurück zum Zitat Nafchi, A. M., Alias, A. K., Mahmud, S., & Robal, M. (2012). Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide. Journal of Food Engineering, 113(4), 511–519.CrossRef Nafchi, A. M., Alias, A. K., Mahmud, S., & Robal, M. (2012). Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide. Journal of Food Engineering, 113(4), 511–519.CrossRef
5.
Zurück zum Zitat Hassanzadeh-Aghdam, M. K., Ansari, R., Mahmoodi, M. J., & Darvizeh, A. (2018). Effect of nanoparticle aggregation on the creep behavior of polymer nanocomposites. Composites Science and Technology, 162, 93–100.CrossRef Hassanzadeh-Aghdam, M. K., Ansari, R., Mahmoodi, M. J., & Darvizeh, A. (2018). Effect of nanoparticle aggregation on the creep behavior of polymer nanocomposites. Composites Science and Technology, 162, 93–100.CrossRef
6.
Zurück zum Zitat Mohanty, A. K., Misra, M. A., & Hinrichsen, G. I. (2000). Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering, 276(1), 1–24.CrossRef Mohanty, A. K., Misra, M. A., & Hinrichsen, G. I. (2000). Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering, 276(1), 1–24.CrossRef
7.
Zurück zum Zitat Wei, L., & McDonald, A. (2016). A review on grafting of biofibers for biocomposites. Materials, 9(4), 303.CrossRef Wei, L., & McDonald, A. (2016). A review on grafting of biofibers for biocomposites. Materials, 9(4), 303.CrossRef
8.
Zurück zum Zitat Kargarzadeh, H., Mariano, M., Huang, J., Lin, N., Ahmad, I., Dufresne, A., et al. (2017). Recent developments on nanocellulose reinforced polymer nanocomposites: A review. Polymer, 132, 368–393.CrossRef Kargarzadeh, H., Mariano, M., Huang, J., Lin, N., Ahmad, I., Dufresne, A., et al. (2017). Recent developments on nanocellulose reinforced polymer nanocomposites: A review. Polymer, 132, 368–393.CrossRef
9.
Zurück zum Zitat Dufresne, A., Thomas, S., & Pothan, L. A. (2013). Bionanocomposites: State of the art, challenges, and opportunities. In Biopolymer nanocomposites: Processing, properties, and applications (pp. 1–10). Dufresne, A., Thomas, S., & Pothan, L. A. (2013). Bionanocomposites: State of the art, challenges, and opportunities. In Biopolymer nanocomposites: Processing, properties, and applications (pp. 1–10).
10.
Zurück zum Zitat John, M. J., & Thomas, S. (2008). Biofibres and biocomposites. Carbohydrate Polymers, 71(3), 343–364.CrossRef John, M. J., & Thomas, S. (2008). Biofibres and biocomposites. Carbohydrate Polymers, 71(3), 343–364.CrossRef
11.
Zurück zum Zitat Kadla, J. F., & Gilbert, R. D. (2000). Cellulose structure: A review. Cellulose Chemistry and Technology, 34(3–4), 197–216. Kadla, J. F., & Gilbert, R. D. (2000). Cellulose structure: A review. Cellulose Chemistry and Technology, 34(3–4), 197–216.
12.
Zurück zum Zitat Klemm, D., Heublein, B., Fink, H. P., & Bohn, A. (2005). Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 44(22), 3358–3393.CrossRef Klemm, D., Heublein, B., Fink, H. P., & Bohn, A. (2005). Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 44(22), 3358–3393.CrossRef
13.
Zurück zum Zitat Roy, D., Semsarilar, M., Guthrie, J. T., & Perrier, S. (2009). Cellulose modification by polymer grafting: A review. Chemical Society Reviews, 38(7), 2046–2064.CrossRef Roy, D., Semsarilar, M., Guthrie, J. T., & Perrier, S. (2009). Cellulose modification by polymer grafting: A review. Chemical Society Reviews, 38(7), 2046–2064.CrossRef
14.
Zurück zum Zitat Pearce, E. M. (1985). Handbook of fiber science and technology: Fiber chemistry (Vol. 4). Marcel Dekker Incorporated. Pearce, E. M. (1985). Handbook of fiber science and technology: Fiber chemistry (Vol. 4). Marcel Dekker Incorporated.
15.
Zurück zum Zitat Pilla, S. (2011). Handbook of bioplastics and biocomposites engineering applications (Vol. 81). John Wiley & Sons. Pilla, S. (2011). Handbook of bioplastics and biocomposites engineering applications (Vol. 81). John Wiley & Sons.
16.
Zurück zum Zitat Habibi, Y., Lucia, L. A., & Rojas, O. J. (2010). Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chemical Reviews, 110(6), 3479–3500.CrossRef Habibi, Y., Lucia, L. A., & Rojas, O. J. (2010). Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chemical Reviews, 110(6), 3479–3500.CrossRef
17.
Zurück zum Zitat Šturcová, A., Davies, G. R., & Eichhorn, S. J. (2005). Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules, 6(2), 1055–1061.CrossRef Šturcová, A., Davies, G. R., & Eichhorn, S. J. (2005). Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules, 6(2), 1055–1061.CrossRef
18.
Zurück zum Zitat Li, M. C., Wu, Q., Song, K., Lee, S., Qing, Y., & Wu, Y. (2015). Cellulose nanoparticles: Structure–morphology–rheology relationships. ACS Sustainable Chemistry & Engineering, 3(5), 821–832.CrossRef Li, M. C., Wu, Q., Song, K., Lee, S., Qing, Y., & Wu, Y. (2015). Cellulose nanoparticles: Structure–morphology–rheology relationships. ACS Sustainable Chemistry & Engineering, 3(5), 821–832.CrossRef
19.
