Skip to main content

2017 | OriginalPaper | Buchkapitel

7. Bioprecipitation of Metals and Metalloids

verfasst von : Erkan Sahinkaya, Deniz Uçar, Anna H. Kaksonen

Erschienen in: Sustainable Heavy Metal Remediation

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Heavy metals are toxic, carcinogenic and unlike organic contaminants are not biodegradable, and thus accumulate in organisms. Approximately 60% of the polluted areas in the world, suffer from the harmful effects of metals including Cd, Ni, Cu, Pb, Zn, Hg and Co. Mining, fertilizer, tanneries, paper, batteries and electroplating industries are the main sources of heavy metal containing waters. For example, in China, the annual amount of heavy metal containing electroplating industry wastewater has exceeded 4 billion tons. Up to 1000 mg/kg heavy metal concentration in sediments has been reported due to repeated discharges. We reviewed the sources of heavy metal containing water and metal precipitation techniques including metal sulfide, hydroxide, ferrihydrite, geothite, jarosite as well as schwertmannite precipitation. Metal sulfide precipitation relies on the biological generation of H2S and near complete metal removal is possible with both organic (i.e. ethanol) and inorganic (i.e. hydrogen) electron donors. The utilization of soluble electron donors provides high rate and dense metal precipitates with metal recovery of over 80% (usually 100%). Additionally, metals can be recovered separately as various metal sulfides by adjusting pH. Biological oxidation/reduction processes facilitate the formation of insoluble metal precipitates for uranium (U6+ to U4+); chromium (Cr6+ to Cr3+) or iron (Fe2+ to Fe3+). The major points extracted from the study are: (1) metal sulfide precipitation is fast, results in low residual metal concentrations and allows for selective recovery of various metals with a wide variety of different reactor configurations, (2) high rate biological metal recovery is possible with cultures which use metals as electron acceptors which eliminates the drawbacks such as chemical costs and huge sludge volume production in chemical reduction, (3) animal manure, leaf mulch, sawdust, wood chips, sewage sludge, cellulose could be used in passive treatment systems and therefore operational costs could be optimized, (4) some heavy metals can be precipitated through biological oxidation (i.e. Fe2+ to Fe3+) and (5) possible iron precipitates include hematite (Fe2O3); geothite (FeOOH); ferric hydroxide Fe(OH)3; jarosite Fe3(SO4)2(OH)6; schwertmannite Fe16O16(SO4)2(OH)12.n(H2O) and scorodite (FeAsO4.2H2O).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bigham JM, Jones FS, Özkaya B, Sahinkaya E, Puhakka JA, Tuovinen OH (2010) Characterization of jarosites produced by chemical synthesis over a temperature gradient from 2 to 40 °C. Int J Miner Process 94(3–4):121–128. https://doi.org/10.1016/j.minpro.2010.01.005CrossRef Bigham JM, Jones FS, Özkaya B, Sahinkaya E, Puhakka JA, Tuovinen OH (2010) Characterization of jarosites produced by chemical synthesis over a temperature gradient from 2 to 40 °C. Int J Miner Process 94(3–4):121–128. https://​doi.​org/​10.​1016/​j.​minpro.​2010.​01.​005CrossRef
Zurück zum Zitat Bijmans MFM (2008) Sulfate reduction under acidic conditions for selective metal recovery. Wageningen University, Wageningen Bijmans MFM (2008) Sulfate reduction under acidic conditions for selective metal recovery. Wageningen University, Wageningen
