Skip to main content

2017 | OriginalPaper | Buchkapitel

6. Bioelectrochemical Systems for Heavy Metal Removal and Recovery

verfasst von : Jampala Annie Modestra, Gokuladoss Velvizhi, Kamaja Vamshi Krishna, Kotakonda Arunasri, Piet N. L. Lens, YarlagaddaVenkata Nancharaiah, S. Venkata Mohan

Erschienen in: Sustainable Heavy Metal Remediation

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Although metal bearing wastes are toxic, they possess economic value and hence need attention towards remediation/recovery. Various physical and chemical methods are being practiced for treating metal laden wastewaters, but are limited owing to the problems associated with maintenance and operational costs. Biological methods that use microbes as catalyst are cost effective and easy to operate, but only a little progress has been made in terms of recovery than the treatment. Recently, there is a shift in focus from bioremediation of metal wastes towards the recovery of valuable metals which are scanty. In this context, bioelectrochemical systems (BES) have emerged as a potential technological platform for recovery of metal ions from metallurgical waste (end-of-life products), process streams and wastewaters. In bioelectrochemical systems, microbial oxidation of organic substrate at the anode is coupled to abiotic or biotic reduction of metal ions at the cathode. With this perspective, this chapter gives an insight on the redox mechanisms of bacteria towards metal recovery along with the influence of in situ and ex situ potentials in bioelectrochemical systems. The exo-electron transport mechanism in bacteria for metal reduction and speciation is also discussed. Besides, the chapter also provides an overview on the metal speciation in bioelectrochemical systems along with electrochemical, physical and chemical methods for metal removal and recovery from wastewaters. Emerging metal recovery concepts based on bioelectrochemical systems are also presented in detail.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aklujkar M, Coppi MV, Leang C, Kim BC, Chavan M, Perpetua L, Holmes DE (2013) Proteins involved in electron transfer to Fe (III) and Mn (IV) oxides by Geobacter sulfurreducens and Geobacter uraniireducens. Microbiology 159(Part 3):515–535. doi:10.1099/mic.0.064089-0. Epub 2013 Jan 10CrossRef Aklujkar M, Coppi MV, Leang C, Kim BC, Chavan M, Perpetua L, Holmes DE (2013) Proteins involved in electron transfer to Fe (III) and Mn (IV) oxides by Geobacter sulfurreducens and Geobacter uraniireducens. Microbiology 159(Part 3):515–535. doi:10.​1099/​mic.​0.​064089-0. Epub 2013 Jan 10CrossRef
Zurück zum Zitat Benefield LD, Morgan JM (1999) Chapter 10: Chemical precipitation. In: Letterman RD (ed) Water quality and treatment, 5th edn. Mc Graw-Hill, New York Benefield LD, Morgan JM (1999) Chapter 10: Chemical precipitation. In: Letterman RD (ed) Water quality and treatment, 5th edn. Mc Graw-Hill, New York
Zurück zum Zitat Bockris JO’M (1971) Electrochemistry of cleaner environments, A work book of electrochemistry. Plenum Press, New York, p 175 Bockris JO’M (1971) Electrochemistry of cleaner environments, A work book of electrochemistry. Plenum Press, New York, p 175
Zurück zum Zitat Chakraborty P, Chakrabarti CL (2006) Chemical speciation of Co, Ni, Cu, and Zn in mine effluents and effects of dilution of the effluent on release of the above metals from their metal dissolved organic carbon (DOC) complexes. Anal Chim Acta 571:260–269. doi:10.1016/j.aca.2006.04.069 CrossRef Chakraborty P, Chakrabarti CL (2006) Chemical speciation of Co, Ni, Cu, and Zn in mine effluents and effects of dilution of the effluent on release of the above metals from their metal dissolved organic carbon (DOC) complexes. Anal Chim Acta 571:260–269. doi:10.​1016/​j.​aca.​2006.​04.​069 CrossRef
Zurück zum Zitat Chen TC, Huang G-H, Chen C-S, Huang Y-H (2013) Reducing industrial wastewater and recovery of gold by direct contact membrane distillation with electrolytic system. Sustain Environ Res 23:209–214 Chen TC, Huang G-H, Chen C-S, Huang Y-H (2013) Reducing industrial wastewater and recovery of gold by direct contact membrane distillation with electrolytic system. Sustain Environ Res 23:209–214
Zurück zum Zitat Coursolle D, Baron DB, Bond DR, Gralnick JA (2010) The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. J Bacteriol 192(2):467–474. doi:10.1128/JB.00925-09 CrossRef Coursolle D, Baron DB, Bond DR, Gralnick JA (2010) The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. J Bacteriol 192(2):467–474. doi:10.​1128/​JB.​00925-09 CrossRef