Zurück zum Zitat Agarwal, U. P., Sabo, R., Reiner, R. S., Clemons, C. M., & Rudie, A. W. (2012). Spatially resolved characterization of cellulose nanocrystal–polypropylene composite by confocal Raman microscopy. Applied Spectroscopy, 66(7), 750–756.CrossRef Agarwal, U. P., Sabo, R., Reiner, R. S., Clemons, C. M., & Rudie, A. W. (2012). Spatially resolved characterization of cellulose nanocrystal–polypropylene composite by confocal Raman microscopy. Applied Spectroscopy, 66(7), 750–756.CrossRef
20.
Zurück zum Zitat Chen, L., Wang, Q., Hirth, K., Baez, C., Agarwal, U. P., & Zhu, J. Y. (2015). Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose, 22(3), 1753–1762.CrossRef Chen, L., Wang, Q., Hirth, K., Baez, C., Agarwal, U. P., & Zhu, J. Y. (2015). Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose, 22(3), 1753–1762.CrossRef
21.
Zurück zum Zitat Abe, K., Iwamoto, S., & Yano, H. (2007). Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules, 8(10), 3276–3278.CrossRef Abe, K., Iwamoto, S., & Yano, H. (2007). Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules, 8(10), 3276–3278.CrossRef
22.
Zurück zum Zitat Xu, X., Liu, F., Jiang, L., Zhu, J. Y., Haagenson, D., & Wiesenborn, D. P. (2013). Cellulose nanocrystals vs. cellulose nanofibrils: A comparative study on their microstructures and effects as polymer reinforcing agents. ACS Applied Materials & Interfaces, 5(8), 2999–3009. Xu, X., Liu, F., Jiang, L., Zhu, J. Y., Haagenson, D., & Wiesenborn, D. P. (2013). Cellulose nanocrystals vs. cellulose nanofibrils: A comparative study on their microstructures and effects as polymer reinforcing agents. ACS Applied Materials & Interfaces5(8), 2999–3009.
23.
Zurück zum Zitat Saito, T., Kimura, S., Nishiyama, Y., & Isogai, A. (2007). Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules, 8(8), 2485–2491.CrossRef Saito, T., Kimura, S., Nishiyama, Y., & Isogai, A. (2007). Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules, 8(8), 2485–2491.CrossRef
24.
Zurück zum Zitat Iqbal, H. M. N., Kyazze, G., & Keshavarz, T. (2013). Advances in the valorization of lignocellulosic materials by biotechnology: An overview. BioResources, 8(2), 3157–3176.CrossRef Iqbal, H. M. N., Kyazze, G., & Keshavarz, T. (2013). Advances in the valorization of lignocellulosic materials by biotechnology: An overview. BioResources, 8(2), 3157–3176.CrossRef
25.
Zurück zum Zitat Brodin, I. (2009). Chemical properties and thermal behaviour of kraft lignins. Doctoral dissertation, KTH, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden. Brodin, I. (2009). Chemical properties and thermal behaviour of kraft lignins. Doctoral dissertation, KTH, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
26.
Zurück zum Zitat Chung, Y. L., Olsson, J. V., Li, R. J., Frank, C. W., Waymouth, R. M., Billington, S. L., et al. (2013). A renewable lignin–lactide copolymer and application in bio-based composites. ACS Sustainable Chemistry & Engineering, 1(10), 1231–1238.CrossRef Chung, Y. L., Olsson, J. V., Li, R. J., Frank, C. W., Waymouth, R. M., Billington, S. L., et al. (2013). A renewable lignin–lactide copolymer and application in bio-based composites. ACS Sustainable Chemistry & Engineering, 1(10), 1231–1238.CrossRef
27.
Zurück zum Zitat Pohjanlehto, H., Setälä, H. M., Kiely, D. E., & McDonald, A. G. (2014). Lignin-xylaric acid-polyurethane-based polymer network systems: Preparation and characterization. Journal of Applied Polymer Science, 131(1), 39714.CrossRef Pohjanlehto, H., Setälä, H. M., Kiely, D. E., & McDonald, A. G. (2014). Lignin-xylaric acid-polyurethane-based polymer network systems: Preparation and characterization. Journal of Applied Polymer Science, 131(1), 39714.CrossRef
28.
Zurück zum Zitat Liu, R., Peng, Y., Cao, J., & Chen, Y. (2014). Comparison on properties of lignocellulosic flour/polymer composites by using wood, cellulose, and lignin flours as fillers. Composites Science and Technology, 103, 1–7.CrossRef Liu, R., Peng, Y., Cao, J., & Chen, Y. (2014). Comparison on properties of lignocellulosic flour/polymer composites by using wood, cellulose, and lignin flours as fillers. Composites Science and Technology, 103, 1–7.CrossRef
29.
Zurück zum Zitat Thakur, V. K., Singha, A. S., & Thakur, M. K. (2014). Pressure induced synthesis of EA grafted Saccaharum cilliare fibers. International Journal of Polymeric Materials and Polymeric Biomaterials, 63(1), 17–22.CrossRef Thakur, V. K., Singha, A. S., & Thakur, M. K. (2014). Pressure induced synthesis of EA grafted Saccaharum cilliare fibers. International Journal of Polymeric Materials and Polymeric Biomaterials, 63(1), 17–22.CrossRef
30.
Zurück zum Zitat Arslan, H., Hazer, B., & Yoon, S. C. (2007). Grafting of poly (3-hydroxyalkanoate) and linoleic acid onto chitosan. Journal of Applied Polymer Science, 103(1), 81–89.CrossRef Arslan, H., Hazer, B., & Yoon, S. C. (2007). Grafting of poly (3-hydroxyalkanoate) and linoleic acid onto chitosan. Journal of Applied Polymer Science, 103(1), 81–89.CrossRef
31.
Zurück zum Zitat Kikkawa, Y., Fukuda, M., Kimura, T., Kashiwada, A., Matsuda, K., Kanesato, M., … Tanaka, T. (2014). Atomic force microscopic study of chitinase binding onto chitin and cellulose surfaces. Biomacromolecules, 15(3), 1074-1077.CrossRef Kikkawa, Y., Fukuda, M., Kimura, T., Kashiwada, A., Matsuda, K., Kanesato, M., … Tanaka, T. (2014). Atomic force microscopic study of chitinase binding onto chitin and cellulose surfaces. Biomacromolecules, 15(3), 1074-1077.CrossRef
32.
