Skip to main content

2014 | OriginalPaper | Buchkapitel

Bioremediation of Mine Water

verfasst von : Robert Klein, Judith S. Tischler, Martin Mühling, Michael Schlömann

Erschienen in: Geobiotechnology I

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Caused by the oxidative dissolution of sulfide minerals, mine waters are often acidic and contaminated with high concentrations of sulfates, metals, and metalloids. Because the so-called acid mine drainage (AMD) affects the environment or poses severe problems for later use, treatment of these waters is required. Therefore, various remediation strategies have been developed to remove soluble metals and sulfates through immobilization using physical, chemical, and biological approaches. Conventionally, iron and sulfate—the main pollutants in mine waters—are removed by addition of neutralization reagents and subsequent chemical iron oxidation and sulfate mineral precipitation. Biological treatment strategies take advantage of the ability of microorganisms that occur in mine waters to metabolize iron and sulfate. As a rule, these can be grouped into oxidative and reductive processes, reflecting the redox state of mobilized iron (reduced form) and sulfur (oxidized form) in AMD. Changing the redox states of iron and sulfur results in iron and sulfur compounds with low solubility, thus leading to their precipitation and removal. Various techniques have been developed to enhance the efficacy of these microbial processes, as outlined in this review.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abicht HK, Mancini S, Karnachuk OV, Solioz M (2011) Genome Sequence of Desulfosporosinus sp. OT, an acidophilic aulfate-reducing bacterium from copper mining waste in Norilsk, Northern Siberia. J Bacteriol 193:6104–6105 Abicht HK, Mancini S, Karnachuk OV, Solioz M (2011) Genome Sequence of Desulfosporosinus sp. OT, an acidophilic aulfate-reducing bacterium from copper mining waste in Norilsk, Northern Siberia. J Bacteriol 193:6104–6105
2.
Zurück zum Zitat Acero P, Ayora C, Torrentó C, Nieto J (2006) The behavior of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite. Geochim Cosmochim Acta 70:4130–4139 Acero P, Ayora C, Torrentó C, Nieto J (2006) The behavior of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite. Geochim Cosmochim Acta 70:4130–4139
3.
Zurück zum Zitat Alazard D, Joseph M, Battaglia-Brunet F, Cayol J-L, Ollivier B (2010) Desulfosporosinus acidiphilus sp. nov.: a moderately acidophilic sulfate-reducing bacterium isolated from acid mining drainage sediments. Extremophiles 14:305–312 Alazard D, Joseph M, Battaglia-Brunet F, Cayol J-L, Ollivier B (2010) Desulfosporosinus acidiphilus sp. nov.: a moderately acidophilic sulfate-reducing bacterium isolated from acid mining drainage sediments. Extremophiles 14:305–312
4.
Zurück zum Zitat Alphenaar PA, Visser A, Lettinga G (1993) The effect of liquid upward velocity and hydraulic retention time on granulation in UASB reactors treating wastewater with a high sulfate content. Bioresour Technol 43:249–258 Alphenaar PA, Visser A, Lettinga G (1993) The effect of liquid upward velocity and hydraulic retention time on granulation in UASB reactors treating wastewater with a high sulfate content. Bioresour Technol 43:249–258
5.
Zurück zum Zitat Armentia H, Webb C (1992) Ferrous sulphate oxidation using Thiobacillus ferrooxidans cells immobilised in polyurethane foam support particles. Appl Microbiol Biotechnol 36:697–700 Armentia H, Webb C (1992) Ferrous sulphate oxidation using Thiobacillus ferrooxidans cells immobilised in polyurethane foam support particles. Appl Microbiol Biotechnol 36:697–700
6.
Zurück zum Zitat Asta MP, Cama J, Martínez M, Giménez J (2009) Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications. J Hazard Mater 171:965–972 Asta MP, Cama J, Martínez M, Giménez J (2009) Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications. J Hazard Mater 171:965–972
7.
Zurück zum Zitat Aubé B, Zinck J (1999) Comparison of AMD treatment processes and their impact on sludge characteristics. In: Proceedings for Sudbury ‘99, Mining and the Environment II, pp 261–270 Aubé B, Zinck J (1999) Comparison of AMD treatment processes and their impact on sludge characteristics. In: Proceedings for Sudbury ‘99, Mining and the Environment II, pp 261–270
8.
Zurück zum Zitat Aubé B, Zinck J (2003) Lime treatment of acid mine drainage in Canada. Brazil-Canda seminar on mine rehabilitation, Florianópolis, Brazil, 1–3 Dec 2003 Aubé B, Zinck J (2003) Lime treatment of acid mine drainage in Canada. Brazil-Canda seminar on mine rehabilitation, Florianópolis, Brazil, 1–3 Dec 2003
9.
Zurück zum Zitat Auld E, Campbell J (1919) Method of treating mine-water (US Patent 1,310,382) Auld E, Campbell J (1919) Method of treating mine-water (US Patent 1,310,382)
10.
Zurück zum Zitat Bache B (1964) Aluminium and iron phosphate studies relating to soils: II. Reactions between phosphate and hydrous oxides. J Soil Sci 15:110–116 Bache B (1964) Aluminium and iron phosphate studies relating to soils: II. Reactions between phosphate and hydrous oxides. J Soil Sci 15:110–116
11.
Zurück zum Zitat Bäckström M, Sartz L (2011) Mixing of acid rock drainage with alkaline ash leachates—fate and immobilisation of trace elements. Water Air Soil Poll 222:377–389 Bäckström M, Sartz L (2011) Mixing of acid rock drainage with alkaline ash leachates—fate and immobilisation of trace elements. Water Air Soil Poll 222:377–389
12.
Zurück zum Zitat Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152 Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152
13.
Zurück zum Zitat Banks D, Younger P, Amesen R, Iversen E, Banks SB (1997) Mine-water chemistry: the good, the bad and the ugly. Environ Geol 32:157–174 Banks D, Younger P, Amesen R, Iversen E, Banks SB (1997) Mine-water chemistry: the good, the bad and the ugly. Environ Geol 32:157–174
14.
Zurück zum Zitat Barham R (1997) Schwertmannite: a unique mineral, contains a replaceable ligand, transforms to jarosites, hematites, and/or basi iron sulfate. J Mater Res 12:2751–2758 Barham R (1997) Schwertmannite: a unique mineral, contains a replaceable ligand, transforms to jarosites, hematites, and/or basi iron sulfate. J Mater Res 12:2751–2758
15.
Zurück zum Zitat Barber WP, Stuckey DC (1999) The use of the anaerobic baffled reactor (ABR) for wastewater treatment: a review. Water Res 33:1559–1578 Barber WP, Stuckey DC (1999) The use of the anaerobic baffled reactor (ABR) for wastewater treatment: a review. Water Res 33:1559–1578
16.
Zurück zum Zitat Barnes LJ, Janssen FJ, Sherren J, Versteegh JH, Koch RO, Scheeren PJH (1991) A new process for the microbial removal of sulfate and heavy metals from contaminated waters extracted by a geohydrological control system. Chem Eng Res Des 69:184–186 Barnes LJ, Janssen FJ, Sherren J, Versteegh JH, Koch RO, Scheeren PJH (1991) A new process for the microbial removal of sulfate and heavy metals from contaminated waters extracted by a geohydrological control system. Chem Eng Res Des 69:184–186
17.
Zurück zum Zitat Barron JL, Lueking DR (1990) Growth and maintenance of Thiobacillus ferrooxidans cells. Appl Environ Microbiol 56:2801–2806 Barron JL, Lueking DR (1990) Growth and maintenance of Thiobacillus ferrooxidans cells. Appl Environ Microbiol 56:2801–2806
18.
Zurück zum Zitat Barton LL, Fauque GD (2009) Biochemistry, physiology and biotechnology of sulfate-reducing bacteria. Adv Appl Microbiol 68:41–98 Barton LL, Fauque GD (2009) Biochemistry, physiology and biotechnology of sulfate-reducing bacteria. Adv Appl Microbiol 68:41–98
19.
Zurück zum Zitat Barton LL, Hamilton WA (2007) Sulphate-reducing bacteria: environmental and engineered systems. Cambridge University Press, Cambridge Barton LL, Hamilton WA (2007) Sulphate-reducing bacteria: environmental and engineered systems. Cambridge University Press, Cambridge
20.
Zurück zum Zitat Baskaran V, Nemati M (2006) Anaerobic reduction of sulfate in immobilised cell bioreactors, using a microbial culture originated from an oil reservoir. Biochem Eng J31:148–159 Baskaran V, Nemati M (2006) Anaerobic reduction of sulfate in immobilised cell bioreactors, using a microbial culture originated from an oil reservoir. Biochem Eng J31:148–159
21.
Zurück zum Zitat Battaglia-Brunet F, Dictor MC, Garrido F, Crouzet C, Morin D, Dekeyser K, Clarens M, Baranger P (2002) An arsenic(III)-oxidizing bacterial population: selection, characterisation and performance in reactors. J Appl Microbiol 93:656–667 Battaglia-Brunet F, Dictor MC, Garrido F, Crouzet C, Morin D, Dekeyser K, Clarens M, Baranger P (2002) An arsenic(III)-oxidizing bacterial population: selection, characterisation and performance in reactors. J Appl Microbiol 93:656–667
22.
Zurück zum Zitat Battaglia-Brunet F, Joulian C, Garrido F, Dictor MC, Morin D, Coupland K, Johnson DB, Hallberg KB, Baranger P (2006) Oxidation of arsenite by Thiomonas strains and characterisation of Thiomonas arsenivorans sp. nov. Anton Leeuw 89:99–108 Battaglia-Brunet F, Joulian C, Garrido F, Dictor MC, Morin D, Coupland K, Johnson DB, Hallberg KB, Baranger P (2006) Oxidation of arsenite by Thiomonas strains and characterisation of Thiomonas arsenivorans sp. nov. Anton Leeuw 89:99–108
23.
Zurück zum Zitat Batty LC, Younger PL (2002) Critical role of macrophytes in achieving low iron concentrations in mine water treatment wetlands. Environ Sci Technol 36:3997–4002 Batty LC, Younger PL (2002) Critical role of macrophytes in achieving low iron concentrations in mine water treatment wetlands. Environ Sci Technol 36:3997–4002
24.
Zurück zum Zitat Beijerinck WM (1895) Über Spirillum desulphuricansals Ursache von Sulphatreduktion. Zentralbl Bakteriol Parasitk Infekt AbtII 1:49–59 Beijerinck WM (1895) Über Spirillum desulphuricansals Ursache von Sulphatreduktion. Zentralbl Bakteriol Parasitk Infekt AbtII 1:49–59
25.
Zurück zum Zitat Bell F, Bullock S, Hälbich T, Lindsay P (2001) Environmental impacts associated with an abandoned mine in the Witbank Coalfield, South Africa. Int J Coal Geol 45:195–216 Bell F, Bullock S, Hälbich T, Lindsay P (2001) Environmental impacts associated with an abandoned mine in the Witbank Coalfield, South Africa. Int J Coal Geol 45:195–216
26.
Zurück zum Zitat Benner SG, Blowes DW, Gould WD, Herbert RBJR, Ptacek CJ (1999) Geochemistry of a permeable reactive barrier for metals and acid mine drainage. Environ Sci Technol 33:2793–2799 Benner SG, Blowes DW, Gould WD, Herbert RBJR, Ptacek CJ (1999) Geochemistry of a permeable reactive barrier for metals and acid mine drainage. Environ Sci Technol 33:2793–2799
27.
Zurück zum Zitat Benthaus and Totsche (2011) Innovative Wasserbehandlung - Pilot- und Demo Vorhaben. Presentation held at 5. Fachkonferenz “Wasserwirtschaftliche Maßnahmen in der Bergbaufolgelandschaft” (01.03.2011), Leipzig/Germany Benthaus and Totsche (2011) Innovative Wasserbehandlung - Pilot- und Demo Vorhaben. Presentation held at 5. Fachkonferenz “Wasserwirtschaftliche Maßnahmen in der Bergbaufolgelandschaft” (01.03.2011), Leipzig/Germany
28.
Zurück zum Zitat Bigham JM, Schwertmann U, Murad E, Carlson L (1990) A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters. Geochim Cosmochim Ac 54:2743–2758 Bigham JM, Schwertmann U, Murad E, Carlson L (1990) A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters. Geochim Cosmochim Ac 54:2743–2758
29.
Zurück zum Zitat Bigham JM, Carlson L, Murad E (1994) Schwertmannite, a new iron oxyhydroxysulphate from Pyhäsalmi, Finland, and other localities. Mineral Mag 58:641–648 Bigham JM, Carlson L, Murad E (1994) Schwertmannite, a new iron oxyhydroxysulphate from Pyhäsalmi, Finland, and other localities. Mineral Mag 58:641–648
30.
Zurück zum Zitat Bigham JM, Schwertmann U, Traina SJ, Winland RL, Wolf M (1996) Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochim Cosmochim Acta 60:2111–2121 Bigham JM, Schwertmann U, Traina SJ, Winland RL, Wolf M (1996) Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochim Cosmochim Acta 60:2111–2121
31.
Zurück zum Zitat Bijmans MFM (2008) Sulfate reduction under acidic conditions for selective metal recovery. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands Bijmans MFM (2008) Sulfate reduction under acidic conditions for selective metal recovery. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands
32.
Zurück zum Zitat Bijmans MFM, Dopson M, Ennin F, Lens PNL, Buisman CJN (2008) Effect of sulfide removal on sulfate reduction at pH 5 in a hydrogen fed gas-lift bioreactor. J Microbiol Biotechn 18:1809–1818 Bijmans MFM, Dopson M, Ennin F, Lens PNL, Buisman CJN (2008) Effect of sulfide removal on sulfate reduction at pH 5 in a hydrogen fed gas-lift bioreactor. J Microbiol Biotechn 18:1809–1818
33.
Zurück zum Zitat Bijmans MFM, Peeters TWT, Lens PNL, Buisman CJN (2008) High rate sulfate reduction at pH 6 in a pH-auxostat submerged membrane bioreactor fed with formate. Water Res 42:2439–2448 Bijmans MFM, Peeters TWT, Lens PNL, Buisman CJN (2008) High rate sulfate reduction at pH 6 in a pH-auxostat submerged membrane bioreactor fed with formate. Water Res 42:2439–2448
34.
Zurück zum Zitat Bijmans MFM, Dopson M, Peeters TWT, Lens PNL, Buisman CJN (2009) Sulfate reduction at pH 5 in a high-rate membrane bioreactor: reactor performance and microbial community analyses. J Microbiol Biotechn 19:698–708 Bijmans MFM, Dopson M, Peeters TWT, Lens PNL, Buisman CJN (2009) Sulfate reduction at pH 5 in a high-rate membrane bioreactor: reactor performance and microbial community analyses. J Microbiol Biotechn 19:698–708
35.
Zurück zum Zitat Bilek F (2012) Reinigungsverfahren von Grundwasser und Oberflächengewässern–Endbericht Februar 2012. Published by Sächsisches Landesamt für Umwelt Landwirtschaft und Geologie Bilek F (2012) Reinigungsverfahren von Grundwasser und Oberflächengewässern–Endbericht Februar 2012. Published by Sächsisches Landesamt für Umwelt Landwirtschaft und Geologie
36.
