Skip to main content
Erschienen in: Journal of Polymer Research 5/2021

01.05.2021 | ORIGINAL PAPER

Blending of cyclic carbonate based on soybean oil and glycerol: a non-isocyanate approach towards the synthesis of polyurethane with high performance

verfasst von: Simanta Doley, Anindita Bora, Priyankamoni Saikia, Shahnaz Ahmed, Swapan K. Dolui

Erschienen in: Journal of Polymer Research | Ausgabe 5/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work demonstrates the synthesis of bio-based polyurethane from soybean oil and glycerol derived highly branched structure via non-isocyanate route. The soybean oil based cyclic carbonates were synthesized by coupling of CO2 with epoxidized soybean oil. In the second step, glycerol derived highly branched cyclic carbonate was synthesized from diglycidal ether of bisphenol A (DGEBA) and CO2. The structure of prepared monomer was confirmed from FT-IR, 1H and 13C NMR spectra. Then a series of non-isocyanate polyurethanes (NIPUs) were synthesized. They exhibited satisfactory mechanical properties (Tensile strength = 10.1 MPa) and thermal stability (283 °C). These results indicate the prospect of this eco-friendly approach for preparing renewable NIPU without the use of isocyanate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gandini A, Lacerda TM, Carvalho AJF, Trovatti E (2016) Progress of polymers from renewable resources: Furans, vegetable oils, and polysaccharides. Chem Rev 116:1637–1669PubMedCrossRef Gandini A, Lacerda TM, Carvalho AJF, Trovatti E (2016) Progress of polymers from renewable resources: Furans, vegetable oils, and polysaccharides. Chem Rev 116:1637–1669PubMedCrossRef
2.
Zurück zum Zitat Gandini A, Lacerda TM (2015) From monomers to polymers from renewable resources: Recent advances. Prog Polym Sci 48:1–39CrossRef Gandini A, Lacerda TM (2015) From monomers to polymers from renewable resources: Recent advances. Prog Polym Sci 48:1–39CrossRef
3.
Zurück zum Zitat Zhu Y, Romain C, Williams CK (2016) Sustainable polymers from renewable resources. Nature 540:354–362PubMedCrossRef Zhu Y, Romain C, Williams CK (2016) Sustainable polymers from renewable resources. Nature 540:354–362PubMedCrossRef
4.
Zurück zum Zitat Gandini A (2008) Polymers from renewable resources: A challenge for the future of macromolecular materials. Macromolecules 41:9491–9504CrossRef Gandini A (2008) Polymers from renewable resources: A challenge for the future of macromolecular materials. Macromolecules 41:9491–9504CrossRef
5.
Zurück zum Zitat Meier MAR, Metzger JO, Schubert US (2007) Plant oil renewable resources as green alternatives in polymer science. Chem Soc Rev 36:1788–1802PubMedCrossRef Meier MAR, Metzger JO, Schubert US (2007) Plant oil renewable resources as green alternatives in polymer science. Chem Soc Rev 36:1788–1802PubMedCrossRef
6.
Zurück zum Zitat Sawpan MA (2018) Polyurethanes from vegetable oils and applications: a review. J Polym Res 25:184CrossRef Sawpan MA (2018) Polyurethanes from vegetable oils and applications: a review. J Polym Res 25:184CrossRef
7.
Zurück zum Zitat Montero de Espinosa L, Meier MAR (2011) Plant oils: The perfect renewable resource for polymer science?! Eur Polym J 47(5):837–852CrossRef Montero de Espinosa L, Meier MAR (2011) Plant oils: The perfect renewable resource for polymer science?! Eur Polym J 47(5):837–852CrossRef
8.
Zurück zum Zitat Pelufo DI, Neto SC, Gobbo RCB, dos Santos AJ, Terezo AJ, de Siqueira AB (2020) Kinetic study of the thermal decomposition of castor oil based polyurethane. J Polym Res 27:143CrossRef Pelufo DI, Neto SC, Gobbo RCB, dos Santos AJ, Terezo AJ, de Siqueira AB (2020) Kinetic study of the thermal decomposition of castor oil based polyurethane. J Polym Res 27:143CrossRef
9.