Zurück zum Zitat Ifuku, S., & Saimoto, H. (2012). Chitin nanofibers: Preparations, modifications, and applications. Nanoscale, 4(11), 3308–3318.CrossRef Ifuku, S., & Saimoto, H. (2012). Chitin nanofibers: Preparations, modifications, and applications. Nanoscale, 4(11), 3308–3318.CrossRef
33.
Zurück zum Zitat Ponnamma, D., Sadasivuni, K. K., Grohens, Y., Guo, Q., & Thomas, S. (2014). Carbon nanotube based elastomer composites–an approach towards multifunctional materials. Journal of Materials Chemistry C, 2(40), 8446–8485.CrossRef Ponnamma, D., Sadasivuni, K. K., Grohens, Y., Guo, Q., & Thomas, S. (2014). Carbon nanotube based elastomer composites–an approach towards multifunctional materials. Journal of Materials Chemistry C, 2(40), 8446–8485.CrossRef
34.
Zurück zum Zitat Camargo, P. H. C., Satyanarayana, K. G., & Wypych, F. (2009). Nanocomposites: Synthesis, structure, properties and new application opportunities. Materials Research, 12(1), 1–39.CrossRef Camargo, P. H. C., Satyanarayana, K. G., & Wypych, F. (2009). Nanocomposites: Synthesis, structure, properties and new application opportunities. Materials Research, 12(1), 1–39.CrossRef
35.
Zurück zum Zitat Byeon, J. H., & Kim, Y. W. (2013). Continuous gas-phase synthesis of graphene nanoflakes hybridized by gold nanocrystals for efficient water purification and gene transfection. Chemical Engineering Journal, 229, 540–546.CrossRef Byeon, J. H., & Kim, Y. W. (2013). Continuous gas-phase synthesis of graphene nanoflakes hybridized by gold nanocrystals for efficient water purification and gene transfection. Chemical Engineering Journal, 229, 540–546.CrossRef
36.
Zurück zum Zitat Sun, X. F., Qin, J., Xia, P. F., Guo, B. B., Yang, C. M., Song, C., et al. (2015). Graphene oxide–silver nanoparticle membrane for biofouling control and water purification. Chemical Engineering Journal, 281, 53–59.CrossRef Sun, X. F., Qin, J., Xia, P. F., Guo, B. B., Yang, C. M., Song, C., et al. (2015). Graphene oxide–silver nanoparticle membrane for biofouling control and water purification. Chemical Engineering Journal, 281, 53–59.CrossRef
37.
Zurück zum Zitat Bedian, L., Villalba-Rodriguez, A. M., Hernandez-Vargas, G., Parra-Saldivar, R., & Iqbal, H. M. (2017). Bio-based materials with novel characteristics for tissue engineering applications–A review. International Journal of Biological Macromolecules, 98, 837–846.CrossRef Bedian, L., Villalba-Rodriguez, A. M., Hernandez-Vargas, G., Parra-Saldivar, R., & Iqbal, H. M. (2017). Bio-based materials with novel characteristics for tissue engineering applications–A review. International Journal of Biological Macromolecules, 98, 837–846.CrossRef
38.
Zurück zum Zitat Kolbasov, A., Sinha-Ray, S., Yarin, A. L., & Pourdeyhimi, B. (2017). Heavy metal adsorption on solution-blown biopolymer nanofiber membranes. Journal of Membrane Science, 530, 250–263.CrossRef Kolbasov, A., Sinha-Ray, S., Yarin, A. L., & Pourdeyhimi, B. (2017). Heavy metal adsorption on solution-blown biopolymer nanofiber membranes. Journal of Membrane Science, 530, 250–263.CrossRef
39.
Zurück zum Zitat Iqbal, H. M. N. (2015). Development of bio-composites with novel characteristics through enzymatic grafting. Doctoral dissertation, University of Westminster. Iqbal, H. M. N. (2015). Development of bio-composites with novel characteristics through enzymatic grafting. Doctoral dissertation, University of Westminster.
40.
Zurück zum Zitat Iqbal, H. M., Kyazze, G., Locke, I. C., Tron, T., & Keshavarz, T. (2015). Poly (3-hydroxybutyrate)-ethyl cellulose based bio-composites with novel characteristics for infection free wound healing application. International Journal of Biological Macromolecules, 81, 552–559.CrossRef Iqbal, H. M., Kyazze, G., Locke, I. C., Tron, T., & Keshavarz, T. (2015). Poly (3-hydroxybutyrate)-ethyl cellulose based bio-composites with novel characteristics for infection free wound healing application. International Journal of Biological Macromolecules, 81, 552–559.CrossRef
41.
Zurück zum Zitat Bilal, M., Rasheed, T., Iqbal, H. M., Li, C., Hu, H., & Zhang, X. (2017). Development of silver nanoparticles loaded chitosan-alginate constructs with biomedical potentialities. International Journal of Biological Macromolecules, 105, 393–400.CrossRef Bilal, M., Rasheed, T., Iqbal, H. M., Li, C., Hu, H., & Zhang, X. (2017). Development of silver nanoparticles loaded chitosan-alginate constructs with biomedical potentialities. International Journal of Biological Macromolecules, 105, 393–400.CrossRef
42.
Zurück zum Zitat Bilal, M., Zhao, Y., Rasheed, T., Ahmed, I., Hassan, S. T., Nawaz, M. Z., et al. (2019). Biogenic nanoparticle-chitosan conjugates with antimicrobial, antibiofilm, and anticancer potentialities: Development and characterization. International Journal of Environmental Research and Public Health, 16(4), 598.CrossRef Bilal, M., Zhao, Y., Rasheed, T., Ahmed, I., Hassan, S. T., Nawaz, M. Z., et al. (2019). Biogenic nanoparticle-chitosan conjugates with antimicrobial, antibiofilm, and anticancer potentialities: Development and characterization. International Journal of Environmental Research and Public Health, 16(4), 598.CrossRef
43.