Zurück zum Zitat De Schamphelaere KA, Janssen CR (2004) Development and field validation of a biotic ligand model predicting chronic copper toxicity to Daphnia magna. Environ Toxicol Chem 23(6):1365–1375. doi:10.1897/02-626 CrossRef De Schamphelaere KA, Janssen CR (2004) Development and field validation of a biotic ligand model predicting chronic copper toxicity to Daphnia magna. Environ Toxicol Chem 23(6):1365–1375. doi:10.​1897/​02-626 CrossRef
Zurück zum Zitat Dermentzis K, Christoforidis A, Valsamidou E, Lazaridou A, Kokkinos N (2011) Removal of hexavalent chromium from electroplating wastewater by electrocoagulation with iron electrodes. Global NEST J 13:412–418 Dermentzis K, Christoforidis A, Valsamidou E, Lazaridou A, Kokkinos N (2011) Removal of hexavalent chromium from electroplating wastewater by electrocoagulation with iron electrodes. Global NEST J 13:412–418
Zurück zum Zitat Ding YHR, Hixson KK, Aklujkar M a, Lipton MS, Smith RD, Lovley DR, Mester T (2008) Proteome of Geobacter sulfurreducens grown with Fe(III) oxide or Fe(III) citrate as the electron acceptor. BBA-Proteins Proteom 1784(12):1935–1941. doi:10.1016/j.bbapap.2008.06.011 CrossRef Ding YHR, Hixson KK, Aklujkar M a, Lipton MS, Smith RD, Lovley DR, Mester T (2008) Proteome of Geobacter sulfurreducens grown with Fe(III) oxide or Fe(III) citrate as the electron acceptor. BBA-Proteins Proteom 1784(12):1935–1941. doi:10.​1016/​j.​bbapap.​2008.​06.​011 CrossRef
Zurück zum Zitat Francis AJ, Nancharaiah YV (2015) In situ and ex situ bioremediation of radionuclide-contaminated soils at nuclear and norm sites. In: van Velzen L (ed) Environmental remediation and restoration of contaminated nuclear and norm sites. ISBN: 978–1–78242-231-0.185 -236. doi: 10.1016/B978-1-78242-231-0.00009-0 Francis AJ, Nancharaiah YV (2015) In situ and ex situ bioremediation of radionuclide-contaminated soils at nuclear and norm sites. In: van Velzen L (ed) Environmental remediation and restoration of contaminated nuclear and norm sites. ISBN: 978–1–78242-231-0.185 -236. doi: 10.​1016/​B978-1-78242-231-0.​00009-0
Zurück zum Zitat Gregory KB, Lovley DR (2005) Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ Sci Technol 39(22):8943–8947. doi:10.1021/es050457e CrossRef Gregory KB, Lovley DR (2005) Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ Sci Technol 39(22):8943–8947. doi:10.​1021/​es050457e CrossRef
Zurück zum Zitat Harris HW, El-Naggar MY, Bretschger O, Ward MJ, Romine MF, Obraztsova AY, Nealson KH (2010) Electrokinesis is a microbial behavior that requires extracellular electron transport. Proc Natl Acad Sci U S A 107(1):326–331. doi:10.1073/pnas.0907468107 CrossRef Harris HW, El-Naggar MY, Bretschger O, Ward MJ, Romine MF, Obraztsova AY, Nealson KH (2010) Electrokinesis is a microbial behavior that requires extracellular electron transport. Proc Natl Acad Sci U S A 107(1):326–331. doi:10.​1073/​pnas.​0907468107 CrossRef
Zurück zum Zitat Heijne AT, Liu F, Van der Weijden R, Weijma J, Buisman CJN, Hamelers HVM (2010) Copper recovery combined with electricity production in a microbial fuel cell. Environ Sci Technol 44(11):4376–4381. doi:10.1021/es100526g CrossRef Heijne AT, Liu F, Van der Weijden R, Weijma J, Buisman CJN, Hamelers HVM (2010) Copper recovery combined with electricity production in a microbial fuel cell. Environ Sci Technol 44(11):4376–4381. doi:10.​1021/​es100526g CrossRef
Zurück zum Zitat Holmes DE, Finneran KT, O’Neil RA, Lovley DR (2002) Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments. Appl Environ Microbiol 68(5):2300–2306. doi:10.1128/AEM.68.5.2300-2306.2002 CrossRef Holmes DE, Finneran KT, O’Neil RA, Lovley DR (2002) Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments. Appl Environ Microbiol 68(5):2300–2306. doi:10.​1128/​AEM.​68.​5.​2300-2306.​2002 CrossRef
Zurück zum Zitat Huang L, Chai X, Cheng S, Chen G (2011a) Evaluation of carbon-based materials in tubular biocathode microbial fuel cells in terms of hexavalent chromium reduction and electricity generation. Chem Eng J 166(2):652–661. doi:10.1016/j.cej.2010.11.042 CrossRef Huang L, Chai X, Cheng S, Chen G (2011a) Evaluation of carbon-based materials in tubular biocathode microbial fuel cells in terms of hexavalent chromium reduction and electricity generation. Chem Eng J 166(2):652–661. doi:10.​1016/​j.​cej.​2010.​11.​042 CrossRef
Zurück zum Zitat Huang L, Chai X, Chen G, Logan BE (2011c) Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells. Environ Sci Technol 45:5025–5031. doi:10.1021/es103875d CrossRef Huang L, Chai X, Chen G, Logan BE (2011c) Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells. Environ Sci Technol 45:5025–5031. doi:10.​1021/​es103875d CrossRef