Zurück zum Zitat Bilek F, Wagner S (2010) Testing autotrophic sulfate reduction to treat sulfate rich groundwaters highly contaminated by mining activities. In: Schirmer M, Hoehn E, Vogt T (eds) GQ10: Groundwater quality management in a rapidly changing world. IAHS Publ. 342 (2011) ISBN 978-1-907161-16-2, pp 512 + xvi. Proceedings of the 7th international groundwater quality conference held in Zurich, Switzerland, 13–18 June 2010 Bilek F, Wagner S (2010) Testing autotrophic sulfate reduction to treat sulfate rich groundwaters highly contaminated by mining activities. In: Schirmer M, Hoehn E, Vogt T (eds) GQ10: Groundwater quality management in a rapidly changing world. IAHS Publ. 342 (2011) ISBN 978-1-907161-16-2, pp 512 + xvi. Proceedings of the 7th international groundwater quality conference held in Zurich, Switzerland, 13–18 June 2010
37.
Zurück zum Zitat Blight KR, Ralph DE (2008) Aluminium sulphate and potassium nitrate effects on batch culture of iron oxidising bacteria. Hydrometallurgy 92:130–134 Blight KR, Ralph DE (2008) Aluminium sulphate and potassium nitrate effects on batch culture of iron oxidising bacteria. Hydrometallurgy 92:130–134
38.
Zurück zum Zitat Blodau C, Hoffmann S, Peine A, Peifer S (1998) Iron and sulfate reduction in the sediments of acidic mine lake 116 (Brandenburg, Germany): rates and geochemical evaluation. Water Air Soil Poll 108:249–270 Blodau C, Hoffmann S, Peine A, Peifer S (1998) Iron and sulfate reduction in the sediments of acidic mine lake 116 (Brandenburg, Germany): rates and geochemical evaluation. Water Air Soil Poll 108:249–270
39.
Zurück zum Zitat Bonnefoy V, Holmes DS (2012) Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments. Environ Microbiol 14:1597–1611 Bonnefoy V, Holmes DS (2012) Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments. Environ Microbiol 14:1597–1611
40.
Zurück zum Zitat Boshoff G, Duncan J, Rose PD (2004) Tannery effluent as a carbon source for biological sulphate reduction. Water Res 38:2651–2658 Boshoff G, Duncan J, Rose PD (2004) Tannery effluent as a carbon source for biological sulphate reduction. Water Res 38:2651–2658
41.
Zurück zum Zitat Bowell RJ (2004) A review of sulfate removal options for mine waters. In: Mine water 2004—Proceedings of the International Mine Water Association symposium vol 2, pp 75–91 Bowell RJ (2004) A review of sulfate removal options for mine waters. In: Mine water 2004—Proceedings of the International Mine Water Association symposium vol 2, pp 75–91
42.
Zurück zum Zitat Brown M, Barley B, Wood H (2002) Minewater treatment. Technology, application and policy. IWA Publishing, London Brown M, Barley B, Wood H (2002) Minewater treatment. Technology, application and policy. IWA Publishing, London
43.
Zurück zum Zitat Burgess JE, Stuetz RM (2002) Activated sludge for the treatment of sulphur-rich wastewaters. Miner Eng 15:839–846 Burgess JE, Stuetz RM (2002) Activated sludge for the treatment of sulphur-rich wastewaters. Miner Eng 15:839–846
44.
Zurück zum Zitat Carlson L, Bigham JM, Schwertmann U, Kyek A, Wagner F (2002) Scavenging of As from acid mine drainage by schwertmannite and ferrihydrite: a comparison with synthetic analogues. Environ Sci Technol 36:1715–1719 Carlson L, Bigham JM, Schwertmann U, Kyek A, Wagner F (2002) Scavenging of As from acid mine drainage by schwertmannite and ferrihydrite: a comparison with synthetic analogues. Environ Sci Technol 36:1715–1719
45.
Zurück zum Zitat Castro HF, Williams NH, Ogram A (1999) Phylogeny of sulfate-reducing bacteria. FEMS Microbiol Ecol 31:1–9 Castro HF, Williams NH, Ogram A (1999) Phylogeny of sulfate-reducing bacteria. FEMS Microbiol Ecol 31:1–9
46.
Zurück zum Zitat Chang IS, Shin PK, Kim BH (2000) Biological treatment of acid mine drainage under sulphate-reducing conditions with solid waste materials as substrate. Water Res 34:1269–1277 Chang IS, Shin PK, Kim BH (2000) Biological treatment of acid mine drainage under sulphate-reducing conditions with solid waste materials as substrate. Water Res 34:1269–1277
47.
Zurück zum Zitat Chen B, Utgikar VP, Harmon SM, Tabak HH, Bishop DF, Govind R (2000) Studies on biosorption of zinc(II) and copper(II) on Desulfovibrio desulfuricans. Int Biodeterior Biodegradation 46:11–18 Chen B, Utgikar VP, Harmon SM, Tabak HH, Bishop DF, Govind R (2000) Studies on biosorption of zinc(II) and copper(II) on Desulfovibrio desulfuricans. Int Biodeterior Biodegradation 46:11–18
48.
Zurück zum Zitat Choo CO, Lee JK (2002) Mineralogical and geochemical controls on the formation of schwertmannite and goethite in the wetland at Dalseong tungsten mine, Korea. Geosci J 6:281–287 Choo CO, Lee JK (2002) Mineralogical and geochemical controls on the formation of schwertmannite and goethite in the wetland at Dalseong tungsten mine, Korea. Geosci J 6:281–287
49.
Zurück zum Zitat Chuichulcherm S, Nagpal S, Peeva L, Livingston A (2001) Treatment of metal-containing wastewaters with a novel extractive membrane reactor using sulfate-reducing bacteria. J Chem Technol Biot 76:61–68 Chuichulcherm S, Nagpal S, Peeva L, Livingston A (2001) Treatment of metal-containing wastewaters with a novel extractive membrane reactor using sulfate-reducing bacteria. J Chem Technol Biot 76:61–68
50.
Zurück zum Zitat Church CD, Wilkin RT, Alpers CN, Rye RO, McCleskey RB (2007) Microbial sulfate reduction and metal attenuation in pH 4 acid mine water. Geochem Trans 8:1–10 Church CD, Wilkin RT, Alpers CN, Rye RO, McCleskey RB (2007) Microbial sulfate reduction and metal attenuation in pH 4 acid mine water. Geochem Trans 8:1–10
51.
Zurück zum Zitat Cohen RRH (2006) Use of microbes for cost reduction of metal removal from metals and mining industry waste streams. J Clean Prod 14:1146–1157 Cohen RRH (2006) Use of microbes for cost reduction of metal removal from metals and mining industry waste streams. J Clean Prod 14:1146–1157
52.
Zurück zum Zitat Conca JL, Wright J (2006) An Apatite II permeable reactive barrier to remediate groundwater containing Zn, Pb and Cd. Appl Geochem 21:1288–1300 Conca JL, Wright J (2006) An Apatite II permeable reactive barrier to remediate groundwater containing Zn, Pb and Cd. Appl Geochem 21:1288–1300
53.
Zurück zum Zitat Coupland K, Battaglia-Brunet F, Hallberg KB, Dictor MC, Garrido F, Johnson DB (2003) Oxidation of iron, sulfur and arsenic in mine waters and mine wastes: an important role for novel Thiomonas spp. In: Tsezos M, Hatzikioseyian A, Remoudaki E (eds) Biohydrometallurgy: a sustainable technology in evolution. National Technical University of Athens, Zografou, pp 639–646 Coupland K, Battaglia-Brunet F, Hallberg KB, Dictor MC, Garrido F, Johnson DB (2003) Oxidation of iron, sulfur and arsenic in mine waters and mine wastes: an important role for novel Thiomonas spp. In: Tsezos M, Hatzikioseyian A, Remoudaki E (eds) Biohydrometallurgy: a sustainable technology in evolution. National Technical University of Athens, Zografou, pp 639–646
54.
Zurück zum Zitat Department of Water Affairs and Forestry (2007) Best practice guideline H4: Water Treatment Department of Water Affairs and Forestry (2007) Best practice guideline H4: Water Treatment
55.
Zurück zum Zitat de Smul A, Goethals L, Verstraete W (1999) Effect of COD to sulfate ratio and temperature in expanded-granular-sludge-blanket reactors for sulfate reduction. Process Biochem 34:407–416 de Smul A, Goethals L, Verstraete W (1999) Effect of COD to sulfate ratio and temperature in expanded-granular-sludge-blanket reactors for sulfate reduction. Process Biochem 34:407–416
56.
Zurück zum Zitat Deul M, Mihok EA (1971) Limestone neutralization of dilute acid waste waters (US Patent 3,617,560) Deul M, Mihok EA (1971) Limestone neutralization of dilute acid waste waters (US Patent 3,617,560)
57.
Zurück zum Zitat Deusner C (2003) Entwicklung einer Technologie zur langzeitstabilen biologischen Reinigung schwermetallbelasteter Bergbauwässer. Phd. Thesis, Fakultät Maschinenwesen, Technischen Universität Dresden Deusner C (2003) Entwicklung einer Technologie zur langzeitstabilen biologischen Reinigung schwermetallbelasteter Bergbauwässer. Phd. Thesis, Fakultät Maschinenwesen, Technischen Universität Dresden
58.
Zurück zum Zitat Dilling W, Cypionka H (1990) Aerobic respiration in sulfate-reducing bacteria. FEMS Microbiol Lett 71:123–127 Dilling W, Cypionka H (1990) Aerobic respiration in sulfate-reducing bacteria. FEMS Microbiol Lett 71:123–127
59.
Zurück zum Zitat Dittmar T (2004) Hydrochemical processes controlling arsenic and heavy metal contamination in the Elqui river system (Chile). Sci Total Environ 325:193–207 Dittmar T (2004) Hydrochemical processes controlling arsenic and heavy metal contamination in the Elqui river system (Chile). Sci Total Environ 325:193–207
60.
Zurück zum Zitat Dold B, Fontboté L (2002) A mineralogical and geochemical study of element mobility in sulfide mine tailings of Fe oxide Cu–Au deposits from the Punta del Cobre belt, northern Chile. Chem Geol 189:135–163 Dold B, Fontboté L (2002) A mineralogical and geochemical study of element mobility in sulfide mine tailings of Fe oxide Cu–Au deposits from the Punta del Cobre belt, northern Chile. Chem Geol 189:135–163
61.
Zurück zum Zitat Dopson M, Johnson DB (2012) Biodiversity, metabolism and applications of acidophilic sulfur-metabolizing microorganisms. Environ Microbiol 14:2620–2631 Dopson M, Johnson DB (2012) Biodiversity, metabolism and applications of acidophilic sulfur-metabolizing microorganisms. Environ Microbiol 14:2620–2631
62.
Zurück zum Zitat Doshi SM (2006) Bioremediation of acid mine drainage using sulfate-reducing bacteria. Study prepared for U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Office of Superfund Remediation and Technology Innovation, Washington, DC Doshi SM (2006) Bioremediation of acid mine drainage using sulfate-reducing bacteria. Study prepared for U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Office of Superfund Remediation and Technology Innovation, Washington, DC
63.
Zurück zum Zitat Dries J, de Smul A, Goethals L, Grootaerd H, Verstraete W (1998) High rate biological treatment of sulfate-rich wastewater in an acetate-fed EGSB reactor. Biodegradation 9:103–111 Dries J, de Smul A, Goethals L, Grootaerd H, Verstraete W (1998) High rate biological treatment of sulfate-rich wastewater in an acetate-fed EGSB reactor. Biodegradation 9:103–111
64.
Zurück zum Zitat du Preez LA, Maree JP (1994) Pilot-scale biological sulphate and nitrate removal utilising producer gas as energy source. Water Sci Technol 30:275–285 du Preez LA, Maree JP (1994) Pilot-scale biological sulphate and nitrate removal utilising producer gas as energy source. Water Sci Technol 30:275–285
65.
Zurück zum Zitat Eskandarpour A, Sassa K, Bando Y, Okido M, Asai S (2006) Magnetic removal of phosphate from wastewater using schwertmannite. Mater Trans 47:1832–1837 Eskandarpour A, Sassa K, Bando Y, Okido M, Asai S (2006) Magnetic removal of phosphate from wastewater using schwertmannite. Mater Trans 47:1832–1837
66.
Zurück zum Zitat Eskandarpour A, Onyango M, Ochieng A, Asai S (2008) Removal of fluoride ions from aqueous solution at low pH using schwertmannite. J Hazard Mater 152:571–579 Eskandarpour A, Onyango M, Ochieng A, Asai S (2008) Removal of fluoride ions from aqueous solution at low pH using schwertmannite. J Hazard Mater 152:571–579
67.
Zurück zum Zitat Esposito G, Veeken A, Weijma J, Lens PNL (2006) Use of biogenic sulfide for ZnS precipitation. Sep Purif Technol 51:31–39 Esposito G, Veeken A, Weijma J, Lens PNL (2006) Use of biogenic sulfide for ZnS precipitation. Sep Purif Technol 51:31–39
68.
Zurück zum Zitat Evangelou V (1998) Pyrite chemistry: the key for abatement of acid mine drainage. In: Geller A, Klapper H, Salomons W (eds) Acidic mining lakes: acid mine drainage, limology and reclamation. Springer, Berlin, pp 197–222 Evangelou V (1998) Pyrite chemistry: the key for abatement of acid mine drainage. In: Geller A, Klapper H, Salomons W (eds) Acidic mining lakes: acid mine drainage, limology and reclamation. Springer, Berlin, pp 197–222
69.
Zurück zum Zitat Fedorovich V, Greben M, Kalyuzhnyi S, Lens PNL, Hulshoff-Pol L (2001) Use of hydrophobic membranes to supply hydrogen to sulphate reducing bioreactors. Biodegradation 11:295–303 Fedorovich V, Greben M, Kalyuzhnyi S, Lens PNL, Hulshoff-Pol L (2001) Use of hydrophobic membranes to supply hydrogen to sulphate reducing bioreactors. Biodegradation 11:295–303
70.
Zurück zum Zitat Feng D, Aldrich C, Tan H (2000) Treatment of acid mine water by use of heavy metal precipitation and ion exchange. Miner Eng 13:623–642 Feng D, Aldrich C, Tan H (2000) Treatment of acid mine water by use of heavy metal precipitation and ion exchange. Miner Eng 13:623–642
71.
Zurück zum Zitat Foucher S, Battaglia-Brunet F, Ignatiadis I, Morin D (2001) Treatment by sulfate-reducing bacteria of chessy acid-mine drainage and metals recovery. Chem Eng Sci 56:1639–1645 Foucher S, Battaglia-Brunet F, Ignatiadis I, Morin D (2001) Treatment by sulfate-reducing bacteria of chessy acid-mine drainage and metals recovery. Chem Eng Sci 56:1639–1645
72.
Zurück zum Zitat García-Moyano A, González-Toril E, Aguilera Á, Amils R (2012) Comparative microbial ecology study of the sediments and the water column of the Río Tinto, an extreme acidic environment. FEMS Microbiol Ecol 81:303–314 García-Moyano A, González-Toril E, Aguilera Á, Amils R (2012) Comparative microbial ecology study of the sediments and the water column of the Río Tinto, an extreme acidic environment. FEMS Microbiol Ecol 81:303–314
73.