Zurück zum Zitat Iqbal, H. M., Kyazze, G., Locke, I. C., Tron, T., & Keshavarz, T. (2015). In situ development of self-defensive antibacterial biomaterials: Phenol-g-keratin-EC based bio-composites with characteristics for biomedical applications. Green Chemistry, 17(7), 3858–3869.CrossRef Iqbal, H. M., Kyazze, G., Locke, I. C., Tron, T., & Keshavarz, T. (2015). In situ development of self-defensive antibacterial biomaterials: Phenol-g-keratin-EC based bio-composites with characteristics for biomedical applications. Green Chemistry, 17(7), 3858–3869.CrossRef
44.
Zurück zum Zitat Gallegos, A. M. A., Carrera, S. H., Parra, R., Keshavarz, T., & Iqbal, H. M. (2016). Bacterial cellulose: A sustainable source to develop value-added products–A review. BioResources, 11(2), 5641–5655.CrossRef Gallegos, A. M. A., Carrera, S. H., Parra, R., Keshavarz, T., & Iqbal, H. M. (2016). Bacterial cellulose: A sustainable source to develop value-added products–A review. BioResources, 11(2), 5641–5655.CrossRef
45.
Zurück zum Zitat Villalba-Rodriguez, A. M., Parra-Saldivar, R., Ahmed, I., Karthik, K., Malik, Y. S., Dhama, K., et al. (2017). Bio-inspired biomaterials and their drug delivery perspectives-A review. Current Drug Metabolism, 18(10), 893–904. Villalba-Rodriguez, A. M., Parra-Saldivar, R., Ahmed, I., Karthik, K., Malik, Y. S., Dhama, K., et al. (2017). Bio-inspired biomaterials and their drug delivery perspectives-A review. Current Drug Metabolism, 18(10), 893–904.
46.
Zurück zum Zitat Bilal, M., & Iqbal, H. M. (2018). Bio-based biopolymers and their potential applications for bio-and non-bio sectors. In Handbook of biopolymers: Advances and multifaceted applications (p. 23). Bilal, M., & Iqbal, H. M. (2018). Bio-based biopolymers and their potential applications for bio-and non-bio sectors. In Handbook of biopolymers: Advances and multifaceted applications (p. 23).
47.
Zurück zum Zitat Bilal, M., Rasheed, T., Ullah, A., & Iqbal, H. M. (2018). Valorization of green and sustainable advanced materials from a biomed perspective-potential applications. Green and Sustainable Advanced Materials: Applications, 2, 19–47.CrossRef Bilal, M., Rasheed, T., Ullah, A., & Iqbal, H. M. (2018). Valorization of green and sustainable advanced materials from a biomed perspective-potential applications. Green and Sustainable Advanced Materials: Applications, 2, 19–47.CrossRef
48.
Zurück zum Zitat Iqbal, H. M., Rasheed, T., & Bilal, M. (2018). Design and processing aspects of polymer and composite materials. Green and Sustainable Advanced Materials: Processing and Characterization, 1, 155–189.CrossRef Iqbal, H. M., Rasheed, T., & Bilal, M. (2018). Design and processing aspects of polymer and composite materials. Green and Sustainable Advanced Materials: Processing and Characterization, 1, 155–189.CrossRef
49.
Zurück zum Zitat Iqbal, H. M., & Keshavarz, T. (2018). Bioinspired polymeric carriers for drug delivery applications. In Stimuli responsive polymeric nanocarriers for drug delivery applications (Vol. 1, pp. 377–404). Woodhead Publishing. Iqbal, H. M., & Keshavarz, T. (2018). Bioinspired polymeric carriers for drug delivery applications. In Stimuli responsive polymeric nanocarriers for drug delivery applications (Vol. 1, pp. 377–404). Woodhead Publishing.
50.
Zurück zum Zitat Rasheed, T., Bilal, M., Abu-Thabit, N. Y., & Iqbal, H. M. (2018). The smart chemistry of stimuli-responsive polymeric carriers for target drug delivery applications. In Stimuli responsive polymeric nanocarriers for drug delivery applications (Vol. 1, pp. 61–99). Woodhead Publishing. Rasheed, T., Bilal, M., Abu-Thabit, N. Y., & Iqbal, H. M. (2018). The smart chemistry of stimuli-responsive polymeric carriers for target drug delivery applications. In Stimuli responsive polymeric nanocarriers for drug delivery applications (Vol. 1, pp. 61–99). Woodhead Publishing.
51.
Zurück zum Zitat Kalia, S., Dufresne, A., Cherian, B. M., Kaith, B. S., Avérous, L., Njuguna, J., & Nassiopoulos, E. (2011). Cellulose-based bio-and nanocomposites: A review. International Journal of Polymer Science, Article ID 837875, 35 p. Kalia, S., Dufresne, A., Cherian, B. M., Kaith, B. S., Avérous, L., Njuguna, J., & Nassiopoulos, E. (2011). Cellulose-based bio-and nanocomposites: A review. International Journal of Polymer Science, Article ID 837875, 35 p.
52.
Zurück zum Zitat Alemdar, A., & Sain, M. (2008). Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties. Composites Science and Technology, 68(2), 557–565.CrossRef Alemdar, A., & Sain, M. (2008). Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties. Composites Science and Technology, 68(2), 557–565.CrossRef
53.
Zurück zum Zitat Ayrilmis, N., Ozdemir, F., Nazarenko, O. B., & Visakh, P. M. (2019). Mechanical and thermal properties of Moringa oleifera cellulose-based epoxy nanocomposites. Journal of Composite Materials, 53(5), 669–675.CrossRef Ayrilmis, N., Ozdemir, F., Nazarenko, O. B., & Visakh, P. M. (2019). Mechanical and thermal properties of Moringa oleifera cellulose-based epoxy nanocomposites. Journal of Composite Materials, 53(5), 669–675.CrossRef
54.