Zurück zum Zitat Jiménez-Rodríguez AM, Durán-Barrantes MM, Borja R, Sánchez E, Colmenarejo MF, Raposo F (2009) Heavy metals removal from acid mine drainage water using biogenic hydrogen suphide and effluent from anaerobic treatment: effect of pH. J Hazard Mater 165:759–765. doi:10.1016/j.jhazmat.2008.10.053 CrossRef Jiménez-Rodríguez AM, Durán-Barrantes MM, Borja R, Sánchez E, Colmenarejo MF, Raposo F (2009) Heavy metals removal from acid mine drainage water using biogenic hydrogen suphide and effluent from anaerobic treatment: effect of pH. J Hazard Mater 165:759–765. doi:10.​1016/​j.​jhazmat.​2008.​10.​053 CrossRef
Zurück zum Zitat Kato S, Hashimoto K, Watanabe K (2012) Microbial interspecies electron transfer via electric currents through conductive minerals. Proc Natl Acad Sci U S A 109(25):10042–10046. doi:10.1073/pnas.1117592109 CrossRef Kato S, Hashimoto K, Watanabe K (2012) Microbial interspecies electron transfer via electric currents through conductive minerals. Proc Natl Acad Sci U S A 109(25):10042–10046. doi:10.​1073/​pnas.​1117592109 CrossRef
Zurück zum Zitat Kotz R, Stucki S, Garcer B (1991) Electrochemical wastewater treatment using high over-voltage anodes. Part-I: physical and electrochemical properties of SnO2 anodes. J Appl Electrochem 21:14–20CrossRef Kotz R, Stucki S, Garcer B (1991) Electrochemical wastewater treatment using high over-voltage anodes. Part-I: physical and electrochemical properties of SnO2 anodes. J Appl Electrochem 21:14–20CrossRef
Zurück zum Zitat Kurniawan TA, Chan GYS, Lo W, Babel S (2006b) Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Sci Total Environ 366:409–426CrossRef Kurniawan TA, Chan GYS, Lo W, Babel S (2006b) Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Sci Total Environ 366:409–426CrossRef
Zurück zum Zitat Leung KM, Wanger G, El-Naggar MY, Gorby Y, Southam G, Lau WM, Yang J (2013) Shewanella oneidensis MR-1 bacterial nanowires exhibit p-type, tunable electronic behavior. Nano Lett 13(6):2407–2411. doi:10.1021/nl400237p CrossRef Leung KM, Wanger G, El-Naggar MY, Gorby Y, Southam G, Lau WM, Yang J (2013) Shewanella oneidensis MR-1 bacterial nanowires exhibit p-type, tunable electronic behavior. Nano Lett 13(6):2407–2411. doi:10.​1021/​nl400237p CrossRef
Zurück zum Zitat Li X, Zhu N, Wang Y, Li P, Wu P, Wu J (2013) Animal carcass wastewater treatment and bioelectricity generation in up-flow tubular microbial fuel cells: effects of HRT and non-precious metallic catalyst. Bioresour Technol 128:454–460. doi:10.1016/j.biortech.2012.10.053 CrossRef Li X, Zhu N, Wang Y, Li P, Wu P, Wu J (2013) Animal carcass wastewater treatment and bioelectricity generation in up-flow tubular microbial fuel cells: effects of HRT and non-precious metallic catalyst. Bioresour Technol 128:454–460. doi:10.​1016/​j.​biortech.​2012.​10.​053 CrossRef
Zurück zum Zitat Li W, Yu H, He Z (2014) Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy Environ Sci 7:911–924. doi:10.1039/C3EE43106A CrossRef Li W, Yu H, He Z (2014) Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy Environ Sci 7:911–924. doi:10.​1039/​C3EE43106A CrossRef
Zurück zum Zitat Liu C, Gorby YA, Zachara JM, Fredrickson JK, Brown CF (2002) Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria. Biotechnol Bioeng 80(6):637–649. doi:10.1002/bit.10430 CrossRef Liu C, Gorby YA, Zachara JM, Fredrickson JK, Brown CF (2002) Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria. Biotechnol Bioeng 80(6):637–649. doi:10.​1002/​bit.​10430 CrossRef
Zurück zum Zitat Liu XW, Sun XF, Chen JJ, Huang YX, Xie JF, Li WW, Sheng GP, Zhang YY, Zhao F, Lu R, Yu HQ (2013) Phenothiazine derivative-accelerated microbial extracellular electron transfer in bioelectrochemical system. Sci Rep 3:1616. doi:10.1038/srep01616 CrossRef Liu XW, Sun XF, Chen JJ, Huang YX, Xie JF, Li WW, Sheng GP, Zhang YY, Zhao F, Lu R, Yu HQ (2013) Phenothiazine derivative-accelerated microbial extracellular electron transfer in bioelectrochemical system. Sci Rep 3:1616. doi:10.​1038/​srep01616 CrossRef
Zurück zum Zitat Liu Y, Wang Z, Liu J, Levar C, Edwards MJ, Babauta JT et al (2014) A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA. Environ Microbiol Rep. doi:10.1111/1758-2229.12204 Liu Y, Wang Z, Liu J, Levar C, Edwards MJ, Babauta JT et al (2014) A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA. Environ Microbiol Rep. doi:10.​1111/​1758-2229.​12204
Zurück zum Zitat Logan BE (2010) Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol 85:1665–1671. doi:10.1007/s00253-009-2378-9 Logan BE (2010) Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol 85:1665–1671. doi:10.1007/s00253-009-2378-9
Zurück zum Zitat Lovley DR, Widman PK, Woodward JC, Phillips EJ (1993) Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris. Appl Environ Microbiol 59(11):3572–3576 Lovley DR, Widman PK, Woodward JC, Phillips EJ (1993) Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris. Appl Environ Microbiol 59(11):3572–3576