Zurück zum Zitat Garcíaa C, Moreno DA, Ballester A, Blázquez ML, González F (2001) Bioremediation of an industrial acid mine water by metal-tolerant sulphate-reducing bacteria. Miner Eng 14:997–1008 Garcíaa C, Moreno DA, Ballester A, Blázquez ML, González F (2001) Bioremediation of an industrial acid mine water by metal-tolerant sulphate-reducing bacteria. Miner Eng 14:997–1008
74.
Zurück zum Zitat Genschow E, Hegemann W, Maschke C (1996) Biological sulfate removal from tannery wastewater in a two-stage anaerobic treatment. Water Res 30:2072–2078 Genschow E, Hegemann W, Maschke C (1996) Biological sulfate removal from tannery wastewater in a two-stage anaerobic treatment. Water Res 30:2072–2078
75.
Zurück zum Zitat George R, Zoutberg GR, de Been P (1997) The Biobed® EGSB (Expanded Granular Sludge Bed) system covers shortcomings of the upflow anaerobic sludge blanket reactor in the chemical industry. Water Sci Technol 35:183–187 George R, Zoutberg GR, de Been P (1997) The Biobed® EGSB (Expanded Granular Sludge Bed) system covers shortcomings of the upflow anaerobic sludge blanket reactor in the chemical industry. Water Sci Technol 35:183–187
76.
Zurück zum Zitat Giaveno A, Lavalle L, Guibal E, Donati E (2008) Biological ferrous sulfate oxidation by A. ferrooxidans immobilised on chitosan beads. J Microbiol Methods 72:227–234 Giaveno A, Lavalle L, Guibal E, Donati E (2008) Biological ferrous sulfate oxidation by A. ferrooxidans immobilised on chitosan beads. J Microbiol Methods 72:227–234
77.
Zurück zum Zitat Gibert O, de Pablo J, Cortina JL, Ayora C (2002) Treatment of acid mine drainage by sulphate-reducing bacteria using permeable reactive barriers: a review from laboratory to full-scale experiments. Rev Environ Sci Biotechnol 1:327–333 Gibert O, de Pablo J, Cortina JL, Ayora C (2002) Treatment of acid mine drainage by sulphate-reducing bacteria using permeable reactive barriers: a review from laboratory to full-scale experiments. Rev Environ Sci Biotechnol 1:327–333
78.
Zurück zum Zitat Gibson GR (1990) Physiology and ecology of the sulphate-reducing bacteria—a review. J Appl Bacteriol 69:769–797 Gibson GR (1990) Physiology and ecology of the sulphate-reducing bacteria—a review. J Appl Bacteriol 69:769–797
79.
Zurück zum Zitat Glombitza F (2001) Treatment of acid lignite mine flooding water by means of microbial sulfate reduction. Waste Manag 21:197–203 Glombitza F (2001) Treatment of acid lignite mine flooding water by means of microbial sulfate reduction. Waste Manag 21:197–203
80.
Zurück zum Zitat Glombitza F, Janneck E, Arnold I, Rolland W, Uhlmann W (2007) Eisenhydroxysulfate aus der Bergbauwasserbehandlung als Rohstoff. In: Wellmer F, Schilka W (eds) Consulting-Erfahrungen und Kontakte für Neuanfänge; Untertägiger Bergbau auf Industrieminerale in Deutschland; Vorträge der beiden Tagungen des Fachausschusses Rohstoffwirtschaft der GDMC Gesellschaft für Bergbau, Metallurgie, Rohstoff- und Umwelttechnik e.V. GDMB-Medienverlag, Clausthal-Zellerfeld, pp 31–40 Glombitza F, Janneck E, Arnold I, Rolland W, Uhlmann W (2007) Eisenhydroxysulfate aus der Bergbauwasserbehandlung als Rohstoff. In: Wellmer F, Schilka W (eds) Consulting-Erfahrungen und Kontakte für Neuanfänge; Untertägiger Bergbau auf Industrieminerale in Deutschland; Vorträge der beiden Tagungen des Fachausschusses Rohstoffwirtschaft der GDMC Gesellschaft für Bergbau, Metallurgie, Rohstoff- und Umwelttechnik e.V. GDMB-Medienverlag, Clausthal-Zellerfeld, pp 31–40
81.
Zurück zum Zitat Gómez JM, Cantero D, Webb C (2000) Immobilisation of Thiobacillus ferrooxidans cells on nickel alloy fibre for ferrous sulfate oxidation. Appl Microbiol Biotechnol 54:335–340 Gómez JM, Cantero D, Webb C (2000) Immobilisation of Thiobacillus ferrooxidans cells on nickel alloy fibre for ferrous sulfate oxidation. Appl Microbiol Biotechnol 54:335–340
82.
Zurück zum Zitat Goncalves MMM, Leite SGF, Santanna JR GL (2005) The bioactivation procedure for increasing the sulphate-reducing bacteria in a UASB reactor. Braz J Chem Eng (online) 22:565–571 Goncalves MMM, Leite SGF, Santanna JR GL (2005) The bioactivation procedure for increasing the sulphate-reducing bacteria in a UASB reactor. Braz J Chem Eng (online) 22:565–571
83.
Zurück zum Zitat Greben H (2007) Focus on CSIR research in pollution waste: cellulose degradation, volatile fatty acid formation and biological sulphate removal operating and anaerobic hybrid reactor. 2007 Stockholm World Water Week, 13–17 Aug 2007, p 2 Greben H (2007) Focus on CSIR research in pollution waste: cellulose degradation, volatile fatty acid formation and biological sulphate removal operating and anaerobic hybrid reactor. 2007 Stockholm World Water Week, 13–17 Aug 2007, p 2
84.
Zurück zum Zitat Greben HA, Maree JP (2000) The effect of reactor type and hydraulic residence time on biological sulphate and sulphide removal rates. Presented at the WISA 2000 Biennial conference, Sun City, South Africa, 28 May–1 June 2000 Greben HA, Maree JP (2000) The effect of reactor type and hydraulic residence time on biological sulphate and sulphide removal rates. Presented at the WISA 2000 Biennial conference, Sun City, South Africa, 28 May–1 June 2000
85.
Zurück zum Zitat Greben HA, Matshusa MP, Maree JP (2005) The biological sulphate removal technology. In: Proceedings of the 9th international mine water congress, Oviedo, Spain, 5–7 Sept 2005 Greben HA, Matshusa MP, Maree JP (2005) The biological sulphate removal technology. In: Proceedings of the 9th international mine water congress, Oviedo, Spain, 5–7 Sept 2005
86.
Zurück zum Zitat Grishin S, Tuovinen OH (1988) Fast kinetics of Fe2+ oxidation in packed-bed reactors. Appl Environ Microbiol 54:3092–3100 Grishin S, Tuovinen OH (1988) Fast kinetics of Fe2+ oxidation in packed-bed reactors. Appl Environ Microbiol 54:3092–3100
87.
Zurück zum Zitat Groudev S, Geprgiev P, Spasova I, Nicolova M, Angelov A, Diels L (2005) Cleanup of acid mine drainage by means of a pilot-scale passive system. In: Annual of the University of Mining and Geology “St. Ivan Rilski” 48 (Part I—Geology and Geophysics) Groudev S, Geprgiev P, Spasova I, Nicolova M, Angelov A, Diels L (2005) Cleanup of acid mine drainage by means of a pilot-scale passive system. In: Annual of the University of Mining and Geology “St. Ivan Rilski” 48 (Part I—Geology and Geophysics)
88.
Zurück zum Zitat Gyure RA, Konopka A, Brooks A, Doemel W (1990) Microbial sulfate reduction in acidic (pH 3) strip-mine lakes. FEMS Microbiol Lett 73:193–201 Gyure RA, Konopka A, Brooks A, Doemel W (1990) Microbial sulfate reduction in acidic (pH 3) strip-mine lakes. FEMS Microbiol Lett 73:193–201
89.
Zurück zum Zitat Haddadin J, Morin D, Ollivier P, Fick M (1993) Effect of different carbon dioxide concentrations on ferrous iron and pyrite oxidation by a mixed culture of iron and/or sulfur-oxidizing bacteria. Enzyme Microb Technol 15:832–841 Haddadin J, Morin D, Ollivier P, Fick M (1993) Effect of different carbon dioxide concentrations on ferrous iron and pyrite oxidation by a mixed culture of iron and/or sulfur-oxidizing bacteria. Enzyme Microb Technol 15:832–841
90.
Zurück zum Zitat Hallberg KB (2010) New perspectives in acid mine drainage microbiology. Hydrometallurgy 104:448–453 Hallberg KB (2010) New perspectives in acid mine drainage microbiology. Hydrometallurgy 104:448–453
91.
Zurück zum Zitat Hallberg KB, Johnson DB (2003) Passive mine water treatment at the former Wheal Jane tin mine, Cornwall: important biogeochemical and microbiological lessons. Land Contam Reclam 11:213–220 Hallberg KB, Johnson DB (2003) Passive mine water treatment at the former Wheal Jane tin mine, Cornwall: important biogeochemical and microbiological lessons. Land Contam Reclam 11:213–220
92.
Zurück zum Zitat Hallberg KB, Coupland K, Kimura S, Johnson DB (2006) Macroscopic streamer growths in acidic, metal-rich mine waters in North Wales consist of novel and remarkably simple bacterial communities. Appl Environ Microbiol 72:2022–2030 Hallberg KB, Coupland K, Kimura S, Johnson DB (2006) Macroscopic streamer growths in acidic, metal-rich mine waters in North Wales consist of novel and remarkably simple bacterial communities. Appl Environ Microbiol 72:2022–2030
93.
Zurück zum Zitat Hammarstrom JM, Sibrell PL, Belkin HE (2003) Characterisation of limestone reacted with acid-mine drainage in a pulsed limestone bed treatment system at the Friendship Hill National Historical Site, Pennsylvania, USA. Appl Geochem 18:1705–1721 Hammarstrom JM, Sibrell PL, Belkin HE (2003) Characterisation of limestone reacted with acid-mine drainage in a pulsed limestone bed treatment system at the Friendship Hill National Historical Site, Pennsylvania, USA. Appl Geochem 18:1705–1721
94.
Zurück zum Zitat Hansen TA (1994) Metabolism of sulfate-reducing prokaryotes. Anton Leeuw 66:165–185 Hansen TA (1994) Metabolism of sulfate-reducing prokaryotes. Anton Leeuw 66:165–185
95.
Zurück zum Zitat Hao C, Zhang L, Wang L, Li S, Dong H (2012) Microbial community composition in acid mine drainage lake of Xiang Mountain sulfide mine in Anhui Province, China. Geomicrobiol J 29:886–895 Hao C, Zhang L, Wang L, Li S, Dong H (2012) Microbial community composition in acid mine drainage lake of Xiang Mountain sulfide mine in Anhui Province, China. Geomicrobiol J 29:886–895
96.
Zurück zum Zitat Hasche-Berger A, Wolkersdorfer C (2005) Pilot scale RAPS-system in Gernrode/Harz Mountains. In: Merkel BJ, Hasche-Berger A (eds) Uranium in the environment. Springer, Heidelberg, pp 317–328 Hasche-Berger A, Wolkersdorfer C (2005) Pilot scale RAPS-system in Gernrode/Harz Mountains. In: Merkel BJ, Hasche-Berger A (eds) Uranium in the environment. Springer, Heidelberg, pp 317–328
97.
Zurück zum Zitat Hedin RS, Nairn R, Kleinmann R (1994) Passive treatment of coal mine drainage. U.S. Bureau of Mines I.C. 9389, 35 pp Hedin RS, Nairn R, Kleinmann R (1994) Passive treatment of coal mine drainage. U.S. Bureau of Mines I.C. 9389, 35 pp
98.
Zurück zum Zitat Hedrich S, Lünsdorf H, Kleeberg R, Heide G, Seifert J, Schlömann M (2011) Schwertmannite formation adjacent to bacterial cells in a mine water treatment plant and in pure cultures of Ferrovum myxofaciens. Environ Sci Technol 45:7685–7692 Hedrich S, Lünsdorf H, Kleeberg R, Heide G, Seifert J, Schlömann M (2011) Schwertmannite formation adjacent to bacterial cells in a mine water treatment plant and in pure cultures of Ferrovum myxofaciens. Environ Sci Technol 45:7685–7692
99.
Zurück zum Zitat Hedrich S, Schlömann M, Johnson DB (2011b) The iron-oxidizing proteobacteria. Microbiology 157:1551–1584 Hedrich S, Schlömann M, Johnson DB (2011b) The iron-oxidizing proteobacteria. Microbiology 157:1551–1584
100.
Zurück zum Zitat Hedrich S, Johnson DB (2012) A modular continuous flow reactor system for the selective bio-oxidation of iron and precipitation of schwertmannite from mine-impacted waters. Bioresour Technol 106:44–49 Hedrich S, Johnson DB (2012) A modular continuous flow reactor system for the selective bio-oxidation of iron and precipitation of schwertmannite from mine-impacted waters. Bioresour Technol 106:44–49
101.
Zurück zum Zitat Heinzel E, Hedrich S, Janneck E, Glombitza F, Seifert J, Schlömann M (2009) Bacterial diversity in a mine water treatment plant. Appl Environ Microbiol 75:858–861 Heinzel E, Hedrich S, Janneck E, Glombitza F, Seifert J, Schlömann M (2009) Bacterial diversity in a mine water treatment plant. Appl Environ Microbiol 75:858–861
102.
Zurück zum Zitat Heinzel E, Janneck E, Glombitza F, Schlömann M, Seifert J (2009) Population dynamics of iron-oxidizing communities in pilot plants for the treatment of acid mine waters. Environ Sci Technol 43:6138–6144 Heinzel E, Janneck E, Glombitza F, Schlömann M, Seifert J (2009) Population dynamics of iron-oxidizing communities in pilot plants for the treatment of acid mine waters. Environ Sci Technol 43:6138–6144
103.
Zurück zum Zitat Hlabela P, Maree J, Bruinsma D (2007) Barium carbonate process for sulphate and metal removal from mine water. Mine Water Environ 26:14–22 Hlabela P, Maree J, Bruinsma D (2007) Barium carbonate process for sulphate and metal removal from mine water. Mine Water Environ 26:14–22
104.
Zurück zum Zitat Hoa TTH, Liamleam W, Annachhatre AP (2007) Lead removal through biological sulfate reduction process. Bioresour Technol 98:2538–2548 Hoa TTH, Liamleam W, Annachhatre AP (2007) Lead removal through biological sulfate reduction process. Bioresour Technol 98:2538–2548
105.
Zurück zum Zitat Hockin SL, Gadd GM (2007) Bioremedation of metals and metalloids by precipitation and cellular binding. In: Barton LL, Hamilton WA (eds) Sulphate-reducing bacteria—environmental and engineered systems. Cambridge University Press, Cambridge, pp 405–434 Hockin SL, Gadd GM (2007) Bioremedation of metals and metalloids by precipitation and cellular binding. In: Barton LL, Hamilton WA (eds) Sulphate-reducing bacteria—environmental and engineered systems. Cambridge University Press, Cambridge, pp 405–434
107.
Zurück zum Zitat Huisman JL, Schouten G, Schultz C (2006) Biologically produced sulphide for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry. Hydrometallurgy 83:106–113 Huisman JL, Schouten G, Schultz C (2006) Biologically produced sulphide for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry. Hydrometallurgy 83:106–113
108.