Zurück zum Zitat Bijmans MFM, van Helvoort PJ, Dar SA, Dopson M, Lens PNL, Buisman CJN (2009b) Selective recovery of nickel over iron from a nickel-iron solution using microbial sulfate reduction in a gas-lift bioreactor. Water Res 43:853–861. doi:10.1016/j.watres.2008.11.023 CrossRef Bijmans MFM, van Helvoort PJ, Dar SA, Dopson M, Lens PNL, Buisman CJN (2009b) Selective recovery of nickel over iron from a nickel-iron solution using microbial sulfate reduction in a gas-lift bioreactor. Water Res 43:853–861. doi:10.​1016/​j.​watres.​2008.​11.​023 CrossRef
Zurück zum Zitat Chung J, Rittmann BE, Her N, Lee SH, Yoon Y (2010) Integration of H2-based membrane biofilm reactor with RO and NF membranes for removal of chromate and selenate. Water Air Soil Pollut 207:29–37. doi:10.1007/s11270-009-0116-7 CrossRef Chung J, Rittmann BE, Her N, Lee SH, Yoon Y (2010) Integration of H2-based membrane biofilm reactor with RO and NF membranes for removal of chromate and selenate. Water Air Soil Pollut 207:29–37. doi:10.​1007/​s11270-009-0116-7 CrossRef
Zurück zum Zitat Dogan NM, Kantar C, Gulcan S, Dodge CJ, Yilmaz BC, Mazmanci MA (2011) Chromium(VI) bioremoval by Pseudomonas bacteria: role of microbial exudates for natural attenuation and biotreatment of Cr(VI) contamination. Environ Sci Technol 45:2278–2285. doi:10.1021/es102095t CrossRef Dogan NM, Kantar C, Gulcan S, Dodge CJ, Yilmaz BC, Mazmanci MA (2011) Chromium(VI) bioremoval by Pseudomonas bacteria: role of microbial exudates for natural attenuation and biotreatment of Cr(VI) contamination. Environ Sci Technol 45:2278–2285. doi:10.​1021/​es102095t CrossRef
Zurück zum Zitat Dutrizac JE (1999) The effectiveness of jarosite species for precipitating sodium jarosite. JOM - The J Min Metal Mater Soc (TMS) 51:30–32. doi:10.1007/s11837-999-0168-6 Dutrizac JE (1999) The effectiveness of jarosite species for precipitating sodium jarosite. JOM - The J Min Metal Mater Soc (TMS) 51:30–32. doi:10.​1007/​s11837-999-0168-6
Zurück zum Zitat EPA-440/1-84/091 (1984) Guidance manual for electroplating and metal finishing pretreatment standards. 401 M Street S.W. Washington, DC 20460, USA EPA-440/1-84/091 (1984) Guidance manual for electroplating and metal finishing pretreatment standards. 401 M Street S.W. Washington, DC 20460, USA
Zurück zum Zitat Flege AE (2001) Sulfate reduction in five constructed wetlands receiving acid mine drainage. University of Cincinnati, Cincinnati Flege AE (2001) Sulfate reduction in five constructed wetlands receiving acid mine drainage. University of Cincinnati, Cincinnati
Zurück zum Zitat Jambor JL, Dutrizac JE (1998) Occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhydroxide. Chem Rev 98:2549–2586. doi:10.1021/cr970105t CrossRef Jambor JL, Dutrizac JE (1998) Occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhydroxide. Chem Rev 98:2549–2586. doi:10.​1021/​cr970105t CrossRef
Zurück zum Zitat Kaksonen AH, Franzmann PD, Puhakka JA (2003b) Performance and ethanol oxidation kinetics of a sulfate-reducing fluidized-bed reactor treating acidic metal-containing wastewater. Biodegradation 14:207–217. doi:10.1023/A:1024262607099 CrossRef Kaksonen AH, Franzmann PD, Puhakka JA (2003b) Performance and ethanol oxidation kinetics of a sulfate-reducing fluidized-bed reactor treating acidic metal-containing wastewater. Biodegradation 14:207–217. doi:10.​1023/​A:​1024262607099 CrossRef
Zurück zum Zitat Kaksonen AH, Plumb JJ, Franzmann PD, Puhakka JA (2004) Simple organic electron donors support diverse sulfate-reducing communities in fluidized-bed reactors treating acidic metal- and sulfate-containing wastewater. FEMS Microbiol Ecol 47:279–289. doi:10.1016/S0168-6496(03)00284-8 CrossRef Kaksonen AH, Plumb JJ, Franzmann PD, Puhakka JA (2004) Simple organic electron donors support diverse sulfate-reducing communities in fluidized-bed reactors treating acidic metal- and sulfate-containing wastewater. FEMS Microbiol Ecol 47:279–289. doi:10.​1016/​S0168-6496(03)00284-8 CrossRef