Zurück zum Zitat Gazzotti, S., Rampazzo, R., Hakkarainen, M., Bussini, D., Ortenzi, M. A., Farina, H., … Silvani, A. (2019). Cellulose nanofibrils as reinforcing agents for PLA-based nanocomposites: An in situ approach. Composites Science and Technology, 171, 94–102.CrossRef Gazzotti, S., Rampazzo, R., Hakkarainen, M., Bussini, D., Ortenzi, M. A., Farina, H., … Silvani, A. (2019). Cellulose nanofibrils as reinforcing agents for PLA-based nanocomposites: An in situ approach. Composites Science and Technology, 171, 94–102.CrossRef
55.
Zurück zum Zitat Hassan, M., Berglund, L., Abou-Zeid, R., Hassan, E., Abou-Elseoud, W., & Oksman, K. (2019). Nanocomposite film based on cellulose acetate and lignin-rich rice straw nanofibers. Materials, 12(4), 595.CrossRef Hassan, M., Berglund, L., Abou-Zeid, R., Hassan, E., Abou-Elseoud, W., & Oksman, K. (2019). Nanocomposite film based on cellulose acetate and lignin-rich rice straw nanofibers. Materials, 12(4), 595.CrossRef
56.
Zurück zum Zitat Shukla, S. K., Mishra, A. K., Arotiba, O. A., & Mamba, B. B. (2013). Chitosan-based nanomaterials: A state-of-the-art review. International Journal of Biological Macromolecules, 59, 46–58.CrossRef Shukla, S. K., Mishra, A. K., Arotiba, O. A., & Mamba, B. B. (2013). Chitosan-based nanomaterials: A state-of-the-art review. International Journal of Biological Macromolecules, 59, 46–58.CrossRef
57.
Zurück zum Zitat Cheaburu-Yilmaz, C. N., Yilmaz, O., & Vasile, C. (2015). Eco-friendly chitosan-based nanocomposites: Chemistry and applications. In Eco-friendly polymer nanocomposites (pp. 341–386). New Delhi: Springer. Cheaburu-Yilmaz, C. N., Yilmaz, O., & Vasile, C. (2015). Eco-friendly chitosan-based nanocomposites: Chemistry and applications. In Eco-friendly polymer nanocomposites (pp. 341–386). New Delhi: Springer.
58.
Zurück zum Zitat Yassue-Cordeiro, P. H., Severino, P., Souto, E. B., Gomes, E. L., Yoshida, C. M., de Moraes, M. A., & da Silva, C. F. (2018). Chitosan-based nanocomposites for drug delivery. In Applications of nanocomposite materials in drug delivery (pp. 1–26). Woodhead Publishing. Yassue-Cordeiro, P. H., Severino, P., Souto, E. B., Gomes, E. L., Yoshida, C. M., de Moraes, M. A., & da Silva, C. F. (2018). Chitosan-based nanocomposites for drug delivery. In Applications of nanocomposite materials in drug delivery (pp. 1–26). Woodhead Publishing.
59.
Zurück zum Zitat Ramachandran, S., Rajinipriya, M., Soulestin, J., & Nagalakshmaiah, M. (2019). Recent developments in chitosan-based nanocomposites. In Bio-based polymers and nanocomposites (pp. 183–215). Springer, Cham. Ramachandran, S., Rajinipriya, M., Soulestin, J., & Nagalakshmaiah, M. (2019). Recent developments in chitosan-based nanocomposites. In Bio-based polymers and nanocomposites (pp. 183–215). Springer, Cham.
60.
Zurück zum Zitat Peter, M., Ganesh, N., Selvamurugan, N., Nair, S. V., Furuike, T., Tamura, H., et al. (2010). Preparation and characterization of chitosan–gelatin/nanohydroxyapatite composite scaffolds for tissue engineering applications. Carbohydrate Polymers, 80(3), 687–694.CrossRef Peter, M., Ganesh, N., Selvamurugan, N., Nair, S. V., Furuike, T., Tamura, H., et al. (2010). Preparation and characterization of chitosan–gelatin/nanohydroxyapatite composite scaffolds for tissue engineering applications. Carbohydrate Polymers, 80(3), 687–694.CrossRef
61.
Zurück zum Zitat Enescu, D., Gardrat, C., Cramail, H., Le Coz, C., Sèbe, G., & Coma, V. (2019). Bio-inspired films based on chitosan, nanoclays and cellulose nanocrystals: Structuring and properties improvement by using water-evaporation-induced self-assembly. Cellulose, 26, 2389–2401.CrossRef Enescu, D., Gardrat, C., Cramail, H., Le Coz, C., Sèbe, G., & Coma, V. (2019). Bio-inspired films based on chitosan, nanoclays and cellulose nanocrystals: Structuring and properties improvement by using water-evaporation-induced self-assembly. Cellulose, 26, 2389–2401.CrossRef
62.
Zurück zum Zitat Qiu, B., Xu, X. F., Deng, R. H., Xia, G. Q., Shang, X. F., & Zhou, P. H. (2019). Construction of chitosan/ZnO nanocomposite film by in situ precipitation. International Journal of Biological Macromolecules, 122, 82–87.CrossRef Qiu, B., Xu, X. F., Deng, R. H., Xia, G. Q., Shang, X. F., & Zhou, P. H. (2019). Construction of chitosan/ZnO nanocomposite film by in situ precipitation. International Journal of Biological Macromolecules, 122, 82–87.CrossRef
63.
Zurück zum Zitat Relinque, J. J., de León, A. S., Hernández-Saz, J., García-Romero, M. G., Navas-Martos, F. J., Morales-Cid, G., et al. (2019). Development of surface-coated polylactic Acid/Polyhydroxyalkanoate (PLA/PHA) nanocomposites. Polymers, 11(3), 400.CrossRef Relinque, J. J., de León, A. S., Hernández-Saz, J., García-Romero, M. G., Navas-Martos, F. J., Morales-Cid, G., et al. (2019). Development of surface-coated polylactic Acid/Polyhydroxyalkanoate (PLA/PHA) nanocomposites. Polymers, 11(3), 400.CrossRef
64.