Zurück zum Zitat Hulshoff-Pol LW, Lens PNL, Stams AJM, Lettinga G (1998) Anaerobic treatment of sulphate-rich wastewaters. Biodegradation 9:213–224 Hulshoff-Pol LW, Lens PNL, Stams AJM, Lettinga G (1998) Anaerobic treatment of sulphate-rich wastewaters. Biodegradation 9:213–224
109.
Zurück zum Zitat Ilbert M, Bonnefoy V (2013) Insight into the evolution of the iron oxidation pathways. Biochim Biophys Acta Bioenerg 1827:161–175 Ilbert M, Bonnefoy V (2013) Insight into the evolution of the iron oxidation pathways. Biochim Biophys Acta Bioenerg 1827:161–175
111.
Zurück zum Zitat Ingledew WJ (1982) Thiobacillus ferrooxidans. The bioenergetics of an acidophilic chemolithotroph. Biochim Biophys Acta, Rev Bioenerg 683:89–117 Ingledew WJ (1982) Thiobacillus ferrooxidans. The bioenergetics of an acidophilic chemolithotroph. Biochim Biophys Acta, Rev Bioenerg 683:89–117
112.
Zurück zum Zitat Isa Z, Grusenmeyer S, Verstraete W (1986) Sulfate reduction relative to methane production in high-rate anaerobic digestion: microbiological aspects. Appl Environ Microb 51:580–587 Isa Z, Grusenmeyer S, Verstraete W (1986) Sulfate reduction relative to methane production in high-rate anaerobic digestion: microbiological aspects. Appl Environ Microb 51:580–587
113.
Zurück zum Zitat Jage C, Zipper C, Noble R (2001) Factors affecting alkalinity generation by successive alkalinity-producing systems. J Environ Qual 30:1015–1022 Jage C, Zipper C, Noble R (2001) Factors affecting alkalinity generation by successive alkalinity-producing systems. J Environ Qual 30:1015–1022
114.
Zurück zum Zitat Janneck E, Glombitza F, Terno D, Wolf M, Patzig A, Fischer H, Rätzel G, Herbach K (2008) Umweltfreundliche biotechnologische Gewinnung von Eisenhydroxysulfaten aus der Bergbauwasserbehandlung und deren Verwertung als Roh- und Grundstoff in der keramischen, Baustoffe produzierenden sowie Farben und Pigmente herstellenden Industrie zur Kosten-, Rohstoff- und Ressourceneinsparung, Teilprojekt 1: Koordination sowie Anlagenbetrieb und Produktherstellung. BMBF-Research report, FKZ: 01RI5013 Janneck E, Glombitza F, Terno D, Wolf M, Patzig A, Fischer H, Rätzel G, Herbach K (2008) Umweltfreundliche biotechnologische Gewinnung von Eisenhydroxysulfaten aus der Bergbauwasserbehandlung und deren Verwertung als Roh- und Grundstoff in der keramischen, Baustoffe produzierenden sowie Farben und Pigmente herstellenden Industrie zur Kosten-, Rohstoff- und Ressourceneinsparung, Teilprojekt 1: Koordination sowie Anlagenbetrieb und Produktherstellung. BMBF-Research report, FKZ: 01RI5013
115.
Zurück zum Zitat Janneck E, Arnold I, Koch, T, Meyer J, Burghardt D, Ehinger S (2010) Microbial synthesis of schwertmannite from lignite mine water and its utilisation for removal of arsenic from mine waters and for production of iron pigments. In: Wolkersdorfer C, Freund A (eds) Mine water & innovative thinking. Proceedings of the International Mine Water Association symposium 2010. Cape Breton University Press, Sydney Janneck E, Arnold I, Koch, T, Meyer J, Burghardt D, Ehinger S (2010) Microbial synthesis of schwertmannite from lignite mine water and its utilisation for removal of arsenic from mine waters and for production of iron pigments. In: Wolkersdorfer C, Freund A (eds) Mine water & innovative thinking. Proceedings of the International Mine Water Association symposium 2010. Cape Breton University Press, Sydney
116.
Zurück zum Zitat Janneck E, Burghardt D, Martin M, Damian C, Schöne G, Meyer J, Peiffer S (2011) From waste to valuable substance: utilisation of schwertmannite and lignite filter ash for removal of arsenic and uranium from mine drainage. In: Rüde T, Freund A, Wolkersdorfer C (eds) 11th International Mine Water Association congress—mine water—managing the challenges, pp 359–364 Janneck E, Burghardt D, Martin M, Damian C, Schöne G, Meyer J, Peiffer S (2011) From waste to valuable substance: utilisation of schwertmannite and lignite filter ash for removal of arsenic and uranium from mine drainage. In: Rüde T, Freund A, Wolkersdorfer C (eds) 11th International Mine Water Association congress—mine water—managing the challenges, pp 359–364
117.
Zurück zum Zitat Jensen AB, Webb C (1994) A trickle bed reactor for ferrous sulphate oxidation using Thiobacillus ferrooxidans. Biotechnol Tech 8:87–92 Jensen AB, Webb C (1994) A trickle bed reactor for ferrous sulphate oxidation using Thiobacillus ferrooxidans. Biotechnol Tech 8:87–92
118.
Zurück zum Zitat Ji SW, Kim SJ (2008) Lab-scale study on the application of in-adit-sulfate-reducing system for AMD control. J Hazard Mater 160:441–447 Ji SW, Kim SJ (2008) Lab-scale study on the application of in-adit-sulfate-reducing system for AMD control. J Hazard Mater 160:441–447
119.
Zurück zum Zitat Jin S, Fallgren PH, Morris JM, Cooper JS (2008) Source treatment of acid mine drainage at a backfilled coal mine using remote sensing and biogeochemistry. Water Air Soil Poll 188:205–212 Jin S, Fallgren PH, Morris JM, Cooper JS (2008) Source treatment of acid mine drainage at a backfilled coal mine using remote sensing and biogeochemistry. Water Air Soil Poll 188:205–212
120.
Zurück zum Zitat Jong T, Parry DL (2006) Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor. Water Res 40:2561–2571 Jong T, Parry DL (2006) Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor. Water Res 40:2561–2571
121.
Zurück zum Zitat Johnson DB (2003) Chemical and microbiological characteristics of mineral spoils and drainage waters at abandoned coal and metal mines. Water Air Soil Poll 3:47–66 Johnson DB (2003) Chemical and microbiological characteristics of mineral spoils and drainage waters at abandoned coal and metal mines. Water Air Soil Poll 3:47–66
122.
Zurück zum Zitat Johnson DB, Rolfe S, Hallberg KB, Iversen E (2001) Isolation and phylogenetic characterisation of acidophilic microorganisms indigenous to acidic drainage waters at an abandoned Norwegian copper mine. Environ Microbiol 3:630–637 Johnson DB, Rolfe S, Hallberg KB, Iversen E (2001) Isolation and phylogenetic characterisation of acidophilic microorganisms indigenous to acidic drainage waters at an abandoned Norwegian copper mine. Environ Microbiol 3:630–637
123.
Zurück zum Zitat Johnson DB, Hallberg KB (2003) The microbiology of acidic mine waters. Res Microbiol 154:466–473 Johnson DB, Hallberg KB (2003) The microbiology of acidic mine waters. Res Microbiol 154:466–473
124.
Zurück zum Zitat Johnson DB, Hallberg KB (2005) Acid mine drainage remediation options: a review. Sci Total Environ 338:3–14 Johnson DB, Hallberg KB (2005) Acid mine drainage remediation options: a review. Sci Total Environ 338:3–14
125.
Zurück zum Zitat Jönsson J, Persson P, Sjöberg S, Lövgren L (2005) Schwertmannite precipitated from acid mine drainage: phase transformation, sulphate release and surface properties. Appl Geochem 20:179–191 Jönsson J, Persson P, Sjöberg S, Lövgren L (2005) Schwertmannite precipitated from acid mine drainage: phase transformation, sulphate release and surface properties. Appl Geochem 20:179–191
126.
Zurück zum Zitat Juby GJG, Shutte CF (2000) Membrane life in a seeded-slurry reverse osmosis system. Water SA26:239–248 Juby GJG, Shutte CF (2000) Membrane life in a seeded-slurry reverse osmosis system. Water SA26:239–248
127.
Zurück zum Zitat Junfeng Y, Guoliang L, Wei C (2007) Ferrous sulphate oxidation using Acidithiobacillus ferrooxidans cells immobilised in ceramic beads. Chem Biochem Eng Q 21:175–179 Junfeng Y, Guoliang L, Wei C (2007) Ferrous sulphate oxidation using Acidithiobacillus ferrooxidans cells immobilised in ceramic beads. Chem Biochem Eng Q 21:175–179
128.
Zurück zum Zitat Kahrizi E, Alemzadeh I, Vossoughi M (2009) Bio-oxidation of ferrous iron by Acidithiobacillus ferrooxidans in a monolithic bioreactor. J Chem Technol Biotechnol 84:504–510 Kahrizi E, Alemzadeh I, Vossoughi M (2009) Bio-oxidation of ferrous iron by Acidithiobacillus ferrooxidans in a monolithic bioreactor. J Chem Technol Biotechnol 84:504–510
129.
Zurück zum Zitat Kaksonen AH, Puhakka JA (2007) Sulfate reduction based bioprocesses for the treatment of acid mine drainage and the recovery of metals. Eng Life Sci 7:541–564 Kaksonen AH, Puhakka JA (2007) Sulfate reduction based bioprocesses for the treatment of acid mine drainage and the recovery of metals. Eng Life Sci 7:541–564
130.
Zurück zum Zitat Kaksonen AH, Riekkola-Vanhanenc M-L, Puhakka JA (2003) Optimization of metal sulphide precipitation in fluidized-bed treatment of acidic wastewater. Water Res 37:255–266 Kaksonen AH, Riekkola-Vanhanenc M-L, Puhakka JA (2003) Optimization of metal sulphide precipitation in fluidized-bed treatment of acidic wastewater. Water Res 37:255–266
131.
Zurück zum Zitat Kaksonen AH, Franzmann PD, Puhakka JA (2004) Effects of hydraulic retention time and sulfide toxicity on ethanol and acetate oxidation in sulfate-reducing metal-precipitating fluidized-bed reactor. Biotechnol Bioeng 86:332–343 Kaksonen AH, Franzmann PD, Puhakka JA (2004) Effects of hydraulic retention time and sulfide toxicity on ethanol and acetate oxidation in sulfate-reducing metal-precipitating fluidized-bed reactor. Biotechnol Bioeng 86:332–343
132.
Zurück zum Zitat Kaksonen AH, Spring S, Schumann P, Kroppenstedt RM, Puhakka JA (2006) Desulfotomaculum thermosubterraneum sp. nov., a thermophilic sulfate-reducer isolated from an underground mine located in a geothermally active area. Int J Syst Evol Microbiol 56:2603–2608 Kaksonen AH, Spring S, Schumann P, Kroppenstedt RM, Puhakka JA (2006) Desulfotomaculum thermosubterraneum sp. nov., a thermophilic sulfate-reducer isolated from an underground mine located in a geothermally active area. Int J Syst Evol Microbiol 56:2603–2608
133.
Zurück zum Zitat Kalin M, Fyson A, Wheeler WN (2006) The chemistry of conventional and alternative treatment systems for the neutralization of acid mine drainage. Sci Total Environ 366:395–408 Kalin M, Fyson A, Wheeler WN (2006) The chemistry of conventional and alternative treatment systems for the neutralization of acid mine drainage. Sci Total Environ 366:395–408
134.
Zurück zum Zitat Kalyuzhnyi SV, de Leon FC, Rodriguez MJ (1997) Biological sulfate reduction using ethanol as electron donor. Microbiologiya 66:687–693 Kalyuzhnyi SV, de Leon FC, Rodriguez MJ (1997) Biological sulfate reduction using ethanol as electron donor. Microbiologiya 66:687–693
135.
Zurück zum Zitat Kawano M, Tomita K (2001) Geochemical modeling of bacterially induced mineralization of schwertmannite and jarosite in sulfuric acid spring water. Am Mineral 86:1156–1165 Kawano M, Tomita K (2001) Geochemical modeling of bacterially induced mineralization of schwertmannite and jarosite in sulfuric acid spring water. Am Mineral 86:1156–1165
136.
Zurück zum Zitat Kelly DP (1978) Bioenergetics of chemolithotrophic bacteria. In: Bull A, Meadow P (eds) Companion to microbiology: selected topic for further study. Longman, London Kelly DP (1978) Bioenergetics of chemolithotrophic bacteria. In: Bull A, Meadow P (eds) Companion to microbiology: selected topic for further study. Longman, London
137.
Zurück zum Zitat Kimura S, Hallberg KB, Johnson DB (2006) Sulfidogenesis in low pH (3.8–4.2) media by a mixed population of acidophilic bacteria. Biodegradation 17:57–65 Kimura S, Hallberg KB, Johnson DB (2006) Sulfidogenesis in low pH (3.8–4.2) media by a mixed population of acidophilic bacteria. Biodegradation 17:57–65
138.
Zurück zum Zitat Kirby CS, Thomas H, Southam G, Donald R (1999) Relative contributions of abiotic and biological factors in Fe(II) oxidation in mine drainage. Appl Geochem 14:511–530 Kirby CS, Thomas H, Southam G, Donald R (1999) Relative contributions of abiotic and biological factors in Fe(II) oxidation in mine drainage. Appl Geochem 14:511–530
139.
Zurück zum Zitat Knoblauch C, Jørgensen BB (1999) Effect of temperature on sulphate reduction, growth rate and growth yield in five psychrophilic sulphate reducing bacteria from Arctic sediments. Environ Microbiol 65:4230–4233 Knoblauch C, Jørgensen BB (1999) Effect of temperature on sulphate reduction, growth rate and growth yield in five psychrophilic sulphate reducing bacteria from Arctic sediments. Environ Microbiol 65:4230–4233
140.
Zurück zum Zitat Kolmert A, Johnson DB (2001) Remediation of acidic waste waters using immobilised, acidophilic sulfate-reducing bacteria. J Chem Technol Biot 76:836–843 Kolmert A, Johnson DB (2001) Remediation of acidic waste waters using immobilised, acidophilic sulfate-reducing bacteria. J Chem Technol Biot 76:836–843
141.
Zurück zum Zitat Koschorreck M (2008) Microbial sulphate reduction at a low pH. FEMS Microbiol Ecol 64:329–342 Koschorreck M (2008) Microbial sulphate reduction at a low pH. FEMS Microbiol Ecol 64:329–342
142.
Zurück zum Zitat Koschorreck M, Wendt-Potthoff K, Geller W (2003) Microbial sulfate reduction at low pH in sediments of an acidic lake in Argentina. Environ Sci Technol 37:1159–1162 Koschorreck M, Wendt-Potthoff K, Geller W (2003) Microbial sulfate reduction at low pH in sediments of an acidic lake in Argentina. Environ Sci Technol 37:1159–1162
143.
Zurück zum Zitat Krekeler D, Teske A, Cypionka H (1998) Strategies of sulfate-reducing bacteria to escape oxygen stress in a cyanobacterial mat. FEMS Microbiol Ecol 25:89–96 Krekeler D, Teske A, Cypionka H (1998) Strategies of sulfate-reducing bacteria to escape oxygen stress in a cyanobacterial mat. FEMS Microbiol Ecol 25:89–96
144.