Zurück zum Zitat Kaksonen AH, Morris C, Rea S, Li J, Usher KM, McDonald RG, Hilario F, Hosken T, Jackson M, Chris A, du Plessis CA (2014a) Biohydrometallurgical iron oxidation and precipitation: Part II – Jarosite precipitate characterisation and acid recovery by conversion to hematite. Hydrometallurgy 147–148:264–272. doi:10.1016/j.hydromet.2014.04.015 Kaksonen AH, Morris C, Rea S, Li J, Usher KM, McDonald RG, Hilario F, Hosken T, Jackson M, Chris A, du Plessis CA (2014a) Biohydrometallurgical iron oxidation and precipitation: Part II – Jarosite precipitate characterisation and acid recovery by conversion to hematite. Hydrometallurgy 147–148:264–272. doi:10.​1016/​j.​hydromet.​2014.​04.​015
Zurück zum Zitat Kaksonen AH, Morris C, Rea S, Li J, Wylie J, Usher KM, Ginige MP, Cheng KY, Hilario F, du Plessis CA (2014b) Biohydrometallurgical iron oxidation and precipitation: Part I – Effect of pH on process performance. Hydrometallurgy 147-148:255–263. doi:10.1016/j.hydromet.2014.04.016 Kaksonen AH, Morris C, Rea S, Li J, Wylie J, Usher KM, Ginige MP, Cheng KY, Hilario F, du Plessis CA (2014b) Biohydrometallurgical iron oxidation and precipitation: Part I – Effect of pH on process performance. Hydrometallurgy 147-148:255–263. doi:10.​1016/​j.​hydromet.​2014.​04.​016
Zurück zum Zitat Kaksonen AH, Morris C, Hilario F, Rea SM, Li J, Usher KM, Wylie J, Ginige MP, Yu K, Cheng KY, du Plessis C (2014c) Iron oxidation and jarosite precipitation in a two-stage airlift bioreactor. Hydrometallurgy 150:227–235. doi:10.1016/j.hydromet.2014.05.020 CrossRef Kaksonen AH, Morris C, Hilario F, Rea SM, Li J, Usher KM, Wylie J, Ginige MP, Yu K, Cheng KY, du Plessis C (2014c) Iron oxidation and jarosite precipitation in a two-stage airlift bioreactor. Hydrometallurgy 150:227–235. doi:10.​1016/​j.​hydromet.​2014.​05.​020 CrossRef
Zurück zum Zitat Kieft TL, Fredrickson JK, Onstott TC, Gorby YA, Kostandarithes HM, Bailey TJ, Kennedy DW, Li SW, Plymale AE, Spadoni CM, Gray MS (1999) Dissimilatory reduction of Fe(III) and other electron acceptors by a Thermus isolate. Appl Environ Microbiol 65:1214–1221 Kieft TL, Fredrickson JK, Onstott TC, Gorby YA, Kostandarithes HM, Bailey TJ, Kennedy DW, Li SW, Plymale AE, Spadoni CM, Gray MS (1999) Dissimilatory reduction of Fe(III) and other electron acceptors by a Thermus isolate. Appl Environ Microbiol 65:1214–1221
Zurück zum Zitat Lens PNL, Kuenen JG (2001) The biological sulfur cycle: novel opportunities for environmental biotechnology. Water Sci Technol 44:57–66 Lens PNL, Kuenen JG (2001) The biological sulfur cycle: novel opportunities for environmental biotechnology. Water Sci Technol 44:57–66
Zurück zum Zitat Lovley DR, Phillips EJP (1992) Reduction of uranium by Desulfovibrio desulfuricans. Appl Environ Microbiol 58:850–856 Lovley DR, Phillips EJP (1992) Reduction of uranium by Desulfovibrio desulfuricans. Appl Environ Microbiol 58:850–856
Zurück zum Zitat Luna-Velasco A, Sierra-Alvarez R, Castro B, Field JA (2010) Removal of nitrate and hexavalent uranium from groundwater by sequential treatment in bioreactors packed with elemental sulfur and zero-valent iron. Biotechnol Bioeng 107:933–942. doi:10.1002/bit.22881 CrossRef Luna-Velasco A, Sierra-Alvarez R, Castro B, Field JA (2010) Removal of nitrate and hexavalent uranium from groundwater by sequential treatment in bioreactors packed with elemental sulfur and zero-valent iron. Biotechnol Bioeng 107:933–942. doi:10.​1002/​bit.​22881 CrossRef
Zurück zum Zitat Mazumder D, Ghosh D, Bandyopadhyay P (2011) Treatment of electroplating wastewater by adsorption technique. Int J Civ Environ Eng 3:101–110 Mazumder D, Ghosh D, Bandyopadhyay P (2011) Treatment of electroplating wastewater by adsorption technique. Int J Civ Environ Eng 3:101–110