Zurück zum Zitat Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci U S A 105(10):3968–3973. doi:10.1073/pnas.0710525105 CrossRef Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci U S A 105(10):3968–3973. doi:10.​1073/​pnas.​0710525105 CrossRef
Zurück zum Zitat Mehta CT, Coppi MV, Childers SE, Lovley DR (2005) Outer membrane c-type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens. Appl Environ Microbiol 71(12):8634–8641CrossRef Mehta CT, Coppi MV, Childers SE, Lovley DR (2005) Outer membrane c-type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens. Appl Environ Microbiol 71(12):8634–8641CrossRef
Zurück zum Zitat Mohanakrishna G, Venkata Mohan S, Sarma PN (2010) Utilizing acid-rich effluents of fermentative hydrogen production process as substrate for harnessing bioelectricity: an integrative approach. Int J Hydrogen Energ 35:3440–3449. doi:10.1016/j.ijhydene.2010.01.084 CrossRef Mohanakrishna G, Venkata Mohan S, Sarma PN (2010) Utilizing acid-rich effluents of fermentative hydrogen production process as substrate for harnessing bioelectricity: an integrative approach. Int J Hydrogen Energ 35:3440–3449. doi:10.​1016/​j.​ijhydene.​2010.​01.​084 CrossRef
Zurück zum Zitat Muller KJ (1991) Electrochemical cell design and optimization procedures, DECHEMA Monographein, 123, 199. FRG, Frankfurt Muller KJ (1991) Electrochemical cell design and optimization procedures, DECHEMA Monographein, 123, 199. FRG, Frankfurt
Zurück zum Zitat Nancharaiah YV, Joshi HM, Mohan TVK, Venugopalan VP, Narasimhan SV (2006) Aerobic granular biomass: a novel biomaterial for efficient uranium removal. Curr Sci 91:503–509 Nancharaiah YV, Joshi HM, Mohan TVK, Venugopalan VP, Narasimhan SV (2006) Aerobic granular biomass: a novel biomaterial for efficient uranium removal. Curr Sci 91:503–509
Zurück zum Zitat Nancharaiah YV, Dodge C, Venugopalan VP, Narasimhan SV, Francis AJ (2010) Immobilization of Cr(VI) and its reduction to Cr(III) phosphate by granular biofilms comprising a mixture of microbes. Appl Environ Microbiol 76:2433–2438. doi:10.1128/AEM.02792-09 CrossRef Nancharaiah YV, Dodge C, Venugopalan VP, Narasimhan SV, Francis AJ (2010) Immobilization of Cr(VI) and its reduction to Cr(III) phosphate by granular biofilms comprising a mixture of microbes. Appl Environ Microbiol 76:2433–2438. doi:10.​1128/​AEM.​02792-09 CrossRef
Zurück zum Zitat Nancharaiah YV, Venkata Mohan S, Lens PNL (2016) Biological and bioelectrochemical recovery of critical and scarce metals. Trends Biotechnol 34(2):137–155. DOI: http://dx.doi.org/10.1016/j.tibtech.2015.11.003CrossRef Nancharaiah YV, Venkata Mohan S, Lens PNL (2016) Biological and bioelectrochemical recovery of critical and scarce metals. Trends Biotechnol 34(2):137–155. DOI: http://​dx.​doi.​org/​10.​1016/​j.​tibtech.​2015.​11.​003CrossRef
Zurück zum Zitat Olaniran AO, Balgobind A, Pillay B (2013) Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies. Int J Mol Sci 14(5):10197–10228. doi:10.3390/ijms140510197 CrossRef Olaniran AO, Balgobind A, Pillay B (2013) Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies. Int J Mol Sci 14(5):10197–10228. doi:10.​3390/​ijms140510197 CrossRef
Zurück zum Zitat Olojo EAA, Awoniran R (2012) Bioconcentration of heavy metals in the tissues of Nile tilapia (Oreochromisniloticus) and African catfish (Clarias gariepinus) in osun river, south-west. Nigeria Asian J Phar Biol Res 2:117–121 Olojo EAA, Awoniran R (2012) Bioconcentration of heavy metals in the tissues of Nile tilapia (Oreochromisniloticus) and African catfish (Clarias gariepinus) in osun river, south-west. Nigeria Asian J Phar Biol Res 2:117–121
Zurück zum Zitat Ozaki H, Sharma K, Saktaywin W (2002) Performance of an ultra-low-pressure reverse osmosis membrane (ULPROM) for separating heavy metal: effects of interference parameters. Desalination 144(1–3):287–294. doi:10.1016/S0011-9164(02)00329-6 CrossRef Ozaki H, Sharma K, Saktaywin W (2002) Performance of an ultra-low-pressure reverse osmosis membrane (ULPROM) for separating heavy metal: effects of interference parameters. Desalination 144(1–3):287–294. doi:10.​1016/​S0011-9164(02)00329-6 CrossRef
Zurück zum Zitat Pant D, Singh A, Bogaert VG, Olsen SI, Nigam PS, Diels L, Vanbroekhoven K (2012) Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Adv 2:1248–1263. doi:10.1039/C1RA00839K CrossRef Pant D, Singh A, Bogaert VG, Olsen SI, Nigam PS, Diels L, Vanbroekhoven K (2012) Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Adv 2:1248–1263. doi:10.​1039/​C1RA00839K CrossRef
Zurück zum Zitat Papadopoulos A, Fatta D, Parperis K, Mentzis A, Haralambous K-J, Loizidou M (2004) Nickel uptake from a wastewater stream produced in a metal finishing industry by combination of ion-exchange and precipitation methods. Sep Purif Technol 39(3):181–188. doi:10.1016/j.seppur.2003.10.010 CrossRef Papadopoulos A, Fatta D, Parperis K, Mentzis A, Haralambous K-J, Loizidou M (2004) Nickel uptake from a wastewater stream produced in a metal finishing industry by combination of ion-exchange and precipitation methods. Sep Purif Technol 39(3):181–188. doi:10.​1016/​j.​seppur.​2003.​10.​010 CrossRef