Zurück zum Zitat Lancy ED, Tuovinen OH (1984) Ferrous ion oxidation by Thiobacillus ferrooxidans immobilised in calcium alginate. Appl Microbiol Biotechnol 20:94–99 Lancy ED, Tuovinen OH (1984) Ferrous ion oxidation by Thiobacillus ferrooxidans immobilised in calcium alginate. Appl Microbiol Biotechnol 20:94–99
145.
Zurück zum Zitat Ledin M, Pedersen K (1996) The environmental impact of mine wastes—roles of micro–organisms and their significance in treatment of mine wastes. Earth Sci Rev 41:67–108 Ledin M, Pedersen K (1996) The environmental impact of mine wastes—roles of micro–organisms and their significance in treatment of mine wastes. Earth Sci Rev 41:67–108
146.
Zurück zum Zitat Lens PNL, Vallero M, Esposito G, Zandvoort M (2002) Perspectives of sulfate reducing bioreactors in environmental biotechnology. Rev Environ Sci Biotechnol 1:311–325 Lens PNL, Vallero M, Esposito G, Zandvoort M (2002) Perspectives of sulfate reducing bioreactors in environmental biotechnology. Rev Environ Sci Biotechnol 1:311–325
147.
Zurück zum Zitat Lens PNL, Vallero M, Esposito G (2007) Bioprocess engineering of sulphate reduction for environmental technology. In: Barton LL, Hamilton WA (eds) Sulphate-reducing bacteria—environmental and engineered systems. Cambridge University Press, Cambridge, pp 383–404 Lens PNL, Vallero M, Esposito G (2007) Bioprocess engineering of sulphate reduction for environmental technology. In: Barton LL, Hamilton WA (eds) Sulphate-reducing bacteria—environmental and engineered systems. Cambridge University Press, Cambridge, pp 383–404
148.
Zurück zum Zitat Lenz M, van Hullebusch ED, Hommes G, Corvini PFX, Lens PNL (2008) Selenate removal in methanogenic and sulfate-reducing upflow anaerobic sludge bed reactors. Water Res 42:2184–2194 Lenz M, van Hullebusch ED, Hommes G, Corvini PFX, Lens PNL (2008) Selenate removal in methanogenic and sulfate-reducing upflow anaerobic sludge bed reactors. Water Res 42:2184–2194
149.
Zurück zum Zitat le Robinson RE, Barnard R, Riche FJ (1998) The treatment of acid effluent from the Grootvlei Mine using novel IX techniques. J S Afr I Min Metall 98:343–352 le Robinson RE, Barnard R, Riche FJ (1998) The treatment of acid effluent from the Grootvlei Mine using novel IX techniques. J S Afr I Min Metall 98:343–352
150.
Zurück zum Zitat Liamleam W, Annachhatre AP (2007) Electron donors for biological sulfate reduction. Biotechnol Adv 25:452–463 Liamleam W, Annachhatre AP (2007) Electron donors for biological sulfate reduction. Biotechnol Adv 25:452–463
151.
Zurück zum Zitat Lin Y, Lee K (2001) Verification of anaerobic biofilm model for phenol degradation with sulfate reduction. J Environ Eng 127:119–125 Lin Y, Lee K (2001) Verification of anaerobic biofilm model for phenol degradation with sulfate reduction. J Environ Eng 127:119–125
152.
Zurück zum Zitat Liu H, Chen B, Lan Y, Cheng Y (2004) Biosorption of Zn(II) and Cu(II) by the indigenous Thiobacillus thiooxidans. Chem Eng J 97:195–201 Liu H, Chen B, Lan Y, Cheng Y (2004) Biosorption of Zn(II) and Cu(II) by the indigenous Thiobacillus thiooxidans. Chem Eng J 97:195–201
153.
Zurück zum Zitat Long Z, Huang Y, Cai Z, Cong W, Ouyang F (2003) Biooxidation of ferrous iron by immobilised Acidithiobacillus ferrooxidans in poly(vinyl alcohol) cryogel carriers. Biotechnol Lett 25:245–249 Long Z, Huang Y, Cai Z, Cong W, Ouyang F (2003) Biooxidation of ferrous iron by immobilised Acidithiobacillus ferrooxidans in poly(vinyl alcohol) cryogel carriers. Biotechnol Lett 25:245–249
154.
Zurück zum Zitat Long Z, Huang Y, Cai Z, Cong W, Ouyang F (2004) Immobilisation of Acidithiobacillus ferrooxidans by a PVA–boric acid method for ferrous sulphate oxidation. Process Biochem 39:2129–2133 Long Z, Huang Y, Cai Z, Cong W, Ouyang F (2004) Immobilisation of Acidithiobacillus ferrooxidans by a PVA–boric acid method for ferrous sulphate oxidation. Process Biochem 39:2129–2133
155.
Zurück zum Zitat Lopez O (2009) Green technologies for sulphate and metal removal in mining and metallurgical effluents. In: Wiertz J, Moran C (eds) ENVIROMINE 2009—Proceedings of the I. International seminar on environmental issues in the mining industry, 30 Sept–2 Oct 2009, Santiago, Chile Lopez O (2009) Green technologies for sulphate and metal removal in mining and metallurgical effluents. In: Wiertz J, Moran C (eds) ENVIROMINE 2009—Proceedings of the I. International seminar on environmental issues in the mining industry, 30 Sept–2 Oct 2009, Santiago, Chile
156.
Zurück zum Zitat Lottermoser B (2010) Mine wastes—characterisation, treatment and environmental impact. Springer, Berlin, p 400 Lottermoser B (2010) Mine wastes—characterisation, treatment and environmental impact. Springer, Berlin, p 400
157.
Zurück zum Zitat Lovley DR, Roden EE, Phillips EJP, Woodward JC (1993) Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Mar Geol 113:41–53 Lovley DR, Roden EE, Phillips EJP, Woodward JC (1993) Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Mar Geol 113:41–53
158.
Zurück zum Zitat Macy JM, Santini JM, Pauling BV, O’Neill AH, Sly LI (2000) Two new arsenate/sulfate-reducing bacteria: mechanisms of arsenate reduction. Arch Microbiol 173:49–57 Macy JM, Santini JM, Pauling BV, O’Neill AH, Sly LI (2000) Two new arsenate/sulfate-reducing bacteria: mechanisms of arsenate reduction. Arch Microbiol 173:49–57
159.
Zurück zum Zitat Maree JP, Strydom WF (1987) Biological sulphate removal from industrial effluent in an upflow packed bed reactor. Water Res 21:141–146 Maree JP, Strydom WF (1987) Biological sulphate removal from industrial effluent in an upflow packed bed reactor. Water Res 21:141–146
160.
Zurück zum Zitat Maree JP, Hulse G, Dods D, Schutte CE (1991) Pilot plant studies on biological sulphate removal from industrial effluent. Water Sci Technol 23:1293–1300 Maree JP, Hulse G, Dods D, Schutte CE (1991) Pilot plant studies on biological sulphate removal from industrial effluent. Water Sci Technol 23:1293–1300
161.
Zurück zum Zitat Maree JP, Hlabela P, Nengovhela R, Geldenhuys AJ, Mbhele N, Nevhulaudzi T, Waanders FB (2004) Treatment of mine water for sulphate and metal removal using barium sulphide. Mine Water Environ 23:195–203 Maree JP, Hlabela P, Nengovhela R, Geldenhuys AJ, Mbhele N, Nevhulaudzi T, Waanders FB (2004) Treatment of mine water for sulphate and metal removal using barium sulphide. Mine Water Environ 23:195–203
162.
163.
Zurück zum Zitat McDonald DM, Webb J, Musgrave R (2006) The effect of neutralisation method and reagent on the rate of Cu and Zn release from Acid Rock Drainage treatment sludges. In: Barnhisel RI (ed) 7th International Conference on Acid Rock Drainage (ICARD), 26–30 March 2006, St. Louis, MO. American Society of Mining and Reclamation, Lexington, pp 1198–1219 McDonald DM, Webb J, Musgrave R (2006) The effect of neutralisation method and reagent on the rate of Cu and Zn release from Acid Rock Drainage treatment sludges. In: Barnhisel RI (ed) 7th International Conference on Acid Rock Drainage (ICARD), 26–30 March 2006, St. Louis, MO. American Society of Mining and Reclamation, Lexington, pp 1198–1219
164.
Zurück zum Zitat Meier J, Piva A, Fortin D (2012) Enrichment of sulfate-reducing bacteria and resulting mineral formation in media mimicking pore water metal ion concentrations and pH conditions of acidic pit lakes. FEMS Microbiol Ecol 79:69–84 Meier J, Piva A, Fortin D (2012) Enrichment of sulfate-reducing bacteria and resulting mineral formation in media mimicking pore water metal ion concentrations and pH conditions of acidic pit lakes. FEMS Microbiol Ecol 79:69–84
165.
Zurück zum Zitat Moosa S, Nemati M, Harrison STL (2002) A kinetic study on anaerobic reduction of sulphate, part I: effect of sulphate concentration. Chem Eng Sci 57:2773–2780 Moosa S, Nemati M, Harrison STL (2002) A kinetic study on anaerobic reduction of sulphate, part I: effect of sulphate concentration. Chem Eng Sci 57:2773–2780
167.
Zurück zum Zitat Mousavi SM, Yaghmaei S, Jafari A (2007) Influence of process variables on biooxidation of ferrous sulfate by an indigenous Acidithiobacillus ferrooxidans. Part II: Bioreactor experiments. Fuel 86:993–999 Mousavi SM, Yaghmaei S, Jafari A (2007) Influence of process variables on biooxidation of ferrous sulfate by an indigenous Acidithiobacillus ferrooxidans. Part II: Bioreactor experiments. Fuel 86:993–999
168.
Zurück zum Zitat Murad E, Rojik P (2003) Iron-rich precipitates in a mine drainage environment: influence of pH on mineralogy. Am Mineral 88:1915–1918 Murad E, Rojik P (2003) Iron-rich precipitates in a mine drainage environment: influence of pH on mineralogy. Am Mineral 88:1915–1918
169.
Zurück zum Zitat Murad E, Rojik P (2004) Jarosite, schwertmannite, goethite, ferrihydrite and lepidocrocite: the legacy of coal and sulfide ore mining. 3rd Australian New Zealand Soils Conference, Sydney Murad E, Rojik P (2004) Jarosite, schwertmannite, goethite, ferrihydrite and lepidocrocite: the legacy of coal and sulfide ore mining. 3rd Australian New Zealand Soils Conference, Sydney
170.
Zurück zum Zitat Muthumbi W, Boon N, Boterdaele R, de Vreese I, Top EM, Verstraete W (2001) Microbial sulfate reduction with acetate: process performance and composition of the bacterial communities in the reactor at different salinity levels. Appl Microbiol Biot 55:787–793 Muthumbi W, Boon N, Boterdaele R, de Vreese I, Top EM, Verstraete W (2001) Microbial sulfate reduction with acetate: process performance and composition of the bacterial communities in the reactor at different salinity levels. Appl Microbiol Biot 55:787–793
171.
Zurück zum Zitat Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nature Rev Microbiol 6:441–454 Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nature Rev Microbiol 6:441–454
172.
Zurück zum Zitat Nagpal S, Chuichulcherm S, Peeva L, Livingston A (2000) Microbial sulfate reduction in a liquid–solid fluidized bed reactor. Biotechnol Bioeng 70:370–380 Nagpal S, Chuichulcherm S, Peeva L, Livingston A (2000) Microbial sulfate reduction in a liquid–solid fluidized bed reactor. Biotechnol Bioeng 70:370–380
173.
Zurück zum Zitat Nemati M, Webb C (1996) Effect of ferrous iron concentration on the catalytic activity of immobilised cells of Thiobacillus ferrooxidans. Appl Microbiol Biotechnol 46:250–255 Nemati M, Webb C (1996) Effect of ferrous iron concentration on the catalytic activity of immobilised cells of Thiobacillus ferrooxidans. Appl Microbiol Biotechnol 46:250–255
174.
Zurück zum Zitat Nemati M, Harrison S, Hansford GS, Webb C (1998) Biological oxidation of ferrous sulphate by Thiobacillus ferrooxidans: a review on the kinetic aspects. Biochem Eng J 1:171–190 Nemati M, Harrison S, Hansford GS, Webb C (1998) Biological oxidation of ferrous sulphate by Thiobacillus ferrooxidans: a review on the kinetic aspects. Biochem Eng J 1:171–190
175.
Zurück zum Zitat Nicolella C, van Loosdrecht MCM, Heijnen JJ (2000) Wastewater treatment with particulate biofilm reactors. J Biotechnol 80:1–33 Nicolella C, van Loosdrecht MCM, Heijnen JJ (2000) Wastewater treatment with particulate biofilm reactors. J Biotechnol 80:1–33
176.
Zurück zum Zitat Nitsche C (2001) Tagebauseen: Wasserbeschaffenheit und wassergütewirtschaftliche Sanierung–Konzeptionelle Vorstellungen und erste Erfahrungen. Hg. v. Landesumweltamt Brandenburg (LUA), Potsdam (Studien und Tagungsberichte, Band 35) Nitsche C (2001) Tagebauseen: Wasserbeschaffenheit und wassergütewirtschaftliche Sanierung–Konzeptionelle Vorstellungen und erste Erfahrungen. Hg. v. Landesumweltamt Brandenburg (LUA), Potsdam (Studien und Tagungsberichte, Band 35)
177.
Zurück zum Zitat Nordstrom DK (2011) Mine waters: acidic to circumneutral. Elements 7:393–398 Nordstrom DK (2011) Mine waters: acidic to circumneutral. Elements 7:393–398
178.
Zurück zum Zitat Nordstrom DK, Alpers CN (1999) Geochemistry of acid mine waters. In: Plumlee GS, Logsdon MJ (eds) The environmental geochemistry of mineral deposits: reviews in economic geology, vol 6A. Society of Economic Geologists, Inc, Littleton, pp 133–160 Nordstrom DK, Alpers CN (1999) Geochemistry of acid mine waters. In: Plumlee GS, Logsdon MJ (eds) The environmental geochemistry of mineral deposits: reviews in economic geology, vol 6A. Society of Economic Geologists, Inc, Littleton, pp 133–160
179.
Zurück zum Zitat Ollivier B, Cayol J-L, Fauque G (2007) Sulphate-reducing bacteria from oil field environment and deep-sea hydrothermal vents. In: Barton LL, Hamilton WA (eds) Sulphate-reducing bacteria—environmental and engineered systems. Cambridge University Press, Cambridge, pp 305–328 Ollivier B, Cayol J-L, Fauque G (2007) Sulphate-reducing bacteria from oil field environment and deep-sea hydrothermal vents. In: Barton LL, Hamilton WA (eds) Sulphate-reducing bacteria—environmental and engineered systems. Cambridge University Press, Cambridge, pp 305–328
180.
Zurück zum Zitat Omil F, Lens P, Hulshoff-Pol LW, Lettinga G (1997) Characterization of biomass from a sulfidogenic, volatile fatty acid-degrading granular sludge reactor. Enzyme Microb Tech 20:229–236 Omil F, Lens P, Hulshoff-Pol LW, Lettinga G (1997) Characterization of biomass from a sulfidogenic, volatile fatty acid-degrading granular sludge reactor. Enzyme Microb Tech 20:229–236
181.