Zurück zum Zitat Melitas N, Chuffe-Moscoso O, Farrell J (2001) Kinetics of soluble chromium removal from contaminated water by zerovalent iron media: corrosion inhibition and passive oxide effects. Environ Sci Technol 35:3948–3953. doi:10.1021/es001923x CrossRef Melitas N, Chuffe-Moscoso O, Farrell J (2001) Kinetics of soluble chromium removal from contaminated water by zerovalent iron media: corrosion inhibition and passive oxide effects. Environ Sci Technol 35:3948–3953. doi:10.​1021/​es001923x CrossRef
Zurück zum Zitat Newman DK, Beveridge TJ, Morel FMM (1997a) Precipitation of arsenic trisulfide by Desulfotomaculum auripigmentum. Appl Environ Microbiol 63:2022–2028 Newman DK, Beveridge TJ, Morel FMM (1997a) Precipitation of arsenic trisulfide by Desulfotomaculum auripigmentum. Appl Environ Microbiol 63:2022–2028
Zurück zum Zitat Newman DK, Kennedy EK, Coates JD, Ahmann D, Ellis DJ, Lovley DR, Morel FMM (1997b) Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. Arch Microbiol 168:380–388. doi:10.1007/s002030050512 CrossRef Newman DK, Kennedy EK, Coates JD, Ahmann D, Ellis DJ, Lovley DR, Morel FMM (1997b) Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. Arch Microbiol 168:380–388. doi:10.​1007/​s002030050512 CrossRef
Zurück zum Zitat Nurmi P (2009) Oxidation and control of iron in bioleaching solutions. Tampere University of Technology, Tampere Nurmi P (2009) Oxidation and control of iron in bioleaching solutions. Tampere University of Technology, Tampere
Zurück zum Zitat Nurmi P, Özkaya B, Sasaki K, Kaksonen AH, Riekkola-Vanhanen M, Tuovinen OH, Puhakka JA (2010) Biooxidation and precipitation for iron and sulfate removal from heap bioleaching effluent streams. Hydrometallurgy 101:7–14. doi:10.1016/j.hydromet.2009.11.004 CrossRef Nurmi P, Özkaya B, Sasaki K, Kaksonen AH, Riekkola-Vanhanen M, Tuovinen OH, Puhakka JA (2010) Biooxidation and precipitation for iron and sulfate removal from heap bioleaching effluent streams. Hydrometallurgy 101:7–14. doi:10.​1016/​j.​hydromet.​2009.​11.​004 CrossRef
Zurück zum Zitat Ozkaya B, Sahinkaya E, Nurmi P, Kaksonen AH, Puhakka J A. (2007) Iron oxidation and precipitation in a simulated heap leaching solution in a Leptospirillum ferriphilum dominated biofilm reactor. Hydrometallurgy 88:67–74. doi:10.1016/j.hydromet.2007.02.009 CrossRef Ozkaya B, Sahinkaya E, Nurmi P, Kaksonen AH, Puhakka J A. (2007) Iron oxidation and precipitation in a simulated heap leaching solution in a Leptospirillum ferriphilum dominated biofilm reactor. Hydrometallurgy 88:67–74. doi:10.​1016/​j.​hydromet.​2007.​02.​009 CrossRef
Zurück zum Zitat Rohwerder T, Rohwerder T, Gehrke T, Gehrke T, Kinzler K, Kinzler K, Sand W, Sand W (2003) Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63:239–248. doi:10.1007/s00253-003-1448-7 CrossRef Rohwerder T, Rohwerder T, Gehrke T, Gehrke T, Kinzler K, Kinzler K, Sand W, Sand W (2003) Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63:239–248. doi:10.​1007/​s00253-003-1448-7 CrossRef
Zurück zum Zitat Shelobolina ES, Sullivan SA, O’Neill KR, Nevin KP, Lovley DR (2004) Isolation, characterization, and U(VI)-reducing potential of a facultatively anaerobic, acid-resistant bacterium from low-pH, nitrate- and U(VI)-contaminated subsurface sediment and description of Salmonella subterranean sp. nov. Appl Environ Microbiol 70:2959–2965CrossRef Shelobolina ES, Sullivan SA, O’Neill KR, Nevin KP, Lovley DR (2004) Isolation, characterization, and U(VI)-reducing potential of a facultatively anaerobic, acid-resistant bacterium from low-pH, nitrate- and U(VI)-contaminated subsurface sediment and description of Salmonella subterranean sp. nov. Appl Environ Microbiol 70:2959–2965CrossRef