Zurück zum Zitat Gogoi P, Boruah M, Sharma S (2015) Dolui SK (2015) Blends of epoxidized alkyd resins based on jatropha oil and the epoxidized oil cured with aqueous citric acid solution: A Green technology approach. ACS Sustain Chem Eng 3(2):261–268CrossRef Gogoi P, Boruah M, Sharma S (2015) Dolui SK (2015) Blends of epoxidized alkyd resins based on jatropha oil and the epoxidized oil cured with aqueous citric acid solution: A Green technology approach. ACS Sustain Chem Eng 3(2):261–268CrossRef
10.
Zurück zum Zitat Zhu J, Chandrashekhara K, Flanigan V, Kapila S (2004) Curing and mechanical characterization of a soy-based epoxy resin system. J Appl Polym Sci 91:3513–3518CrossRef Zhu J, Chandrashekhara K, Flanigan V, Kapila S (2004) Curing and mechanical characterization of a soy-based epoxy resin system. J Appl Polym Sci 91:3513–3518CrossRef
11.
Zurück zum Zitat Guo A, Javni I, Petrovic Z (2000) Rigid polyurethane foams based on soybean oil. J Appl Polym Sci 77:467–473CrossRef Guo A, Javni I, Petrovic Z (2000) Rigid polyurethane foams based on soybean oil. J Appl Polym Sci 77:467–473CrossRef
12.
Zurück zum Zitat Król P (2007) Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Prog Mat Sci 52:915–1015CrossRef Król P (2007) Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Prog Mat Sci 52:915–1015CrossRef
13.
Zurück zum Zitat Zdrahala RJ, Zdrahala IJ (1999) Biomedical applications of polyurethanes: A Review of past promises, present realities, and a vibrant future. J Biomater Appl 14:67–90PubMedCrossRef Zdrahala RJ, Zdrahala IJ (1999) Biomedical applications of polyurethanes: A Review of past promises, present realities, and a vibrant future. J Biomater Appl 14:67–90PubMedCrossRef
14.
Zurück zum Zitat Chattopadhyay DK, Raju KVSN (2007) Structural engineering of polyurethane coatings for high performance applications. Prog Polym Sci 32:352–418CrossRef Chattopadhyay DK, Raju KVSN (2007) Structural engineering of polyurethane coatings for high performance applications. Prog Polym Sci 32:352–418CrossRef
15.
Zurück zum Zitat Pelrine RE, Kornbluh RD, Joseph JP (1998) Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sens Actuator A Phys 64:77–85CrossRef Pelrine RE, Kornbluh RD, Joseph JP (1998) Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sens Actuator A Phys 64:77–85CrossRef
16.
Zurück zum Zitat Carré C, Bonnet L, Avérous L (2014) Original biobased nonisocyanate polyurethanes: solvent-and catalyst-free synthesis, thermal properties and rheological behaviour. RSC Adv 4:54018–54025CrossRef Carré C, Bonnet L, Avérous L (2014) Original biobased nonisocyanate polyurethanes: solvent-and catalyst-free synthesis, thermal properties and rheological behaviour. RSC Adv 4:54018–54025CrossRef
17.
Zurück zum Zitat Carré C, Ecochard Y, Caillol S, Averous L (2019) From the synthesis of biobased cyclic carbonate to polyhydroxyurethanes: A promising route towards renewable NonIsocyanate Polyurethanes. Chem Sus Chem 12:3410–3430CrossRef Carré C, Ecochard Y, Caillol S, Averous L (2019) From the synthesis of biobased cyclic carbonate to polyhydroxyurethanes: A promising route towards renewable NonIsocyanate Polyurethanes. Chem Sus Chem 12:3410–3430CrossRef
18.