Zurück zum Zitat Paquete CM, Fonseca BM, Cruz DR, Pereira TM, Pacheco I, Soares CM, Louro RO (2014) Exploring the molecular mechanisms of electron shuttling across the microbe/metal space. Front Microbiol 5:318. doi:10.3389/fmicb.2014.00318 CrossRef Paquete CM, Fonseca BM, Cruz DR, Pereira TM, Pacheco I, Soares CM, Louro RO (2014) Exploring the molecular mechanisms of electron shuttling across the microbe/metal space. Front Microbiol 5:318. doi:10.​3389/​fmicb.​2014.​00318 CrossRef
Zurück zum Zitat Phillips EJP, Landa ER, Lovley DR (1995) Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction. J Ind Microbiol 14:203–207. doi:10.1007/BF01569928 CrossRef Phillips EJP, Landa ER, Lovley DR (1995) Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction. J Ind Microbiol 14:203–207. doi:10.​1007/​BF01569928 CrossRef
Zurück zum Zitat Pirbadian S, Barchinger SE, Leung KM, Byun HS, Jangir Y, Bouhenni RA, El-Naggar MY (2014) Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc Natl Acad Sci U S A 111(35):12883–12888. doi:10.1073/pnas.1410551111 CrossRef Pirbadian S, Barchinger SE, Leung KM, Byun HS, Jangir Y, Bouhenni RA, El-Naggar MY (2014) Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc Natl Acad Sci U S A 111(35):12883–12888. doi:10.​1073/​pnas.​1410551111 CrossRef
Zurück zum Zitat Pousa N, Casentinib B, Rossettib S, Fazib S, Puiga S, Aulenta F (2015) Anaerobic arsenite oxidation with an electrode serving as the sole electron acceptor: a novel approach to the bioremediation of arsenic-polluted groundwater. J Hazard Mater 283(2015):617–622. doi:10.1016/j.jhazmat.2014.10.014 CrossRef Pousa N, Casentinib B, Rossettib S, Fazib S, Puiga S, Aulenta F (2015) Anaerobic arsenite oxidation with an electrode serving as the sole electron acceptor: a novel approach to the bioremediation of arsenic-polluted groundwater. J Hazard Mater 283(2015):617–622. doi:10.​1016/​j.​jhazmat.​2014.​10.​014 CrossRef
Zurück zum Zitat Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435(7045):1098–1101. doi:10.1038/nature03661 CrossRef Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435(7045):1098–1101. doi:10.​1038/​nature03661 CrossRef
Zurück zum Zitat Rhoads A, Beyenal H, Lewandowski Z (2005) Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ Sci Technol 39(12):4666–4671. doi:10.1021/es048386r CrossRef Rhoads A, Beyenal H, Lewandowski Z (2005) Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ Sci Technol 39(12):4666–4671. doi:10.​1021/​es048386r CrossRef
Zurück zum Zitat Richardson DJ, Butt JN, Fredrickson JK, Zachara JM, Shi L, Edwards MJ, White G, Baiden N, Gates AJ, Marritt SJ, Clarke TA (2012) The ‘porin-cytochrome’ model for microbe-to-mineral electron transfer. Mol Microbiol 85:201–212. doi:10.1111/j.1365-2958.2012.08088.x CrossRef Richardson DJ, Butt JN, Fredrickson JK, Zachara JM, Shi L, Edwards MJ, White G, Baiden N, Gates AJ, Marritt SJ, Clarke TA (2012) The ‘porin-cytochrome’ model for microbe-to-mineral electron transfer. Mol Microbiol 85:201–212. doi:10.​1111/​j.​1365-2958.​2012.​08088.​x CrossRef
Zurück zum Zitat Richter K, Schicklberger M, Gescher J (2012) Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration. Appl Environ Microbiol 78(4):913–921. doi:10.1128/AEM.06803-11 CrossRef Richter K, Schicklberger M, Gescher J (2012) Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration. Appl Environ Microbiol 78(4):913–921. doi:10.​1128/​AEM.​06803-11 CrossRef
Zurück zum Zitat Sherene T (2010) Mobility and transport of heavy metals in polluted soil environment. Biol Forum-An Int J 2(2):112–121 Sherene T (2010) Mobility and transport of heavy metals in polluted soil environment. Biol Forum-An Int J 2(2):112–121
Zurück zum Zitat Srikanth S, Venkata Mohan S (2012b) Change in electrogenic activity of the microbial fuel cell (MFC) with the function of biocathode microenvironment as terminal electron accepting condition: influence on over potentials and bio-electro kinetics. Bioresour Technol 119:242–251. doi:10.1016/j.biortech.2012.05.097 CrossRef Srikanth S, Venkata Mohan S (2012b) Change in electrogenic activity of the microbial fuel cell (MFC) with the function of biocathode microenvironment as terminal electron accepting condition: influence on over potentials and bio-electro kinetics. Bioresour Technol 119:242–251. doi:10.​1016/​j.​biortech.​2012.​05.​097 CrossRef