Zurück zum Zitat Iqbal, H. M., Kyazze, G., Tron, T., & Keshavarz, T. (2018). Laccase from Aspergillus niger: A novel tool to graft multifunctional materials of interests and their characterization. Saudi Journal of Biological Sciences, 25(3), 545–550.CrossRef Iqbal, H. M., Kyazze, G., Tron, T., & Keshavarz, T. (2018). Laccase from Aspergillus niger: A novel tool to graft multifunctional materials of interests and their characterization. Saudi Journal of Biological Sciences, 25(3), 545–550.CrossRef
65.
Zurück zum Zitat Iqbal, H. M., Kyazze, G., Tron, T., & Keshavarz, T. (2014). Laccase-assisted grafting of poly (3-hydroxybutyrate) onto the bacterial cellulose as backbone polymer: Development and characterization. Carbohydrate Polymers, 113, 131–137.CrossRef Iqbal, H. M., Kyazze, G., Tron, T., & Keshavarz, T. (2014). Laccase-assisted grafting of poly (3-hydroxybutyrate) onto the bacterial cellulose as backbone polymer: Development and characterization. Carbohydrate Polymers, 113, 131–137.CrossRef
66.
Zurück zum Zitat Iqbal, H. M., Kyazze, G., Locke, I. C., Tron, T., & Keshavarz, T. (2015). Development of bio-composites with novel characteristics: Evaluation of phenol-induced antibacterial, biocompatible and biodegradable behaviors. Carbohydrate Polymers, 131, 197–207.CrossRef Iqbal, H. M., Kyazze, G., Locke, I. C., Tron, T., & Keshavarz, T. (2015). Development of bio-composites with novel characteristics: Evaluation of phenol-induced antibacterial, biocompatible and biodegradable behaviors. Carbohydrate Polymers, 131, 197–207.CrossRef
67.
Zurück zum Zitat Iqbal, H. M. N., Kyazze, G., Locke, I. C., Tron, T., & Keshavarz, T. (2015). Development of novel antibacterial active, HaCaT biocompatible and biodegradable CA-g-P(3HB)-EC biocomposites with caffeic acid as a functional entity. Express Polymer Letters, 9(9), 764–772.CrossRef Iqbal, H. M. N., Kyazze, G., Locke, I. C., Tron, T., & Keshavarz, T. (2015). Development of novel antibacterial active, HaCaT biocompatible and biodegradable CA-g-P(3HB)-EC biocomposites with caffeic acid as a functional entity. Express Polymer Letters, 9(9), 764–772.CrossRef
68.
Zurück zum Zitat Ratner, B. D., Hoffman, A. S., Schoen, F. J., & Lemons, J. E. (2004). Biomaterials science: An introduction to materials in medicine. Elsevier. Ratner, B. D., Hoffman, A. S., Schoen, F. J., & Lemons, J. E. (2004). Biomaterials science: An introduction to materials in medicine. Elsevier.
69.
Zurück zum Zitat Kim, J. Y., Kim, M., Kim, H., Joo, J., & Choi, J. H. (2003). Electrical and optical studies of organic light emitting devices using SWCNTs-polymer nanocomposites. Optical Materials, 21(1–3), 147–151.CrossRef Kim, J. Y., Kim, M., Kim, H., Joo, J., & Choi, J. H. (2003). Electrical and optical studies of organic light emitting devices using SWCNTs-polymer nanocomposites. Optical Materials, 21(1–3), 147–151.CrossRef
70.
Zurück zum Zitat Ruiz-Hitzky, E., Aranda, P., Darder, M., & Rytwo, G. (2010). Hybrid materials based on clays for environmental and biomedical applications. Journal of Materials Chemistry, 20(42), 9306–9321.CrossRef Ruiz-Hitzky, E., Aranda, P., Darder, M., & Rytwo, G. (2010). Hybrid materials based on clays for environmental and biomedical applications. Journal of Materials Chemistry, 20(42), 9306–9321.CrossRef
71.
Zurück zum Zitat Darder, M., Aranda, P., & Ruiz-Hitzky, E. (2012). Chitosan-clay bio-nanocomposites. In Environmental silicate nano-biocomposites (pp. 365–391). London: Springer. Darder, M., Aranda, P., & Ruiz-Hitzky, E. (2012). Chitosan-clay bio-nanocomposites. In Environmental silicate nano-biocomposites (pp. 365–391). London: Springer.
72.
Zurück zum Zitat Bilal, M., Iqbal, H. M., Hu, H., Wang, W., & Zhang, X. (2017). Enhanced bio-catalytic performance and dye degradation potential of chitosan-encapsulated horseradish peroxidase in a packed bed reactor system. Science of the Total Environment, 575, 1352–1360.CrossRef Bilal, M., Iqbal, H. M., Hu, H., Wang, W., & Zhang, X. (2017). Enhanced bio-catalytic performance and dye degradation potential of chitosan-encapsulated horseradish peroxidase in a packed bed reactor system. Science of the Total Environment, 575, 1352–1360.CrossRef
73.
Zurück zum Zitat Bilal, M., Rasheed, T., Zhao, Y., & Iqbal, H. M. (2019). Agarose-chitosan hydrogel-immobilized horseradish peroxidase with sustainable bio-catalytic and dye degradation properties. International Journal of Biological Macromolecules, 124, 742–749.CrossRef Bilal, M., Rasheed, T., Zhao, Y., & Iqbal, H. M. (2019). Agarose-chitosan hydrogel-immobilized horseradish peroxidase with sustainable bio-catalytic and dye degradation properties. International Journal of Biological Macromolecules, 124, 742–749.CrossRef
74.