Zurück zum Zitat Cornille A, Auvergne R, Figovsky O, Boutevin B, Caillol S (2017) A perspective approach to sustainable routes for non-isocyanate polyurethanes. Eur Polym J 87:535–552CrossRef Cornille A, Auvergne R, Figovsky O, Boutevin B, Caillol S (2017) A perspective approach to sustainable routes for non-isocyanate polyurethanes. Eur Polym J 87:535–552CrossRef
19.
Zurück zum Zitat Maisonneuve L, Lamarzelle O, Rix E, Grau E, Cramail H (2015) Isocyanate-free routes to polyurethanes and poly(hydroxy urethane)s. Chem Rev 115:12407–12439PubMedCrossRef Maisonneuve L, Lamarzelle O, Rix E, Grau E, Cramail H (2015) Isocyanate-free routes to polyurethanes and poly(hydroxy urethane)s. Chem Rev 115:12407–12439PubMedCrossRef
20.
Zurück zum Zitat Furtwengler P, Avérous L (2018) From D-sorbitol to five-membered bis (cyclo-carbonate) as a platform molecule for the synthesis of different original biobased chemicals and polymers. Sci Rep 8:1–14CrossRef Furtwengler P, Avérous L (2018) From D-sorbitol to five-membered bis (cyclo-carbonate) as a platform molecule for the synthesis of different original biobased chemicals and polymers. Sci Rep 8:1–14CrossRef
21.
Zurück zum Zitat North M, Pasquale R (2009) Mechanism of cyclic carbonate synthesis from epoxides and CO2. Angew Chem Int Ed 48:2946–2948CrossRef North M, Pasquale R (2009) Mechanism of cyclic carbonate synthesis from epoxides and CO2. Angew Chem Int Ed 48:2946–2948CrossRef
22.
Zurück zum Zitat Meléndez J, North M, Villuendas P (2009) One-component catalysts for cyclic carbonate synthesis. Chem Comm 18:2577CrossRef Meléndez J, North M, Villuendas P (2009) One-component catalysts for cyclic carbonate synthesis. Chem Comm 18:2577CrossRef
23.
Zurück zum Zitat Meléndez J, North M, Villuendas P, Young C (2011) One-component bimetallic aluminium(salen)-based catalysts for cyclic carbonate synthesis and their immobilization. Dalton Trans 40:3885–3902PubMedCrossRef Meléndez J, North M, Villuendas P, Young C (2011) One-component bimetallic aluminium(salen)-based catalysts for cyclic carbonate synthesis and their immobilization. Dalton Trans 40:3885–3902PubMedCrossRef
24.
Zurück zum Zitat Tamami B, Sohn S, Wilkes GL (2004) Incorporation of carbon dioxide into soybean oil and subsequent preparation and studies of nonisocyanate polyurethane networks. J Appl Polym Sci 92:883–891CrossRef Tamami B, Sohn S, Wilkes GL (2004) Incorporation of carbon dioxide into soybean oil and subsequent preparation and studies of nonisocyanate polyurethane networks. J Appl Polym Sci 92:883–891CrossRef
25.
Zurück zum Zitat Poussard L, Mariage J, Grignard B, Detrembleur C, Jérôme C, Calberg C, Heinrichs B, De Winter J, Gerbaux P, Raquez JM, Bonnaud L, Dubois P (2016) Non-isocyanate polyurethanes from carbonated soybean oil using monomeric or oligomeric diamines to achieve thermosets or thermoplastics. Macromolecules 49:2162–2171CrossRef Poussard L, Mariage J, Grignard B, Detrembleur C, Jérôme C, Calberg C, Heinrichs B, De Winter J, Gerbaux P, Raquez JM, Bonnaud L, Dubois P (2016) Non-isocyanate polyurethanes from carbonated soybean oil using monomeric or oligomeric diamines to achieve thermosets or thermoplastics. Macromolecules 49:2162–2171CrossRef
26.