Zurück zum Zitat Sun M, Reible DD, Lowry GV, Gregory KB (2012) Effect of applied voltage, initial concentration, and natural organic matter on sequential reduction/oxidation of nitrobenzene by graphite electrodes. Environ Sci Technol 46(11):6174–6181. doi:10.1021/es300048y CrossRef Sun M, Reible DD, Lowry GV, Gregory KB (2012) Effect of applied voltage, initial concentration, and natural organic matter on sequential reduction/oxidation of nitrobenzene by graphite electrodes. Environ Sci Technol 46(11):6174–6181. doi:10.​1021/​es300048y CrossRef
Zurück zum Zitat Sun F, Liu H, Liang B, Song R, Yan Q, Wang A (2013) Reductive degradation of chloramphenicol using bioelectrochemical system (BES): a comparative study of abiotic cathode and biocathode. Bioresour Technol 143(0):699–702. doi:10.1016/j.biortech.2013.06.084 CrossRef Sun F, Liu H, Liang B, Song R, Yan Q, Wang A (2013) Reductive degradation of chloramphenicol using bioelectrochemical system (BES): a comparative study of abiotic cathode and biocathode. Bioresour Technol 143(0):699–702. doi:10.​1016/​j.​biortech.​2013.​06.​084 CrossRef
Zurück zum Zitat Tandukar M, Huber SJ, Onodera T, Pavlostathis SG (2009) Biological chromium(VI) reduction in the cathode of a microbial fuel cell. Environ Sci Technol 43:8159–8165. doi:10.1021/es9014184 CrossRef Tandukar M, Huber SJ, Onodera T, Pavlostathis SG (2009) Biological chromium(VI) reduction in the cathode of a microbial fuel cell. Environ Sci Technol 43:8159–8165. doi:10.​1021/​es9014184 CrossRef
Zurück zum Zitat TerAvest MA, Rosenbaum MA, Kotloski NJ, Gralnick JA, Angenent LT (2014) Oxygen allows Shewanella oneidensis MR-1 to overcome mediator washout in a continuously fed bioelectrochemical system. Biotechnol Bioeng 111(4):692–699. doi:10.1002/bit.25128 CrossRef TerAvest MA, Rosenbaum MA, Kotloski NJ, Gralnick JA, Angenent LT (2014) Oxygen allows Shewanella oneidensis MR-1 to overcome mediator washout in a continuously fed bioelectrochemical system. Biotechnol Bioeng 111(4):692–699. doi:10.​1002/​bit.​25128 CrossRef
Zurück zum Zitat Ter Heijne A, Hamelers HVM, de Wilde V, Rozendal RA, Buisman CJN (2006) A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells. Environ Sci Technol 40(17):5200–5205. doi:10.1021/es0608545 CrossRef Ter Heijne A, Hamelers HVM, de Wilde V, Rozendal RA, Buisman CJN (2006) A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells. Environ Sci Technol 40(17):5200–5205. doi:10.​1021/​es0608545 CrossRef
Zurück zum Zitat Tipping E (1994) WHAM-a chemical equilibrium model and computer code for waters, sediments, and soils incorporating a discrete site/electrostatic model of ion-binding by humic substances. Comput Geosci 20(6):973–1023. doi: http://dx.doi.org/10.1016/0098-3004 (94)90038-8CrossRef Tipping E (1994) WHAM-a chemical equilibrium model and computer code for waters, sediments, and soils incorporating a discrete site/electrostatic model of ion-binding by humic substances. Comput Geosci 20(6):973–1023. doi: http://​dx.​doi.​org/​10.​1016/​0098-3004 (94)90038-8CrossRef
Zurück zum Zitat Tran P, Nguyen L, Nguyen H, Nguyen B, Nong L, Mai L, Tran H, Nguyen T, Pham H (2016) Effects of inoculation sources on the enrichment and performance of anode bacterial consortia in sensor typed microbial fuel cells. AIMS Bioeng 3(1):60–74. doi:10.3934/bioeng.2016.1.60 CrossRef Tran P, Nguyen L, Nguyen H, Nguyen B, Nong L, Mai L, Tran H, Nguyen T, Pham H (2016) Effects of inoculation sources on the enrichment and performance of anode bacterial consortia in sensor typed microbial fuel cells. AIMS Bioeng 3(1):60–74. doi:10.​3934/​bioeng.​2016.​1.​60 CrossRef
Zurück zum Zitat Van der Bruggen B, Vandecasteele C (2003) Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry. Environ Pollut 122(3):435–445. doi:10.1016/S0269-7491(02)00308-1 Van der Bruggen B, Vandecasteele C (2003) Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry. Environ Pollut 122(3):435–445. doi:10.​1016/​S0269-7491(02)00308-1
Zurück zum Zitat Van der Maas P, Peng S, Klapwijk B, Lens P (2005) Enzymatic versus nonenzymatic conversions during the reduction of EDTA-chelated Fe(III) in BioDeNOx reactors. Environ Sci Technol 39(8):2616–2623. doi:10.1021/es049222d Van der Maas P, Peng S, Klapwijk B, Lens P (2005) Enzymatic versus nonenzymatic conversions during the reduction of EDTA-chelated Fe(III) in BioDeNOx reactors. Environ Sci Technol 39(8):2616–2623. doi:10.​1021/​es049222d
Zurück zum Zitat Vargas M, Malvankar NS, Tremblay P-L, Leang C, Smith JA, Patel P, Lovley DR (2013) Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens. MBio 4(2):e00105–e00113. doi:10.1128/mBio.00105-13 CrossRef Vargas M, Malvankar NS, Tremblay P-L, Leang C, Smith JA, Patel P, Lovley DR (2013) Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens. MBio 4(2):e00105–e00113. doi:10.​1128/​mBio.​00105-13 CrossRef