Zurück zum Zitat Orem W (2007) Sulfur contamination in the Florida Everglades: initial examination of mitigation strategies. U.S. Geological Survey Open-File Report 2007-1374 Orem W (2007) Sulfur contamination in the Florida Everglades: initial examination of mitigation strategies. U.S. Geological Survey Open-File Report 2007-1374
182.
Zurück zum Zitat Ottow JCG, Bidlingmaier W (1997) Umweltbiotechnologie. Gustav Fischer Verlag, Stuttgart Ottow JCG, Bidlingmaier W (1997) Umweltbiotechnologie. Gustav Fischer Verlag, Stuttgart
184.
Zurück zum Zitat Parravicini V, Svardal K, Kroiss H (2006) Anaerobe biologische Sulfatentfernung aus Industrieabwässern am Beispiel einer Viskosefabrik. Oesterr Wasser Abfallwirtsch 58:19–25 Parravicini V, Svardal K, Kroiss H (2006) Anaerobe biologische Sulfatentfernung aus Industrieabwässern am Beispiel einer Viskosefabrik. Oesterr Wasser Abfallwirtsch 58:19–25
185.
Zurück zum Zitat Paulo PL, Kleerebezem R, Lettinga G, Lens PNL (2005) Cultivation of high-rate sulfate reducing next term sludge by pH-based electron donor dosage. J Biotechnol 118:107–116 Paulo PL, Kleerebezem R, Lettinga G, Lens PNL (2005) Cultivation of high-rate sulfate reducing next term sludge by pH-based electron donor dosage. J Biotechnol 118:107–116
186.
Zurück zum Zitat Pearson F, McDonnell A (1975) Limestone barriers to neutralize acidic streams. J Env Eng Div 101:425–440 Pearson F, McDonnell A (1975) Limestone barriers to neutralize acidic streams. J Env Eng Div 101:425–440
187.
Zurück zum Zitat Pearson F, McDonnell A (1975) Use of crushed limestone to neutralize acid wastes. J Env Eng Div 101:139–158 Pearson F, McDonnell A (1975) Use of crushed limestone to neutralize acid wastes. J Env Eng Div 101:139–158
188.
Zurück zum Zitat Pérez Silva RM, Ábalos Rodríguez A, De Oca Gómez Montes JM, Cantero Moreno D (2009) Biosorption of chromium, copper, manganese and zinc by Pseudomonas aeruginosa AT18 isolated from a site contaminated with petroleum. Bioresour Technology 100:1533–1538 Pérez Silva RM, Ábalos Rodríguez A, De Oca Gómez Montes JM, Cantero Moreno D (2009) Biosorption of chromium, copper, manganese and zinc by Pseudomonas aeruginosa AT18 isolated from a site contaminated with petroleum. Bioresour Technology 100:1533–1538
189.
Zurück zum Zitat Phifer MA, Sappington FC, Millings MR, Turick CE, McKinsey PC (2003) D-Area sulfate reduction, DIW-1 organic application field study (U), Prepared for the U.S. Department of Energy Phifer MA, Sappington FC, Millings MR, Turick CE, McKinsey PC (2003) D-Area sulfate reduction, DIW-1 organic application field study (U), Prepared for the U.S. Department of Energy
190.
Zurück zum Zitat PIRAMID Consortium (2003) Engineering guidelines for the passive remediation of acidic and/or metalliferous mine drainage and similar wastewaters. University of Newcastle Upon Tyne, Newcastle Upon Tyne UK, European Commission 5th Framework RTD Project no. EVK1-CT-1999-000021: Passive in situ remediation of acidic mine/industrial drainage (PIRAMID) PIRAMID Consortium (2003) Engineering guidelines for the passive remediation of acidic and/or metalliferous mine drainage and similar wastewaters. University of Newcastle Upon Tyne, Newcastle Upon Tyne UK, European Commission 5th Framework RTD Project no. EVK1-CT-1999-000021: Passive in situ remediation of acidic mine/industrial drainage (PIRAMID)
191.
Zurück zum Zitat Pollmann K, Raff J, Merroun M, Fahmy K, Selenska-Pobell S (2006) Metal binding by bacteria from uranium mining waste piles and its technological applications. Biotechnol Adv 24:58–68 Pollmann K, Raff J, Merroun M, Fahmy K, Selenska-Pobell S (2006) Metal binding by bacteria from uranium mining waste piles and its technological applications. Biotechnol Adv 24:58–68
192.
Zurück zum Zitat Poinapen J, Wentzel MC, Ekama GA (2009) Biological sulphate reduction with primary sewage sludge in an upflow anaerobic sludge bed (UASB) reactor—Part 1: feasibility study. Water SA (Online) 35:525–534 Poinapen J, Wentzel MC, Ekama GA (2009) Biological sulphate reduction with primary sewage sludge in an upflow anaerobic sludge bed (UASB) reactor—Part 1: feasibility study. Water SA (Online) 35:525–534
193.
Zurück zum Zitat Poinapen J, Ekama GA, Wentzel MC (2009) Biological sulphate reduction with primary sewage sludge in an upflow anaerobic sludge bed (UASB) reactor—Part 3: performance at 20°C and 35°C. Water SA 35:543–552 Poinapen J, Ekama GA, Wentzel MC (2009) Biological sulphate reduction with primary sewage sludge in an upflow anaerobic sludge bed (UASB) reactor—Part 3: performance at 20°C and 35°C. Water SA 35:543–552
194.
Zurück zum Zitat Praharaj T, Fortin D (2004) Indicators of microbial sulfate reduction in acidic sulfide-rich mine tailings. Geomicrobiol J 21:457–467 Praharaj T, Fortin D (2004) Indicators of microbial sulfate reduction in acidic sulfide-rich mine tailings. Geomicrobiol J 21:457–467
195.
Zurück zum Zitat Preuß V, Koch T, Schöpke R, Koch R, Rolland W (2007) Weitergehende Grubenwasserreinigung - Sulfatentfernung mittels Nanofiltration. In: Merkel BJ, Schaeben H, Wolkersdorfer C, Hasche A (eds) Behandlungstechnologien für bergbaubeeinflusste Wässer + GIS-Geowissenschaftliche Anwendungen und Entwicklungen. Wiss. Mittl. Inst. f. Geologie, Nr. 35/2007, pp 19–25 Preuß V, Koch T, Schöpke R, Koch R, Rolland W (2007) Weitergehende Grubenwasserreinigung - Sulfatentfernung mittels Nanofiltration. In: Merkel BJ, Schaeben H, Wolkersdorfer C, Hasche A (eds) Behandlungstechnologien für bergbaubeeinflusste Wässer + GIS-Geowissenschaftliche Anwendungen und Entwicklungen. Wiss. Mittl. Inst. f. Geologie, Nr. 35/2007, pp 19–25
196.
Zurück zum Zitat Pümpel T, Macaskie LE, Finlay JA, Diels L, Tsezos M (2003) Nickel removal from nickel plating waste water using a biologically active moving-bed sand filter. Biometals 16:567–581 Pümpel T, Macaskie LE, Finlay JA, Diels L, Tsezos M (2003) Nickel removal from nickel plating waste water using a biologically active moving-bed sand filter. Biometals 16:567–581
197.
Zurück zum Zitat Quatrini R, Appia-Ayme C, Denis Y, Jedlicki E, Holmes DS, Bonnefoy V (2009) Extending the models for iron and sulfur oxidation in the extreme acidophile Acidithiobacillus ferrooxidans. BMC Genomics 10:394–413 Quatrini R, Appia-Ayme C, Denis Y, Jedlicki E, Holmes DS, Bonnefoy V (2009) Extending the models for iron and sulfur oxidation in the extreme acidophile Acidithiobacillus ferrooxidans. BMC Genomics 10:394–413
198.
Zurück zum Zitat Rabus R, Brüchert V, Amann J, Könneke M (2002) Physiological response to temperature changes of the marine, sulfate-reducing bacterium Desulfobacterium autotrophicum. FEMS Microbiol Ecol 42:409–417 Rabus R, Brüchert V, Amann J, Könneke M (2002) Physiological response to temperature changes of the marine, sulfate-reducing bacterium Desulfobacterium autotrophicum. FEMS Microbiol Ecol 42:409–417
199.
Zurück zum Zitat Raff J, Soltmann U, Matys S, Selenska-Pobell S, Böttcher H, Pompe W (2003) Biosorption of uranium and copper by biocers. Chem Mater 15:240–244 Raff J, Soltmann U, Matys S, Selenska-Pobell S, Böttcher H, Pompe W (2003) Biosorption of uranium and copper by biocers. Chem Mater 15:240–244
200.
Zurück zum Zitat Regenspurg S, Peiffer S (2005) Arsenate and chromate incorporation in schwertmannite. Appl Geochem 20:1226–1239 Regenspurg S, Peiffer S (2005) Arsenate and chromate incorporation in schwertmannite. Appl Geochem 20:1226–1239
201.
Zurück zum Zitat Ribeiro D, Maretto D, Noguiera F, Silva M, Campos F, Domont G, Poppi R, Ottoboni L (2011) Heat and phosphate starvation effects on the proteome, morphology and chemical composition of the biomining Acidithiobacillus ferrooxidans. World J Microbiol Biotechnol 27:1469–1479 Ribeiro D, Maretto D, Noguiera F, Silva M, Campos F, Domont G, Poppi R, Ottoboni L (2011) Heat and phosphate starvation effects on the proteome, morphology and chemical composition of the biomining Acidithiobacillus ferrooxidans. World J Microbiol Biotechnol 27:1469–1479
202.
Zurück zum Zitat Robbins EI, Cravotta CA III, Savela CE, Nord GL Jr (1999) Hydrobiogeochemical interactions in ‘anoxic’ limestone drains for neutralization of acidic mine drainage. Fuel 78:259–270 Robbins EI, Cravotta CA III, Savela CE, Nord GL Jr (1999) Hydrobiogeochemical interactions in ‘anoxic’ limestone drains for neutralization of acidic mine drainage. Fuel 78:259–270
203.
Zurück zum Zitat Robertson AM, Everett D, du Plessis P (1993) Sulfate removal by GYP-CIX process following lime treatment. SUPERFUND XIV conference, 30/11-2/12/93, Washington, USA Robertson AM, Everett D, du Plessis P (1993) Sulfate removal by GYP-CIX process following lime treatment. SUPERFUND XIV conference, 30/11-2/12/93, Washington, USA
204.
Zurück zum Zitat Rose PD, Boshoff GA, van Hille RP, Wallace LCM, Dunn KM, Duncan JR (1998) An integrated algal sulphate reducing high rate ponding process for the treatment of acid mine drainage wastewaters. Biodegradation 9:247–257 Rose PD, Boshoff GA, van Hille RP, Wallace LCM, Dunn KM, Duncan JR (1998) An integrated algal sulphate reducing high rate ponding process for the treatment of acid mine drainage wastewaters. Biodegradation 9:247–257
205.
Zurück zum Zitat Rötting TS, Caraballo MA, Serrano JA, Ayora C, Carrera J (2008) Field application of calcite Dispersed Alkaline Substrate (calcite-DAS) for passive treatment of acid mine drainage with high Al and metal concentrations. Appl Geochem 23:1660–1674 Rötting TS, Caraballo MA, Serrano JA, Ayora C, Carrera J (2008) Field application of calcite Dispersed Alkaline Substrate (calcite-DAS) for passive treatment of acid mine drainage with high Al and metal concentrations. Appl Geochem 23:1660–1674
206.
Zurück zum Zitat Rötting TS, Thomas RC, Ayora C, Carrera J (2008) Passive treatment of acid mine drainage with high metal concentrations using dispersed alkaline substrate. J Environ Qual 37:1741–1751 Rötting TS, Thomas RC, Ayora C, Carrera J (2008) Passive treatment of acid mine drainage with high metal concentrations using dispersed alkaline substrate. J Environ Qual 37:1741–1751
207.
Zurück zum Zitat Rowe OF, Johnson DB (2008) Comparison of ferric iron generation by different species of acidophilic bacteria immobilised in packed-bed reactors. Syst Appl Microbiol 31:68–77 Rowe OF, Johnson DB (2008) Comparison of ferric iron generation by different species of acidophilic bacteria immobilised in packed-bed reactors. Syst Appl Microbiol 31:68–77
208.
Zurück zum Zitat Sabumon PC (2008) Development of enhanced sulphidogenesis process for the treatment of wastewater having low COD/SO4 2− ratio. J Hazard Mater 159:616–625 Sabumon PC (2008) Development of enhanced sulphidogenesis process for the treatment of wastewater having low COD/SO4 2− ratio. J Hazard Mater 159:616–625
209.
Zurück zum Zitat Sagemann J, Jørgensen BB, Greef O (1998) Temperature dependence and rates of sulfate reduction in cold sediments of Svalbard, Arctic Ocean. Geomicrobiol J 15:85–100 Sagemann J, Jørgensen BB, Greef O (1998) Temperature dependence and rates of sulfate reduction in cold sediments of Svalbard, Arctic Ocean. Geomicrobiol J 15:85–100
210.
Zurück zum Zitat Sass H, Cypionka H (2007) Response of sulphate-reducing bacteria to oxygen. In: Barton, LL, Hamilton WA (eds) Sulphate reducing bacteria—environmental and engineered systems. Cambridge University Press, Cambridge, pp 167–183 Sass H, Cypionka H (2007) Response of sulphate-reducing bacteria to oxygen. In: Barton, LL, Hamilton WA (eds) Sulphate reducing bacteria—environmental and engineered systems. Cambridge University Press, Cambridge, pp 167–183
211.
Zurück zum Zitat Schipek M, Merkel BJ (2009) Mine water treatment—results using CO2 and dumped fly ash in AMD affected lakes. Freiberg Online Geology 24:38–42 Schipek M, Merkel BJ (2009) Mine water treatment—results using CO2 and dumped fly ash in AMD affected lakes. Freiberg Online Geology 24:38–42
212.
Zurück zum Zitat Schippers A, Breuker A, Blazejak A, Bosecker K, Kock D, Wright TL (2010) The biogeochemistry and microbiology of sulfidic mine waste and bioleaching dumps and heaps, and novel Fe(II)-oxidizing bacteria. Hydrometallurgy 104:342–350 Schippers A, Breuker A, Blazejak A, Bosecker K, Kock D, Wright TL (2010) The biogeochemistry and microbiology of sulfidic mine waste and bioleaching dumps and heaps, and novel Fe(II)-oxidizing bacteria. Hydrometallurgy 104:342–350
213.
Zurück zum Zitat Schippers A, Hedrich S, Vasters J, Drobe M, Sand W, Willscher S (2013) Biomining: metal revovery from ores with microorganisms. In: Schippers A, Glombitza F, Sand W (eds) Advances in biochemical engineering/biotechnology, Geobiotechnology. Springer, Berlin Schippers A, Hedrich S, Vasters J, Drobe M, Sand W, Willscher S (2013) Biomining: metal revovery from ores with microorganisms. In: Schippers A, Glombitza F, Sand W (eds) Advances in biochemical engineering/biotechnology, Geobiotechnology. Springer, Berlin
214.