Zurück zum Zitat Foltran S, Maisonneuve L, Cloutet E, Gadenne B, Alfos C, Tassaing T, Cramail H (2012) Solubility in CO2 and swelling studies by in situ IR spectroscopy of vegetable-based epoxidized oils as polyurethane precursors. Polym Chem 3:525–532CrossRef Foltran S, Maisonneuve L, Cloutet E, Gadenne B, Alfos C, Tassaing T, Cramail H (2012) Solubility in CO2 and swelling studies by in situ IR spectroscopy of vegetable-based epoxidized oils as polyurethane precursors. Polym Chem 3:525–532CrossRef
27.
Zurück zum Zitat Malik M, Kaur R (2018) Synthesis of NIPU by the carbonation of canola oil using highly efficient 5, 10, 15-tris (pentafluorophenyl) corrolato-manganese (III) complex as novel catalyst. Polym Adv Technol 29:1078–1085CrossRef Malik M, Kaur R (2018) Synthesis of NIPU by the carbonation of canola oil using highly efficient 5, 10, 15-tris (pentafluorophenyl) corrolato-manganese (III) complex as novel catalyst. Polym Adv Technol 29:1078–1085CrossRef
28.
Zurück zum Zitat Javni I, Hong DP, Petrović ZS (2008) Soy-based polyurethanes by nonisocyanate route. J Appl Polym Sci 108:3867–3875CrossRef Javni I, Hong DP, Petrović ZS (2008) Soy-based polyurethanes by nonisocyanate route. J Appl Polym Sci 108:3867–3875CrossRef
29.
Zurück zum Zitat Samanta S, Selvakumar S, Bahr J, Wickramaratne DS, Sibi M, Chisholm BJ (2016) Synthesis and characterization of polyurethane networks derived from soybean-oil-based cyclic carbonates and bioderivable diamines. ACS Sustain Chem Eng 4:6551–6561CrossRef Samanta S, Selvakumar S, Bahr J, Wickramaratne DS, Sibi M, Chisholm BJ (2016) Synthesis and characterization of polyurethane networks derived from soybean-oil-based cyclic carbonates and bioderivable diamines. ACS Sustain Chem Eng 4:6551–6561CrossRef
30.
Zurück zum Zitat Kathalewar M, Sabnis A, D’Mello D (2014) Isocyanate free polyurethanes from new CNSL based bis-cyclic carbonate and its application in coatings. Eur Polym J 57:99–108CrossRef Kathalewar M, Sabnis A, D’Mello D (2014) Isocyanate free polyurethanes from new CNSL based bis-cyclic carbonate and its application in coatings. Eur Polym J 57:99–108CrossRef
31.
Zurück zum Zitat Janvier M, Ducrot PH, Allais F (2017) Isocyanate-free synthesis and characterization of renewable poly(hydroxy)urethanes from syringaresinol. ACS Sustain Chem Eng 5:8648–8656CrossRef Janvier M, Ducrot PH, Allais F (2017) Isocyanate-free synthesis and characterization of renewable poly(hydroxy)urethanes from syringaresinol. ACS Sustain Chem Eng 5:8648–8656CrossRef
32.
Zurück zum Zitat Ke J, Li X, Wang F, Jiang S, Kang M, Wang J, Li Q, Wang Z (2017) Non-isocyanate polyurethane/epoxy hybrid materials with different and controlled architectures prepared from a CO2-sourced monomer and epoxy via an environmentally-friendly route. RSC Adv 7:28841–28852CrossRef Ke J, Li X, Wang F, Jiang S, Kang M, Wang J, Li Q, Wang Z (2017) Non-isocyanate polyurethane/epoxy hybrid materials with different and controlled architectures prepared from a CO2-sourced monomer and epoxy via an environmentally-friendly route. RSC Adv 7:28841–28852CrossRef
33.
Zurück zum Zitat Wazarkar K, Kathalewar M, Sabnis A (2016) Development of epoxy-urethane hybrid coatings via non-isocyanate route. Eur Polym J 84:812–827CrossRef Wazarkar K, Kathalewar M, Sabnis A (2016) Development of epoxy-urethane hybrid coatings via non-isocyanate route. Eur Polym J 84:812–827CrossRef
34.