Zurück zum Zitat Othman, S. H. (2014). Bio-nanocomposite materials for food packaging applications: Types of biopolymer and nano-sized filler. Agriculture and Agricultural Science Procedia, 2, 296–303.CrossRef Othman, S. H. (2014). Bio-nanocomposite materials for food packaging applications: Types of biopolymer and nano-sized filler. Agriculture and Agricultural Science Procedia, 2, 296–303.CrossRef
75.
Zurück zum Zitat de Moura, M. R., Aouada, F. A., Avena-Bustillos, R. J., McHugh, T. H., Krochta, J. M., & Mattoso, L. H. (2009). Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles. Journal of Food Engineering, 92(4), 448–453.CrossRef de Moura, M. R., Aouada, F. A., Avena-Bustillos, R. J., McHugh, T. H., Krochta, J. M., & Mattoso, L. H. (2009). Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles. Journal of Food Engineering, 92(4), 448–453.CrossRef
76.
Zurück zum Zitat Mathew, A. P., Laborie, M. P. G., & Oksman, K. (2009). Cross-linked chitosan/chitin crystal nanocomposites with improved permeation selectivity and pH stability. Biomacromolecules, 10(6), 1627–1632.CrossRef Mathew, A. P., Laborie, M. P. G., & Oksman, K. (2009). Cross-linked chitosan/chitin crystal nanocomposites with improved permeation selectivity and pH stability. Biomacromolecules, 10(6), 1627–1632.CrossRef
77.
Zurück zum Zitat Addorisio, V., Esposito, S., & Sannino, F. (2010). Sorption capacity of mesoporous metal oxides for the removal of MCPA from polluted waters. Journal of Agricultural and Food Chemistry, 58(8), 5011–5016.CrossRef Addorisio, V., Esposito, S., & Sannino, F. (2010). Sorption capacity of mesoporous metal oxides for the removal of MCPA from polluted waters. Journal of Agricultural and Food Chemistry, 58(8), 5011–5016.CrossRef
78.
Zurück zum Zitat Celis, R., Adelino, M. A., Hermosín, M. C., & Cornejo, J. (2012). Montmorillonite–chitosan bionanocomposites as adsorbents of the herbicide clopyralid in aqueous solution and soil/water suspensions. Journal of Hazardous Materials, 209, 67–76.CrossRef Celis, R., Adelino, M. A., Hermosín, M. C., & Cornejo, J. (2012). Montmorillonite–chitosan bionanocomposites as adsorbents of the herbicide clopyralid in aqueous solution and soil/water suspensions. Journal of Hazardous Materials, 209, 67–76.CrossRef
79.
Zurück zum Zitat Tirtom, V. N., Dinçer, A., Becerik, S., Aydemir, T., & Çelik, A. (2012). Comparative adsorption of Ni (II) and Cd (II) ions on epichlorohydrin crosslinked chitosan–clay composite beads in aqueous solution. Chemical Engineering Journal, 197, 379–386.CrossRef Tirtom, V. N., Dinçer, A., Becerik, S., Aydemir, T., & Çelik, A. (2012). Comparative adsorption of Ni (II) and Cd (II) ions on epichlorohydrin crosslinked chitosan–clay composite beads in aqueous solution. Chemical Engineering Journal, 197, 379–386.CrossRef
80.
Zurück zum Zitat Azzam, E. M., Eshaq, G. H., Rabie, A. M., Bakr, A. A., Abd-Elaal, A. A., El Metwally, A. E., et al. (2016). Preparation and characterization of chitosan-clay nanocomposites for the removal of Cu (II) from aqueous solution. International Journal of Biological Macromolecules, 89, 507–517.CrossRef Azzam, E. M., Eshaq, G. H., Rabie, A. M., Bakr, A. A., Abd-Elaal, A. A., El Metwally, A. E., et al. (2016). Preparation and characterization of chitosan-clay nanocomposites for the removal of Cu (II) from aqueous solution. International Journal of Biological Macromolecules, 89, 507–517.CrossRef
81.
Zurück zum Zitat Yan, Y., Yuvaraja, G., Liu, C., Kong, L., Guo, K., Reddy, G. M., et al. (2018). Removal of Pb (II) ions from aqueous media using epichlorohydrin crosslinked chitosan Schiff's base@ Fe3O4 (ECCSB@ Fe3O4). International Journal of Biological Macromolecules, 117, 1305–1313.CrossRef Yan, Y., Yuvaraja, G., Liu, C., Kong, L., Guo, K., Reddy, G. M., et al. (2018). Removal of Pb (II) ions from aqueous media using epichlorohydrin crosslinked chitosan Schiff's base@ Fe3O4 (ECCSB@ Fe3O4). International Journal of Biological Macromolecules, 117, 1305–1313.CrossRef
82.
Zurück zum Zitat Yadollahi, M., Farhoudian, S., & Namazi, H. (2015). One-pot synthesis of antibacterial chitosan/silver bio-nanocomposite hydrogel beads as drug delivery systems. International Journal of Biological Macromolecules, 79, 37–43.CrossRef Yadollahi, M., Farhoudian, S., & Namazi, H. (2015). One-pot synthesis of antibacterial chitosan/silver bio-nanocomposite hydrogel beads as drug delivery systems. International Journal of Biological Macromolecules, 79, 37–43.CrossRef
83.
Zurück zum Zitat Zhang, J., Wang, Q., & Wang, A. (2010). In situ generation of sodium alginate/hydroxyapatite nanocomposite beads as drug-controlled release matrices. Acta Biomaterialia, 6(2), 445–454.CrossRef Zhang, J., Wang, Q., & Wang, A. (2010). In situ generation of sodium alginate/hydroxyapatite nanocomposite beads as drug-controlled release matrices. Acta Biomaterialia, 6(2), 445–454.CrossRef
84.