Zurück zum Zitat Velvizhi G, Venkata Mohan S (2011) Biocatalyst behavior under self-induced electrogenic microenvironment in comparison with anaerobic treatment: evaluation with pharmaceutical wastewater for multi-pollutant removal. Bioresour Technol 102(23):10784–10793. doi:10.1016/j.biortech.2011.08.061 CrossRef Velvizhi G, Venkata Mohan S (2011) Biocatalyst behavior under self-induced electrogenic microenvironment in comparison with anaerobic treatment: evaluation with pharmaceutical wastewater for multi-pollutant removal. Bioresour Technol 102(23):10784–10793. doi:10.​1016/​j.​biortech.​2011.​08.​061 CrossRef
Zurück zum Zitat Venkata Mohan S, Chandrasekhar SK (2011) Self-induced bio-potential and graphite electron accepting conditions enhances petroleum sludge degradation in bio-electrochemical system with simultaneous power generation. Bioresour Technol 102(20):9532–9541. doi:10.1016/j.biortech.2011.07.038 CrossRef Venkata Mohan S, Chandrasekhar SK (2011) Self-induced bio-potential and graphite electron accepting conditions enhances petroleum sludge degradation in bio-electrochemical system with simultaneous power generation. Bioresour Technol 102(20):9532–9541. doi:10.​1016/​j.​biortech.​2011.​07.​038 CrossRef
Zurück zum Zitat Venkata Mohan S (2012) Harnessing bioelectricity through microbial fuel cell from wastewater. AkshayUrja 5(5):25–29 Venkata Mohan S (2012) Harnessing bioelectricity through microbial fuel cell from wastewater. AkshayUrja 5(5):25–29
Zurück zum Zitat Venkata Mohan S, Srikanth S (2011) Enhanced wastewater treatment efficiency through microbially catalyzed oxidation and reduction: synergistic effect of biocathode microenvironment. Bioresour Technol 102(22):10210–10220. doi:10.1016/j.biortech.2011.08.034 CrossRef Venkata Mohan S, Srikanth S (2011) Enhanced wastewater treatment efficiency through microbially catalyzed oxidation and reduction: synergistic effect of biocathode microenvironment. Bioresour Technol 102(22):10210–10220. doi:10.​1016/​j.​biortech.​2011.​08.​034 CrossRef
Zurück zum Zitat Venkata Mohan S, Mohanakrishna G, Reddy BP, Saravanan R, Sarma PN (2008a) Bioelectricity generation from chemical wastewater treatment in mediatorless (anode) microbial fuel cell (MFC) using selectively enriched hydrogen producing mixed culture under acidophilic microenvironment. Biochem Eng J 39:121–130. doi:10.1016/j.bej.2007.08.023 CrossRef Venkata Mohan S, Mohanakrishna G, Reddy BP, Saravanan R, Sarma PN (2008a) Bioelectricity generation from chemical wastewater treatment in mediatorless (anode) microbial fuel cell (MFC) using selectively enriched hydrogen producing mixed culture under acidophilic microenvironment. Biochem Eng J 39:121–130. doi:10.​1016/​j.​bej.​2007.​08.​023 CrossRef
Zurück zum Zitat Venkata Mohan S, Saravanan R, Raghavulu SV, Mohanakrishna G, Sarma PN (2008b) Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: effect of catholyte. Bioresour Technol 99:596–603. doi:10.1016/j.biortech.2006.12.026 CrossRef Venkata Mohan S, Saravanan R, Raghavulu SV, Mohanakrishna G, Sarma PN (2008b) Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: effect of catholyte. Bioresour Technol 99:596–603. doi:10.​1016/​j.​biortech.​2006.​12.​026 CrossRef
Zurück zum Zitat Venkata Mohan S, Veer Raghavulu SV, Dinakar P, Sarma PN (2009) Integrated function of microbial fuel cell (MFC) as bio-electrochemical treatment system associated with bioelectricity generation under higher substrate load. Biosens Bioelectron 24(7):2021–2027. doi:10.1016/j.bios.2008.10.011 CrossRef Venkata Mohan S, Veer Raghavulu SV, Dinakar P, Sarma PN (2009) Integrated function of microbial fuel cell (MFC) as bio-electrochemical treatment system associated with bioelectricity generation under higher substrate load. Biosens Bioelectron 24(7):2021–2027. doi:10.​1016/​j.​bios.​2008.​10.​011 CrossRef
Zurück zum Zitat Venkata Mohan S, Mohanakrishna G, Velvizhi G, Lalit Babu V, Sarma PN (2010) Bio-catalyzed electrochemical treatment of real field dairy wastewater with simultaneous power generation. Biochem Eng J 51:32–39. doi:10.1016/j.bej.2010.04.012 CrossRef Venkata Mohan S, Mohanakrishna G, Velvizhi G, Lalit Babu V, Sarma PN (2010) Bio-catalyzed electrochemical treatment of real field dairy wastewater with simultaneous power generation. Biochem Eng J 51:32–39. doi:10.​1016/​j.​bej.​2010.​04.​012 CrossRef
Zurück zum Zitat Venkata Mohan S, Velvizhi G, Modestra JA, Srikanth S (2014a) Microbial fuel cell: critical factors regulating bio-catalyzed electrochemical process and recent advancements. Renew Sust Energ Rev 40:779–797. doi:10.1016/j.rser.2014.07.109 CrossRef Venkata Mohan S, Velvizhi G, Modestra JA, Srikanth S (2014a) Microbial fuel cell: critical factors regulating bio-catalyzed electrochemical process and recent advancements. Renew Sust Energ Rev 40:779–797. doi:10.​1016/​j.​rser.​2014.​07.​109 CrossRef