Zurück zum Zitat Caminade AM, Yan D, Smith DK (2015) Dendrimers and hyperbranched polymers. Chem Soc Rev 44:3870–3873PubMedCrossRef Caminade AM, Yan D, Smith DK (2015) Dendrimers and hyperbranched polymers. Chem Soc Rev 44:3870–3873PubMedCrossRef
35.
Zurück zum Zitat Gao C, Yan D (2004) Hyperbranched polymers: From synthesis to applications. Prog Polym Sci 29:183–275CrossRef Gao C, Yan D (2004) Hyperbranched polymers: From synthesis to applications. Prog Polym Sci 29:183–275CrossRef
36.
Zurück zum Zitat Voit BI, Lederer A (2009) Hyperbranched and highly branched polymer architectures-synthetic strategies and major characterization aspects. Chem Rev 109(11):5924–5973PubMedCrossRef Voit BI, Lederer A (2009) Hyperbranched and highly branched polymer architectures-synthetic strategies and major characterization aspects. Chem Rev 109(11):5924–5973PubMedCrossRef
37.
Zurück zum Zitat Zhang H, Patel A, Gaharwar AK, Mihaila SM, Iviglia G, Mukundan S, Bae H, Yang H, Khademhosseini A (2013) Hyperbranched polyester hydrogels with controlled drug release and cell adhesion properties. Biomacromol 14:1299–1310CrossRef Zhang H, Patel A, Gaharwar AK, Mihaila SM, Iviglia G, Mukundan S, Bae H, Yang H, Khademhosseini A (2013) Hyperbranched polyester hydrogels with controlled drug release and cell adhesion properties. Biomacromol 14:1299–1310CrossRef
38.
Zurück zum Zitat De B, Gupta K, Mandal M, Karak N (2014) Biodegradable hyperbranched epoxy from castor oil-based hyperbranched polyester polyol. ACS Sustain Chem Eng 2(3):445–453CrossRef De B, Gupta K, Mandal M, Karak N (2014) Biodegradable hyperbranched epoxy from castor oil-based hyperbranched polyester polyol. ACS Sustain Chem Eng 2(3):445–453CrossRef
39.
Zurück zum Zitat De B, Karak N (2015) Ultralow dielectric, high performing hyperbranched epoxy thermosets: synthesis, characterization and property evaluation. RSC Adv 5(44):35080–35088CrossRef De B, Karak N (2015) Ultralow dielectric, high performing hyperbranched epoxy thermosets: synthesis, characterization and property evaluation. RSC Adv 5(44):35080–35088CrossRef
40.
Zurück zum Zitat Jena KK, Narayan R, Raju KVSN (2010) Hyperbranched polyester based on the core + AB2 approach: Synthesis and structural investigation. J Appl Polym Sci 118:280–290CrossRef Jena KK, Narayan R, Raju KVSN (2010) Hyperbranched polyester based on the core + AB2 approach: Synthesis and structural investigation. J Appl Polym Sci 118:280–290CrossRef
41.
Zurück zum Zitat Dhevi DM, Jaisankar SN, Pathak M (2013) Effect of new hyperbranched polyester of varying generations on toughening of epoxy resin through interpenetrating polymer networks using urethane linkages. Eur Polym J 49:3561–3572CrossRef Dhevi DM, Jaisankar SN, Pathak M (2013) Effect of new hyperbranched polyester of varying generations on toughening of epoxy resin through interpenetrating polymer networks using urethane linkages. Eur Polym J 49:3561–3572CrossRef
Metadaten
Titel
Blending of cyclic carbonate based on soybean oil and glycerol: a non-isocyanate approach towards the synthesis of polyurethane with high performance
verfasst von
Simanta Doley
Anindita Bora
Priyankamoni Saikia
Shahnaz Ahmed
Swapan K. Dolui
Publikationsdatum
01.05.2021
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 5/2021
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-021-02485-2

Weitere Artikel der Ausgabe 5/2021

Journal of Polymer Research 5/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.