Zurück zum Zitat Singh R, Kumar A, Kirrolia A, Kumar R, Yadav N, Bishnoi NR, Lohchab RK (2011) Removal of sulphate, COD and Cr(VI) in simulated and real wastewater by sulphate reducing bacteria enrichment in small bioreactor and FTIR study. Bioresour Technol 102:677–682. doi:10.1016/j.biortech.2010.08.041 CrossRef Singh R, Kumar A, Kirrolia A, Kumar R, Yadav N, Bishnoi NR, Lohchab RK (2011) Removal of sulphate, COD and Cr(VI) in simulated and real wastewater by sulphate reducing bacteria enrichment in small bioreactor and FTIR study. Bioresour Technol 102:677–682. doi:10.​1016/​j.​biortech.​2010.​08.​041 CrossRef
Zurück zum Zitat Tammaro M, Salluzo A, Perfetto R, Lancia A (2014) A comparative evaluation of biological activated carbon and activated sludge processes for the treatment of tannery wastewater. J Environ Chem Eng 2(3):1445–1455. doi:10.1016/j.jece.2014.07.004 CrossRef Tammaro M, Salluzo A, Perfetto R, Lancia A (2014) A comparative evaluation of biological activated carbon and activated sludge processes for the treatment of tannery wastewater. J Environ Chem Eng 2(3):1445–1455. doi:10.​1016/​j.​jece.​2014.​07.​004 CrossRef
Zurück zum Zitat Villa-Gomez D, Ababneh H, Papirio S, Rousseau DPL, Lens PNL (2011) Effect of sulfide concentration on the location of the metal precipitates in inversed fluidized bed reactors. J Hazard Mater 192:200–207. doi:10.1016/j.jhazmat.2011.05.002 Villa-Gomez D, Ababneh H, Papirio S, Rousseau DPL, Lens PNL (2011) Effect of sulfide concentration on the location of the metal precipitates in inversed fluidized bed reactors. J Hazard Mater 192:200–207. doi:10.​1016/​j.​jhazmat.​2011.​05.​002
Zurück zum Zitat Wu WM, Carley J, Gentry T, Ginder-Vogel MA, Fienen M, Mehlhorn T, Yan H, Caroll S, Pace MN, Nyman J, Luo J, Gentile ME, Fields MW, Hickey RF, Gu B, Watson D, Cirpka OA, Zhou J, Fendorf S, Kitanidis PK, Jardine PM, Criddle CS (2006) Pilot-scale in situ bioremedation of uranium in a highly contaminated aquifer. 2. Reduction of U(VI) and geochemical control of U(VI) bioavailability. Environ Sci Technol 40:3986–3995. doi:10.1021/es051960u CrossRef Wu WM, Carley J, Gentry T, Ginder-Vogel MA, Fienen M, Mehlhorn T, Yan H, Caroll S, Pace MN, Nyman J, Luo J, Gentile ME, Fields MW, Hickey RF, Gu B, Watson D, Cirpka OA, Zhou J, Fendorf S, Kitanidis PK, Jardine PM, Criddle CS (2006) Pilot-scale in situ bioremedation of uranium in a highly contaminated aquifer. 2. Reduction of U(VI) and geochemical control of U(VI) bioavailability. Environ Sci Technol 40:3986–3995. doi:10.​1021/​es051960u CrossRef
Zurück zum Zitat Zhou C, Ontiveros-Valencia A, Cornette de Saint Cyr L, Zevin AS, Carey SE, Krajmalnik-Brown R, Rittmann BE (2014) Uranium removal and microbial community in a H2-based membrane biofilm reactor. Water Res 64:255–264. doi:10.1016/j.watres.2014.07.013 CrossRef Zhou C, Ontiveros-Valencia A, Cornette de Saint Cyr L, Zevin AS, Carey SE, Krajmalnik-Brown R, Rittmann BE (2014) Uranium removal and microbial community in a H2-based membrane biofilm reactor. Water Res 64:255–264. doi:10.​1016/​j.​watres.​2014.​07.​013 CrossRef
Zurück zum Zitat Zhu J, Gan M, Zhang D, Hu Y, Chai L (2013) The nature of schwertmannite and jarosite mediated by two strains of Acidithiobacillus ferrooxidans with different ferrous oxidation ability. Mater Sci Eng C Mater Biol Appl 33:2679–2685. doi:10.1016/j.msec.2013.02.026 CrossRef Zhu J, Gan M, Zhang D, Hu Y, Chai L (2013) The nature of schwertmannite and jarosite mediated by two strains of Acidithiobacillus ferrooxidans with different ferrous oxidation ability. Mater Sci Eng C Mater Biol Appl 33:2679–2685. doi:10.​1016/​j.​msec.​2013.​02.​026 CrossRef
Metadaten
Titel
Bioprecipitation of Metals and Metalloids
verfasst von
Erkan Sahinkaya
Deniz Uçar
Anna H. Kaksonen
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-58622-9_7