Zurück zum Zitat Venkata Mohan S, Velvizhi G, Vamshi Krishna K, Lenin Babu M (2014b) Microbial catalyzed electrochemical systems: a bio-factory with multifacet applications. Bioresour Technol 165:355–364. doi:10.1016/j.biortech.2014.03.048 Venkata Mohan S, Velvizhi G, Vamshi Krishna K, Lenin Babu M (2014b) Microbial catalyzed electrochemical systems: a bio-factory with multifacet applications. Bioresour Technol 165:355–364. doi:10.​1016/​j.​biortech.​2014.​03.​048
Zurück zum Zitat Vigneswaran S, Ngo H, Chaudhary D, Hung Y-T (2005) Physicochemical treatment processes for water reuse. In: Wang L, Hung Y-T, Shammas N (eds) Physicochemical treatment processes SE – 16, vol 3. Humana Press, Totowa, pp 635–676. doi:10.1385/1-59259-820-x:635 Vigneswaran S, Ngo H, Chaudhary D, Hung Y-T (2005) Physicochemical treatment processes for water reuse. In: Wang L, Hung Y-T, Shammas N (eds) Physicochemical treatment processes SE – 16, vol 3. Humana Press, Totowa, pp 635–676. doi:10.​1385/​1-59259-820-x:​635
Zurück zum Zitat Volesky B (1990) Removal and recovery of heavy metals by biosorption. In: Volesky B (ed) Biosorption of heavy metals. CRC Press, Boca Raton, pp 7–43 Volesky B (1990) Removal and recovery of heavy metals by biosorption. In: Volesky B (ed) Biosorption of heavy metals. CRC Press, Boca Raton, pp 7–43
Zurück zum Zitat Wang G, Huang L, Zhang Y (2008) Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells. Biotechnol Lett 30(11):1959–1966. doi:10.1007/s10529-008-9792-4 CrossRef Wang G, Huang L, Zhang Y (2008) Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells. Biotechnol Lett 30(11):1959–1966. doi:10.​1007/​s10529-008-9792-4 CrossRef
Zurück zum Zitat Wu G, Wu J, Shao H (2012) Hazardous heavy metal distribution in Dahuofang catchment, Fushun, Liaoning, an important industry city in China: a case study. Clean: Soil, Air, Water 40:1372–1375. doi:10.1002/clen.201000589 Wu G, Wu J, Shao H (2012) Hazardous heavy metal distribution in Dahuofang catchment, Fushun, Liaoning, an important industry city in China: a case study. Clean: Soil, Air, Water 40:1372–1375. doi:10.​1002/​clen.​201000589
Zurück zum Zitat Xia X, Tokash JC, Zhang F, Liang P, Huang X, Logan BE (2013) Oxygen-reducing biocathodes operating with passive oxygen transfer in microbial fuel cells. Environ Sci Technol 47(4):2085–2091. doi:10.1021/es3027659 CrossRef Xia X, Tokash JC, Zhang F, Liang P, Huang X, Logan BE (2013) Oxygen-reducing biocathodes operating with passive oxygen transfer in microbial fuel cells. Environ Sci Technol 47(4):2085–2091. doi:10.​1021/​es3027659 CrossRef
Zurück zum Zitat Yang X, Fane A, MacNaughton S (2001) Removal and recovery of heavy metals from wastewaters by supported liquid membranes. Water Sci Technol 43(2):341–348 Yang X, Fane A, MacNaughton S (2001) Removal and recovery of heavy metals from wastewaters by supported liquid membranes. Water Sci Technol 43(2):341–348
Zurück zum Zitat Yang L, Wu Z, Wu J, Zhang Y, Li M, Lin ZQ, Banuelos G (2014) Simultaneous removal of selenite and electricity production from Se-laden wastewater by constructed wetland coupled with microbial fuel cells. In: Bañuelos GS, Lin ZQ, Yin X (eds) Selenium in the environment and human health. Taylor & Francis, London, pp 212–214 Yang L, Wu Z, Wu J, Zhang Y, Li M, Lin ZQ, Banuelos G (2014) Simultaneous removal of selenite and electricity production from Se-laden wastewater by constructed wetland coupled with microbial fuel cells. In: Bañuelos GS, Lin ZQ, Yin X (eds) Selenium in the environment and human health. Taylor & Francis, London, pp 212–214
Zurück zum Zitat Zhang B, Zhao H, Shi C, Zhou S, Ni J (2009) Simultaneous removal of sulfide and organics with vanadium (V) reduction in microbial fuel cells. J Chem Technol Biotechnol 84(12):1780–1786. doi:10.1002/jctb.2244 CrossRef Zhang B, Zhao H, Shi C, Zhou S, Ni J (2009) Simultaneous removal of sulfide and organics with vanadium (V) reduction in microbial fuel cells. J Chem Technol Biotechnol 84(12):1780–1786. doi:10.​1002/​jctb.​2244 CrossRef
Zurück zum Zitat Zhang BG, Zhou SG, Zhao HZ, Shi CH, Kong LC, Sun JJ, Yang Y, Ni JR (2010) Factors affecting the performance of microbial fuel cells for sulfide and vanadium (V) treatment. Bioprocess Biosyst Eng 33:187–194. doi:10.1007/s00449-009-0312-2 CrossRef Zhang BG, Zhou SG, Zhao HZ, Shi CH, Kong LC, Sun JJ, Yang Y, Ni JR (2010) Factors affecting the performance of microbial fuel cells for sulfide and vanadium (V) treatment. Bioprocess Biosyst Eng 33:187–194. doi:10.​1007/​s00449-009-0312-2 CrossRef
Metadaten
Titel
Bioelectrochemical Systems for Heavy Metal Removal and Recovery
verfasst von
Jampala Annie Modestra
Gokuladoss Velvizhi
Kamaja Vamshi Krishna
Kotakonda Arunasri
Piet N. L. Lens
YarlagaddaVenkata Nancharaiah
S. Venkata Mohan
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-58622-9_6