Zurück zum Zitat Venkatesan, P., Puvvada, N., Dash, R., Kumar, B. P., Sarkar, D., Azab, B., … Mandal, M. (2011). The potential of celecoxib-loaded hydroxyapatite-chitosan nanocomposite for the treatment of colon cancer. Biomaterials, 32(15), 3794–3806.CrossRef Venkatesan, P., Puvvada, N., Dash, R., Kumar, B. P., Sarkar, D., Azab, B., … Mandal, M. (2011). The potential of celecoxib-loaded hydroxyapatite-chitosan nanocomposite for the treatment of colon cancer. Biomaterials32(15), 3794–3806.CrossRef
85.
Zurück zum Zitat Wu, J., Ding, S., Chen, J., Zhou, S., & Ding, H. (2014). Preparation and drug release properties of chitosan/organomodified palygorskite microspheres. International Journal of Biological Macromolecules, 68, 107–112.CrossRef Wu, J., Ding, S., Chen, J., Zhou, S., & Ding, H. (2014). Preparation and drug release properties of chitosan/organomodified palygorskite microspheres. International Journal of Biological Macromolecules, 68, 107–112.CrossRef
86.
Zurück zum Zitat Yadollahi, M., Farhoudian, S., Barkhordari, S., Gholamali, I., Farhadnejad, H., & Motasadizadeh, H. (2016). Facile synthesis of chitosan/ZnO bio-nanocomposite hydrogel beads as drug delivery systems. International Journal of Biological Macromolecules, 82, 273–278.CrossRef Yadollahi, M., Farhoudian, S., Barkhordari, S., Gholamali, I., Farhadnejad, H., & Motasadizadeh, H. (2016). Facile synthesis of chitosan/ZnO bio-nanocomposite hydrogel beads as drug delivery systems. International Journal of Biological Macromolecules, 82, 273–278.CrossRef
87.
Zurück zum Zitat Zare-Akbari, Z., Farhadnejad, H., Furughi-Nia, B., Abedin, S., Yadollahi, M., & Khorsand-Ghayeni, M. (2016). PH-sensitive bionanocomposite hydrogel beads based on carboxymethyl cellulose/ZnO nanoparticle as drug carrier. International Journal of Biological Macromolecules, 93, 1317–1327.CrossRef Zare-Akbari, Z., Farhadnejad, H., Furughi-Nia, B., Abedin, S., Yadollahi, M., & Khorsand-Ghayeni, M. (2016). PH-sensitive bionanocomposite hydrogel beads based on carboxymethyl cellulose/ZnO nanoparticle as drug carrier. International Journal of Biological Macromolecules, 93, 1317–1327.CrossRef
88.
Zurück zum Zitat Madene, A., Jacquot, M., Scher, J., & Desobry, S. (2006). Flavor encapsulation and controlled release–a review. International Journal of Food Science & Technology, 41(1), 1–21.CrossRef Madene, A., Jacquot, M., Scher, J., & Desobry, S. (2006). Flavor encapsulation and controlled release–a review. International Journal of Food Science & Technology, 41(1), 1–21.CrossRef
89.
Zurück zum Zitat Urata, M., Iwata, R., Noda, K., Murakami, Y., & Kuroda, A. (2009). Detection of living Salmonella cells using bioluminescence. Biotechnology Letters, 31(5), 737–741.CrossRef Urata, M., Iwata, R., Noda, K., Murakami, Y., & Kuroda, A. (2009). Detection of living Salmonella cells using bioluminescence. Biotechnology Letters, 31(5), 737–741.CrossRef
90.
Zurück zum Zitat Liu, H., Nakagawa, K., Kato, D. I., Chaudhary, D., & Tadé, M. O. (2011). Enzyme encapsulation in freeze-dried bionanocomposites prepared from chitosan and xanthan gum blend. Materials Chemistry and Physics, 129(1–2), 488–494.CrossRef Liu, H., Nakagawa, K., Kato, D. I., Chaudhary, D., & Tadé, M. O. (2011). Enzyme encapsulation in freeze-dried bionanocomposites prepared from chitosan and xanthan gum blend. Materials Chemistry and Physics, 129(1–2), 488–494.CrossRef
91.
Zurück zum Zitat Gazzaniga, A., Iamartino, P., Maffione, G., & Sangalli, M. E. (1994). Oral delayed-release system for colonic specific delivery. International Journal of Pharmaceutics, 108(1), 77–83.CrossRef Gazzaniga, A., Iamartino, P., Maffione, G., & Sangalli, M. E. (1994). Oral delayed-release system for colonic specific delivery. International Journal of Pharmaceutics, 108(1), 77–83.CrossRef
92.
Zurück zum Zitat Ashford, M., Fell, J. T., Attwood, D., Sharma, H., & Woodhead, P. J. (1993). An in vivo investigation into the suitability of pH dependent polymers for colonic targeting. International Journal of Pharmaceutics, 95(1–3), 193–199.CrossRef Ashford, M., Fell, J. T., Attwood, D., Sharma, H., & Woodhead, P. J. (1993). An in vivo investigation into the suitability of pH dependent polymers for colonic targeting. International Journal of Pharmaceutics, 95(1–3), 193–199.CrossRef
93.
Zurück zum Zitat Ribeiro, L. N., Alcântara, A. C., Darder, M., Aranda, P., Araújo-Moreira, F. M., & Ruiz-Hitzky, E. (2014). Pectin-coated chitosan–LDH bionanocomposite beads as potential systems for colon-targeted drug delivery. International Journal of Pharmaceutics, 463(1), 1–9.CrossRef Ribeiro, L. N., Alcântara, A. C., Darder, M., Aranda, P., Araújo-Moreira, F. M., & Ruiz-Hitzky, E. (2014). Pectin-coated chitosan–LDH bionanocomposite beads as potential systems for colon-targeted drug delivery. International Journal of Pharmaceutics, 463(1), 1–9.CrossRef
Metadaten
Titel
Bionanocomposites from Biofibers and Biopolymers
verfasst von
Muhammad Bilal
Tahir Rasheed
Faran Nabeel
Hafiz M. N. Iqbal
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-40301-0_6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.