Zurück zum Zitat Schwertmann U, Bigham JM, Murad E (1995) The first occurrence of schwertmannite in a natural stream environment. Eur J Mineral 7:547–552 Schwertmann U, Bigham JM, Murad E (1995) The first occurrence of schwertmannite in a natural stream environment. Eur J Mineral 7:547–552
215.
Zurück zum Zitat Seeger M, Jerez CA (1993) Response of Thiobacillus ferrooxidans to phosphate limitation. FEMS Microbiol Rev 11:37–42 Seeger M, Jerez CA (1993) Response of Thiobacillus ferrooxidans to phosphate limitation. FEMS Microbiol Rev 11:37–42
216.
Zurück zum Zitat Selvaraj PT, Little MH, Kaufman EN (1997) Biodesulfurization of flue gases and other sulfate/sulfite waste streams using immobilised mixed sulfate-reducing bacteria. Biotechnol Progr 13:583–589 Selvaraj PT, Little MH, Kaufman EN (1997) Biodesulfurization of flue gases and other sulfate/sulfite waste streams using immobilised mixed sulfate-reducing bacteria. Biotechnol Progr 13:583–589
217.
Zurück zum Zitat Sen AM, Johnson DB (1999) Acidophilic sulphate-reducing bacteria: candidates for bioremediation of acid mine drainage. In: Amils R, Ballester A (eds) Biohydrometallurgy and the environment toward the mining of the 21st century. process metallurgy 9A. Elsevier, Amsterdam, pp 709–718 Sen AM, Johnson DB (1999) Acidophilic sulphate-reducing bacteria: candidates for bioremediation of acid mine drainage. In: Amils R, Ballester A (eds) Biohydrometallurgy and the environment toward the mining of the 21st century. process metallurgy 9A. Elsevier, Amsterdam, pp 709–718
218.
Zurück zum Zitat Senko JM, Wanjugi P, Lucas M, Bruns MA, Burgos WD (2008) Characterisation of Fe(II) oxidizing bacterial activities and communities at two acidic Appalachian coalmine drainage-impacted sites. ISME J 2:1134–1145 Senko JM, Wanjugi P, Lucas M, Bruns MA, Burgos WD (2008) Characterisation of Fe(II) oxidizing bacterial activities and communities at two acidic Appalachian coalmine drainage-impacted sites. ISME J 2:1134–1145
219.
Zurück zum Zitat Sheoran AS, Sheoran V, Choudhary RP (2010) Bioremediation of acid-rock drainage by sulphate-reducing prokaryotes: a review. Miner Eng 23:1073–1100 Sheoran AS, Sheoran V, Choudhary RP (2010) Bioremediation of acid-rock drainage by sulphate-reducing prokaryotes: a review. Miner Eng 23:1073–1100
220.
Zurück zum Zitat Silva AJ, Varesche MB, Foresti E, Zaiat M (2002) Sulphate removal from industrial wastewater using a packed-bed anaerobic reactor. Process Biochem 37:927–935 Silva AJ, Varesche MB, Foresti E, Zaiat M (2002) Sulphate removal from industrial wastewater using a packed-bed anaerobic reactor. Process Biochem 37:927–935
221.
Zurück zum Zitat Singer P, Stumm W (1970) Acidic mine drainage: the rate-determining step. Science 167:1121–1123 Singer P, Stumm W (1970) Acidic mine drainage: the rate-determining step. Science 167:1121–1123
222.
Zurück zum Zitat Sipma J, Osuna MB, Lettinga G, Stams AJM, Lens PNL (2007) Effect of hydraulic retention time on sulfate reduction in a carbon monoxide fed thermophilic gas lift reactor. Water Res 41:1995–2003 Sipma J, Osuna MB, Lettinga G, Stams AJM, Lens PNL (2007) Effect of hydraulic retention time on sulfate reduction in a carbon monoxide fed thermophilic gas lift reactor. Water Res 41:1995–2003
223.
Zurück zum Zitat Sivula LJ, Väisänen AO, Rintala JA (2007) Treatment of leachate from MSWI bottom ash landfilling with anaerobic sulphate-reducing process. Water Res 41:835–841 Sivula LJ, Väisänen AO, Rintala JA (2007) Treatment of leachate from MSWI bottom ash landfilling with anaerobic sulphate-reducing process. Water Res 41:835–841
224.
Zurück zum Zitat Skousen J (1991) Anoxic limestone drains for acid mine drainage treatment. Green Lands 21:30–35 Skousen J (1991) Anoxic limestone drains for acid mine drainage treatment. Green Lands 21:30–35
225.
Zurück zum Zitat Skousen J, Rose A, Geidel G, Foreman J, Evans R, Hellier W (1998) A handbook of technologies for avoidance and remediation of acid mine drainage. The National Mine Land Reclamation Center, Morgantown, West Virginia Skousen J, Rose A, Geidel G, Foreman J, Evans R, Hellier W (1998) A handbook of technologies for avoidance and remediation of acid mine drainage. The National Mine Land Reclamation Center, Morgantown, West Virginia
226.
Zurück zum Zitat Skousen J, Sexstone A, Ziemkiewicz P (2000) Acid mine drainage control and treatment. In: Barnhisel RI, Darmody R, Daniels W (eds) Reclamation of drastically disturbed lands. American Society of Agronomy; Crop Science Society of America; Soil Science Society of America, Madison, Wisconsin, pp 131–168 Skousen J, Sexstone A, Ziemkiewicz P (2000) Acid mine drainage control and treatment. In: Barnhisel RI, Darmody R, Daniels W (eds) Reclamation of drastically disturbed lands. American Society of Agronomy; Crop Science Society of America; Soil Science Society of America, Madison, Wisconsin, pp 131–168
227.
Zurück zum Zitat Smuda J, Dold B, Spangenberg JE, Pfeifer H (2008) Geochemistry and stable isotope composition of fresh alkaline porphyry copper tailings: implications on sources and mobility of elements during transport and early stages of deposition. Chem Geol 256:62–76 Smuda J, Dold B, Spangenberg JE, Pfeifer H (2008) Geochemistry and stable isotope composition of fresh alkaline porphyry copper tailings: implications on sources and mobility of elements during transport and early stages of deposition. Chem Geol 256:62–76
228.
Zurück zum Zitat Song Y-C, Piak B-C, Shin H-S, La S-J (1998) Influence of electron donor and toxic materials on the activity of sulfate reducing bacteria for the treatment of electroplating wastewater. Water Sci Technol 38:187–194 Song Y-C, Piak B-C, Shin H-S, La S-J (1998) Influence of electron donor and toxic materials on the activity of sulfate reducing bacteria for the treatment of electroplating wastewater. Water Sci Technol 38:187–194
229.
Zurück zum Zitat Sonntag H (2007) Problem Sulfat in der Spree - Stand der Diskussion und aktuelle Trends. In: Proceedings oft he 58. Berg- und Hüttenmännischer Tag - Behandlungstechnologien für bergbaubeeinflusste Wässer/GIS- Geowissenschaftliche Anwendungen und Entwicklungen, pp 151–156 Sonntag H (2007) Problem Sulfat in der Spree - Stand der Diskussion und aktuelle Trends. In: Proceedings oft he 58. Berg- und Hüttenmännischer Tag - Behandlungstechnologien für bergbaubeeinflusste Wässer/GIS- Geowissenschaftliche Anwendungen und Entwicklungen, pp 151–156
230.
Zurück zum Zitat Stucki G, Hanselmann KW, Hürzeler RA (1993) Biological sulfuric acid transformation: reactor design and process optimization. Biotechnol Bioeng 41:303–315 Stucki G, Hanselmann KW, Hürzeler RA (1993) Biological sulfuric acid transformation: reactor design and process optimization. Biotechnol Bioeng 41:303–315
231.
Zurück zum Zitat Stumm W, Morgan J (1981) Aquatic chemistry: an introduction emphasizing chemical equilibria in natural waters, 2nd edn. Wiley-Interscience, New York Stumm W, Morgan J (1981) Aquatic chemistry: an introduction emphasizing chemical equilibria in natural waters, 2nd edn. Wiley-Interscience, New York
232.
Zurück zum Zitat Tabak HH, Govind R (2003) Advances in biotreatment of acid mine drainage and biorecovery of metals: 2. Membrane bioreactor system for sulfate reduction. Biodegradation 14:437–452 Tabak HH, Govind R (2003) Advances in biotreatment of acid mine drainage and biorecovery of metals: 2. Membrane bioreactor system for sulfate reduction. Biodegradation 14:437–452
233.
Zurück zum Zitat Tabak HH, Scharp R, Burckle J, Kawahara FK, Govind R (2003) Advances in biotreatment of acid mine drainage and biorecovery of metals: 1. Metal precipitation for recovery and recycle. Biodegradation 14:423–436 Tabak HH, Scharp R, Burckle J, Kawahara FK, Govind R (2003) Advances in biotreatment of acid mine drainage and biorecovery of metals: 1. Metal precipitation for recovery and recycle. Biodegradation 14:423–436
234.
Zurück zum Zitat Tan GL, Shu WS, Zhou WH, Li XL, Lan CY, Huang LN (2009) Seasonal and spatial variations in microbial community structure and diversity in the acid stream draining across an ongoing surface mining site. FEMS Microbiol Ecol 70:121–129 Tan GL, Shu WS, Zhou WH, Li XL, Lan CY, Huang LN (2009) Seasonal and spatial variations in microbial community structure and diversity in the acid stream draining across an ongoing surface mining site. FEMS Microbiol Ecol 70:121–129
235.
Zurück zum Zitat Thiruvenkatachari R, Vigneswaran S, Naidu R (2008) Permeable reactive barrier for groundwater remediation. J Ind Eng Chem 14:145–156 Thiruvenkatachari R, Vigneswaran S, Naidu R (2008) Permeable reactive barrier for groundwater remediation. J Ind Eng Chem 14:145–156
236.
Zurück zum Zitat Tischler JS, Wiacek C, Janneck E, Schlömann M (2013) Microbial abundance in the schwertmannite formed in a mine water treatment plant. Mine Water Environm. doi:10.1007/s10230-013-0250-8 Tischler JS, Wiacek C, Janneck E, Schlömann M (2013) Microbial abundance in the schwertmannite formed in a mine water treatment plant. Mine Water Environm. doi:10.​1007/​s10230-013-0250-8
237.
238.
Zurück zum Zitat Todd J, Reddick K (1997) Acid mine drainage. Groundwater Pollution Primer, Civil Engineering Department, Virginia Tech Todd J, Reddick K (1997) Acid mine drainage. Groundwater Pollution Primer, Civil Engineering Department, Virginia Tech
239.
Zurück zum Zitat Touze S, Battaglia-Brunet F, Ignatiadis I (2008) Technical and economical assessment and extrapolation of a 200-dm3 pilot bioreactor for reduction of sulphate and metals in acid mine waters. Water Air Soil Poll 187:15–29 Touze S, Battaglia-Brunet F, Ignatiadis I (2008) Technical and economical assessment and extrapolation of a 200-dm3 pilot bioreactor for reduction of sulphate and metals in acid mine waters. Water Air Soil Poll 187:15–29
240.
Zurück zum Zitat Tsukamoto TK, Miller GC (1999) Methanol as a carbon source for microbiological treatment of acid mine drainage. Water Res 33:1365–1370 Tsukamoto TK, Miller GC (1999) Methanol as a carbon source for microbiological treatment of acid mine drainage. Water Res 33:1365–1370
241.
Zurück zum Zitat Tsukamoto TK, Killion HA, Miller GC (2004) Column experiments for microbiological treatment of acid mine drainage: low-temperature, low-pH and matrix investigations. Water Res 38:1405–1418 Tsukamoto TK, Killion HA, Miller GC (2004) Column experiments for microbiological treatment of acid mine drainage: low-temperature, low-pH and matrix investigations. Water Res 38:1405–1418
242.
Zurück zum Zitat Tuovinen OH, Niemelä S, Gyllenberg H (1971) Effect of mineral nutrients and organic substances on the development of Thiobacillus ferrooxidans. Biotechnol Bioeng 13:517–527 Tuovinen OH, Niemelä S, Gyllenberg H (1971) Effect of mineral nutrients and organic substances on the development of Thiobacillus ferrooxidans. Biotechnol Bioeng 13:517–527
243.
Zurück zum Zitat Tuovinen OH, Panda F, Tsuchiya H (1979) Nitrogen requirement of iron-oxidizing Thiobacilli for acidic ferric sulfate regeneration. Appl Environ Microbiol 37:954–958 Tuovinen OH, Panda F, Tsuchiya H (1979) Nitrogen requirement of iron-oxidizing Thiobacilli for acidic ferric sulfate regeneration. Appl Environ Microbiol 37:954–958
244.
Zurück zum Zitat Ulrich GA, Martino D, Burger K, Routh J, Grossman EL, Ammerman JW, Suflita JM (1998) Sulfur cycling in the terrestrial subsurface: commensal interactions, spatial scales, and microbial heterogeneity. Microbial Ecol 36:141–151 Ulrich GA, Martino D, Burger K, Routh J, Grossman EL, Ammerman JW, Suflita JM (1998) Sulfur cycling in the terrestrial subsurface: commensal interactions, spatial scales, and microbial heterogeneity. Microbial Ecol 36:141–151
246.
Zurück zum Zitat Usinowicz PJ, Monzyk BF, Carlton L (2006) Technical and economic evaluation and selection of sulfate ion removal technologies for recovery of water from mineral concentrate transport slurry. In: Proceedings of the Water Environment Federation, WEFTEC 2006, pp 139–153 Usinowicz PJ, Monzyk BF, Carlton L (2006) Technical and economic evaluation and selection of sulfate ion removal technologies for recovery of water from mineral concentrate transport slurry. In: Proceedings of the Water Environment Federation, WEFTEC 2006, pp 139–153
247.
Zurück zum Zitat Utgikar VP, Harmon SM, Chaudhary N, Tabak HH, Govind R, Haines JR (2002) Inhibition of sulfate-reducing bacteria by metal sulfide formation in bioremediation of acid mine drainage. Environ Toxicol 17:40–48 Utgikar VP, Harmon SM, Chaudhary N, Tabak HH, Govind R, Haines JR (2002) Inhibition of sulfate-reducing bacteria by metal sulfide formation in bioremediation of acid mine drainage. Environ Toxicol 17:40–48
248.
Zurück zum Zitat Valente T, Gomes C (2009) Occurrence, properties and pollution potential of environmental minerals in acid mine drainage. Sci Total Environ 407:1135–1152 Valente T, Gomes C (2009) Occurrence, properties and pollution potential of environmental minerals in acid mine drainage. Sci Total Environ 407:1135–1152
249.
Zurück zum Zitat Vallero MVG, Camarero E, Lettinga G, Lens PNL (2004) Thermophilic (55–65°C) and extreme thermophilic (70–80°C) sulfate reduction in methanol and formate-fed UASB reactors. Biotechnol Progr 20:1382–1392 Vallero MVG, Camarero E, Lettinga G, Lens PNL (2004) Thermophilic (55–65°C) and extreme thermophilic (70–80°C) sulfate reduction in methanol and formate-fed UASB reactors. Biotechnol Progr 20:1382–1392
250.
Zurück zum Zitat van Houten RT, Lettinga G (1996) Biological sulphate reduction with synthesis gas: microbiology and technology. In: Wijffels RH, Buitelaar RM, Bucke C, Tramper J (eds) Immobilised cells: basics and applications. Elsevier Science B.V., Amsterdam van Houten RT, Lettinga G (1996) Biological sulphate reduction with synthesis gas: microbiology and technology. In: Wijffels RH, Buitelaar RM, Bucke C, Tramper J (eds) Immobilised cells: basics and applications. Elsevier Science B.V., Amsterdam
251.
Zurück zum Zitat van Houten RT, Hulshoff-Pol LW, Lettinga G (1994) Biological sulfate reduction using gas-lift reactors fed with hydrogen and carbon dioxide as energy and carbon source. Biotechnol Bioeng 44:586–594 van Houten RT, Hulshoff-Pol LW, Lettinga G (1994) Biological sulfate reduction using gas-lift reactors fed with hydrogen and carbon dioxide as energy and carbon source. Biotechnol Bioeng 44:586–594
252.
Zurück zum Zitat van Houten RT, van der Spoel H, van Aelst AC, Hulshoff-Pol LW, Lettinga G (1996) Biological sulfate reduction using synthesis gas as energy and carbon source. Biotechnol Bioeng 50:136–144 van Houten RT, van der Spoel H, van Aelst AC, Hulshoff-Pol LW, Lettinga G (1996) Biological sulfate reduction using synthesis gas as energy and carbon source. Biotechnol Bioeng 50:136–144
253.
Zurück zum Zitat van Houten RT, Yun SY, Lettinga G (1997) Thermophilic sulfate and sulphite reduction in lab-scale gas-lift reactors using H2 and CO2 as energy and carbon source. Biotechnol Bioeng 55:807–814 van Houten RT, Yun SY, Lettinga G (1997) Thermophilic sulfate and sulphite reduction in lab-scale gas-lift reactors using H2 and CO2 as energy and carbon source. Biotechnol Bioeng 55:807–814
254.
Zurück zum Zitat van Houten BH, Roest K, Tzeneva VA, Dijkman H, Smidt H, Stams AJM (2006) Occurrence of methanogenesis during start-up of a full-scale synthesis gas-fed reactor treating sulfate and metal-rich wastewater. Water Res 40:553–560 van Houten BH, Roest K, Tzeneva VA, Dijkman H, Smidt H, Stams AJM (2006) Occurrence of methanogenesis during start-up of a full-scale synthesis gas-fed reactor treating sulfate and metal-rich wastewater. Water Res 40:553–560
255.
Zurück zum Zitat Visser TJK, Modise SJ, Krieg HM, Keizer K (2001) The removal of acid sulphate pollution by nanofiltration. Desalination 140:79–86 Visser TJK, Modise SJ, Krieg HM, Keizer K (2001) The removal of acid sulphate pollution by nanofiltration. Desalination 140:79–86
256.
Zurück zum Zitat Vossoughi M, Shakeri M, Alemzadeh I (2003) Performance of anaerobic baffled reactor treating synthetic wastewater influenced by decreasing COD/SO4 ratios. Chem Eng Process 42:811–816 Vossoughi M, Shakeri M, Alemzadeh I (2003) Performance of anaerobic baffled reactor treating synthetic wastewater influenced by decreasing COD/SO4 ratios. Chem Eng Process 42:811–816
257.
Zurück zum Zitat Walton C, Johnson DB (1992) Microbiological and chemical characteristics of an acidic stream draining a disused copper mine. Environ Pollut 76:169–175 Walton C, Johnson DB (1992) Microbiological and chemical characteristics of an acidic stream draining a disused copper mine. Environ Pollut 76:169–175
258.
Zurück zum Zitat Wang H, Bigham JM, Tuovinen OH (2006) Formation of schwertmannite and its transformation to jarosite in the presence of acidophilic iron-oxidizing microorganisms. Mater Sci Eng C 26:588–592 Wang H, Bigham JM, Tuovinen OH (2006) Formation of schwertmannite and its transformation to jarosite in the presence of acidophilic iron-oxidizing microorganisms. Mater Sci Eng C 26:588–592
259.
Zurück zum Zitat Watten BJ (1999) Process and apparatus for carbon dioxide pretreatment and accelerated limestone dissolution for treatment of acidified water (U.S. Patent No. 5,914,046) Watten BJ (1999) Process and apparatus for carbon dioxide pretreatment and accelerated limestone dissolution for treatment of acidified water (U.S. Patent No. 5,914,046)
260.
Zurück zum Zitat Watzlaf G, Schroeder K, Kairies C (2000) Long-term performance of anoxic limestone drains. Mine Water Environ 19:98–110 Watzlaf G, Schroeder K, Kairies C (2000) Long-term performance of anoxic limestone drains. Mine Water Environ 19:98–110
261.
Zurück zum Zitat Waybrant KR, Ptacek CJ, Blowes DW (2002) Treatment of mine drainage using permeable reactive barriers: column experiments. Environ Sci Technol 36:1349–1356 Waybrant KR, Ptacek CJ, Blowes DW (2002) Treatment of mine drainage using permeable reactive barriers: column experiments. Environ Sci Technol 36:1349–1356
262.
Zurück zum Zitat Weber KP, Werker A, Gehder M, Senger T, Legge RL (2010) Influence of the microbial community in the treatment of acidic iron-rich water in aerobic wetland mesocosms. Bioremediat J14:28–37 Weber KP, Werker A, Gehder M, Senger T, Legge RL (2010) Influence of the microbial community in the treatment of acidic iron-rich water in aerobic wetland mesocosms. Bioremediat J14:28–37
263.
Zurück zum Zitat Webster J, Swedlund P, Webster K (1998) Trace metal adsorption onto an acid mine drainage iron(III) oxyhydroxysulfate. Environ Sci Technol 32:1361–1368 Webster J, Swedlund P, Webster K (1998) Trace metal adsorption onto an acid mine drainage iron(III) oxyhydroxysulfate. Environ Sci Technol 32:1361–1368
264.
Zurück zum Zitat Weijma J, Stams AJ (2001) Methanol conversion in high-rate anaerobic reactors. Water Sci Technol 44:7–14 Weijma J, Stams AJ (2001) Methanol conversion in high-rate anaerobic reactors. Water Sci Technol 44:7–14
265.
Zurück zum Zitat Weijma J, Hulshoff-Pol LW, Stams AJM, Lettinga G (2000) Performance of a thermophilic sulfate and sulfite reducing high rate anaerobic reactor fed with methanol. Biodegradation 11:429–439 Weijma J, Hulshoff-Pol LW, Stams AJM, Lettinga G (2000) Performance of a thermophilic sulfate and sulfite reducing high rate anaerobic reactor fed with methanol. Biodegradation 11:429–439
266.
Zurück zum Zitat Weijma J, Bots EAA, Tandlinger G, Stams AJM, Pol LWH, Lettinga G (2002) Optimisation of sulphate reduction in a methanol-fed thermophilic bioreactor. Water Res 36:1825–1833 Weijma J, Bots EAA, Tandlinger G, Stams AJM, Pol LWH, Lettinga G (2002) Optimisation of sulphate reduction in a methanol-fed thermophilic bioreactor. Water Res 36:1825–1833
267.
Zurück zum Zitat Weijma J, Chi TM, Hulshoff-Pol LW, Stams AJM, Lettinga G (2003) The effect of sulfate on methanol conversion in mesophilic upflow anaerobic sludge bed reactors. Process Biochem 38:1259–1266 Weijma J, Chi TM, Hulshoff-Pol LW, Stams AJM, Lettinga G (2003) The effect of sulfate on methanol conversion in mesophilic upflow anaerobic sludge bed reactors. Process Biochem 38:1259–1266
269.
Zurück zum Zitat White C, Gadd GM (1996) A comparison of carbon/energy and complex nitrogen sources for bacterial sulphate-reduction: potential applications to bioprecipitation of toxic metals as sulphides. J Ind Microbiol 17:116–123 White C, Gadd GM (1996) A comparison of carbon/energy and complex nitrogen sources for bacterial sulphate-reduction: potential applications to bioprecipitation of toxic metals as sulphides. J Ind Microbiol 17:116–123
270.
Zurück zum Zitat Widdel F (1988) Microbiology and ecology of sulfate-and sulfur-reducing bacteria. In: Zehnder A (ed) Biology of anaerobic microorganisms. Wiley, New York Widdel F (1988) Microbiology and ecology of sulfate-and sulfur-reducing bacteria. In: Zehnder A (ed) Biology of anaerobic microorganisms. Wiley, New York
271.
Zurück zum Zitat Willow MA, Cohen RR (2003) pH, dissolved oxygen, and adsorption effects on metal removal in anaerobic bioreactors. J Environ Qual 32:1212–1221 Willow MA, Cohen RR (2003) pH, dissolved oxygen, and adsorption effects on metal removal in anaerobic bioreactors. J Environ Qual 32:1212–1221
272.
Zurück zum Zitat Wisotzky F (1994) Untersuchungen zur Pyritoxidation in Sedimenten des Rheinischen Braunkohlereviers und deren Auswirkungen auf die Chemie des Grundwassers. Besondere Mitteilungen zum Deutschen Gewässerkundlichen Jahrbuch 58 Wisotzky F (1994) Untersuchungen zur Pyritoxidation in Sedimenten des Rheinischen Braunkohlereviers und deren Auswirkungen auf die Chemie des Grundwassers. Besondere Mitteilungen zum Deutschen Gewässerkundlichen Jahrbuch 58
273.
Zurück zum Zitat Wolicka D (2008) Biotransformation of phosphogypsum in wastewaters from the dairy industry. Bioresour Technol 99:5666–5672 Wolicka D (2008) Biotransformation of phosphogypsum in wastewaters from the dairy industry. Bioresour Technol 99:5666–5672
274.
Zurück zum Zitat Wolkersdorfer C, Bowell R (2005) Contemporary reviews of mine water studies in europe. Mine Water Environ Suppl Mater 24:1–76 Wolkersdorfer C, Bowell R (2005) Contemporary reviews of mine water studies in europe. Mine Water Environ Suppl Mater 24:1–76
275.
Zurück zum Zitat Wolkersdorfer C, Younger PL (2002) Passive Grubenwasserreinigung als Alternative zu aktiven Systemen. Grundwasser – Zeitschrift der Fachsektion. Hydrogeologie 7:67–77 Wolkersdorfer C, Younger PL (2002) Passive Grubenwasserreinigung als Alternative zu aktiven Systemen. Grundwasser – Zeitschrift der Fachsektion. Hydrogeologie 7:67–77
276.
Zurück zum Zitat Wood TA, Murray KR, Burgess JG (2001) Ferrous sulphate oxidation using Thiobacillus ferrooxidans cells immobilised on sand for the purpose of treating acid mine-drainage. Appl Microbiol Biotechnol 56:560–566 Wood TA, Murray KR, Burgess JG (2001) Ferrous sulphate oxidation using Thiobacillus ferrooxidans cells immobilised on sand for the purpose of treating acid mine-drainage. Appl Microbiol Biotechnol 56:560–566
277.
Zurück zum Zitat Xu Y, Schwartz FW (1994) Lead immobilisation by hydroxyapatite in aqueous solutions. J Contam Hydrol 15:187–206 Xu Y, Schwartz FW (1994) Lead immobilisation by hydroxyapatite in aqueous solutions. J Contam Hydrol 15:187–206
278.
Zurück zum Zitat Yang Y, Wan M, Shi W, Peng H, Qiu G, Zhou J, Liu X (2007) Bacterial diversity and community structure in acid mine drainage from Dabaoshan Mine, China. Aquat Microb Ecol 41:141–151 Yang Y, Wan M, Shi W, Peng H, Qiu G, Zhou J, Liu X (2007) Bacterial diversity and community structure in acid mine drainage from Dabaoshan Mine, China. Aquat Microb Ecol 41:141–151
279.
Zurück zum Zitat Younger P (2000) The adoption and adaptation of passive treatment technologies for mine waters in the United Kingdom. Mine Water Environ 19:84–97 Younger P (2000) The adoption and adaptation of passive treatment technologies for mine waters in the United Kingdom. Mine Water Environ 19:84–97
280.
Zurück zum Zitat Younger PL (2004) Wetland treatment of mine waters. In: Prokop G, Younger PL, Roehl KE (eds) Groundwater management in mining areas—Proceedings of the 2nd IMAGE-TRAIN advanced study course. Pécs, Hungary, 23–27 June 2003. Umweltbundesamt, Wien/Vienna, pp 72–100 Younger PL (2004) Wetland treatment of mine waters. In: Prokop G, Younger PL, Roehl KE (eds) Groundwater management in mining areas—Proceedings of the 2nd IMAGE-TRAIN advanced study course. Pécs, Hungary, 23–27 June 2003. Umweltbundesamt, Wien/Vienna, pp 72–100
281.
Zurück zum Zitat Younger PL, Banwart SA, Hedin RS (2002) Mine water. Hydrology, pollution, remediation. Kluwer Academic Publishers, Dordrecht Younger PL, Banwart SA, Hedin RS (2002) Mine water. Hydrology, pollution, remediation. Kluwer Academic Publishers, Dordrecht
282.
Zurück zum Zitat Yu Y, Lee C, Hwang S (2005) Analysis of community structures in anaerobic processes using a quantitative real-time PCR method. Water Sci Technol 52:85–91 Yu Y, Lee C, Hwang S (2005) Analysis of community structures in anaerobic processes using a quantitative real-time PCR method. Water Sci Technol 52:85–91
283.
Zurück zum Zitat Zagury GJ, Kulnieks VI, Neculita CM (2006) Characterisation and reactivity assessment of organic substrates for sulphate-reducing bacteria in acid mine drainage treatment. Chemosphere 64:944–954 Zagury GJ, Kulnieks VI, Neculita CM (2006) Characterisation and reactivity assessment of organic substrates for sulphate-reducing bacteria in acid mine drainage treatment. Chemosphere 64:944–954
284.
Zurück zum Zitat Zamzow KL, Tsukamoto TK, Miller GC (2006) Waste from biodiesel manufacturing as an inexpensive carbon source for bioreactors treating acid mine drainage. Mine Water Environ 25:163–170 Zamzow KL, Tsukamoto TK, Miller GC (2006) Waste from biodiesel manufacturing as an inexpensive carbon source for bioreactors treating acid mine drainage. Mine Water Environ 25:163–170
285.
Zurück zum Zitat Ziemkiewicz P, Skousen J, Brant D, Sterner P, Lovett R (1996) Acid mine drainage treatment with armored limestone in open limestone channels. J Environ Qual 26:1017–1024 Ziemkiewicz P, Skousen J, Brant D, Sterner P, Lovett R (1996) Acid mine drainage treatment with armored limestone in open limestone channels. J Environ Qual 26:1017–1024
286.
Zurück zum Zitat Ziemkiewicz P, Skousen J, Lovett R (1994) Open limestone channels for treating acid mine drainage: a new look at an old idea. Green Lands 24:36–41 Ziemkiewicz P, Skousen J, Lovett R (1994) Open limestone channels for treating acid mine drainage: a new look at an old idea. Green Lands 24:36–41
Metadaten
Titel
Bioremediation of Mine Water
verfasst von
Robert Klein
Judith S. Tischler
Martin Mühling
Michael Schlömann
Copyright-Jahr
2014
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/10_2013_265

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.