Skip to main content

2016 | OriginalPaper | Buchkapitel

7. Bobsleigh and Skeleton

verfasst von : Edoardo Sabbioni, Stefano Melzi, Federico Cheli, Francesco Braghin

Erschienen in: The Engineering Approach to Winter Sports

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The aim of this chapter is to give a complete overview about the bobsleigh (or bobsled) and the related discipline of skeleton. Although not the focus of the chapter, some analyses will also be extended to luge. Before starting to analyze specific topics about these sports, it is interesting to give a brief introduction about the history of these disciplines.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
A toboggan is a simple sled which is a traditional form of transport used by the Innu and Cree of northern Canada. The big difference with respect to the most part of sleds is that it has no runners nor skis on the underside, but it rides directly on the snow. The traditional toboggan is made of bound, parallel wood slats, all bent forward at the front to form a sideways “J” shape.
 
2
Due to velocity and relatively few protection devices, the safety of the track is really critical. As an example, one can remember the fatal accident happened to the 21 years old Georgian luge athlete Nodar Kumaritashvili during the Vancouver Winter Olympic Games in 2010: the high velocity of the luge, in this case around 140 km/h, and a wrong trajectory in a bend brought off road the sled. The luge, running off the track, crashed against a not-protected pole on the side of the track, causing the athlete death few hours later.
 
3
We neglect the very first part of the race, when the athletes are pushing the sled: this velocity is considered at race time zero, 15 m after start.
 
4
Just to have an idea of the Reynold’s number value, one can use the values proposed in [10] (or [39]), where for \(Re = \frac{\rho vL} {\mu }\) it is assumed: air density \(\rho = 1.22\,\mathrm{kg/m}^{3}\), air dynamic viscosity \(\mu = 1.79 \times 10^{-5}\,\mathrm{Pa}\,\mathrm{s}\), velocity \(v = 35\,\mathrm{m/s}\) and the athlete length L = 1. 75 m, resulting in Re = 4 × 106. This value of the Reynold’s number identify a turbulent air regime around the athlete.
 
5
Only France, Austria, Switzerland, and Germany take part in these competitions.
 
6
In fact, due to the roll motion of the bobsled approaching a turn, the athletes perceive a compression force, that is normal to the ground.
 
7
In [24] a similar concept of optimal trajectory is defined, with a more sophisticated mathematical approach. In [24] it is proved that this kind of optimality does not necessary correspond with best performances. In fact each driver has a totally different way of drive, less or more aggressive with respect to the steering action, and the best athletes are able to change their style during the run, adapting it to the track and the velocity of the sled.
 
8
This track is part of the Utah Olympic Park. It was completed in December 1996, the track length is 1680 m roughly, with a vertical drop of 120 m and 15 curves.
 
9
One may refer to [58].
 
Literatur
2.
Zurück zum Zitat Wikipedia, Bobsleigh – Wikipedia, the free encyclopedia (2015) Wikipedia, Bobsleigh – Wikipedia, the free encyclopedia (2015)
3.
4.
5.
Zurück zum Zitat M.M. Morlock, V.M. Zatsiorsky, Factors influencing performance in bobsledding: I: influences of the bobsled crew and the environment. Int. J. Sport Biomech. 5, 208–211 (1989) M.M. Morlock, V.M. Zatsiorsky, Factors influencing performance in bobsledding: I: influences of the bobsled crew and the environment. Int. J. Sport Biomech. 5, 208–211 (1989)
6.
Zurück zum Zitat G. Bruggemann, M. Morlock, V.M. Zatsiorsky, Analysis of the bobsled and men’s luge events at the XVII olympic winter games in Lillehammer. J. Appl. Biomech. 13(1), 98–108 (1997) G. Bruggemann, M. Morlock, V.M. Zatsiorsky, Analysis of the bobsled and men’s luge events at the XVII olympic winter games in Lillehammer. J. Appl. Biomech. 13(1), 98–108 (1997)
7.
Zurück zum Zitat C. Zanoletti et al., Relationship between push phase and final race time in skeleton performance. J. Strength Condit. Res. 20(3), 570–583 (2006) C. Zanoletti et al., Relationship between push phase and final race time in skeleton performance. J. Strength Condit. Res. 20(3), 570–583 (2006)
8.
Zurück zum Zitat N. Bullock et al., Characteristics of the start in women’s world cup skeleton. Sports Biomech. 7(3), 351–360 (2008)CrossRef N. Bullock et al., Characteristics of the start in women’s world cup skeleton. Sports Biomech. 7(3), 351–360 (2008)CrossRef
9.
Zurück zum Zitat W.A. Sands et al., Anthropometric and physical abilities profiles: US national skeleton team. Sports Biomech. 4(2), 197–214 (2005)CrossRef W.A. Sands et al., Anthropometric and physical abilities profiles: US national skeleton team. Sports Biomech. 4(2), 197–214 (2005)CrossRef
10.
Zurück zum Zitat I. Roberts, Skeleton bobsleigh mechanics: athlete-sled interaction. Ph.D. thesis, The University of Edinburgh, 2013 I. Roberts, Skeleton bobsleigh mechanics: athlete-sled interaction. Ph.D. thesis, The University of Edinburgh, 2013
11.
Zurück zum Zitat F.P. Bowden, T.P. Hughes, The mechanism of sliding on ice and snow. Proc. R. Soc. Lond. A 172, 280–298 (1939)CrossRef F.P. Bowden, T.P. Hughes, The mechanism of sliding on ice and snow. Proc. R. Soc. Lond. A 172, 280–298 (1939)CrossRef
12.
Zurück zum Zitat F.P. Bowden, D. Tabor, The friction and lubrication of solids. Technical report, Oxford University Press, Oxford (1950) F.P. Bowden, D. Tabor, The friction and lubrication of solids. Technical report, Oxford University Press, Oxford (1950)
13.
Zurück zum Zitat D.C.B. Evans, J.F. Nye, K.J. Cheeseman, The kinetic friction of ice. Proc. R. Soc. Lond. A 347, 493–512 (1976)CrossRef D.C.B. Evans, J.F. Nye, K.J. Cheeseman, The kinetic friction of ice. Proc. R. Soc. Lond. A 347, 493–512 (1976)CrossRef
14.
Zurück zum Zitat B.A. Marmo, J.R. Blackford, C.E. Jeffree, Ice friction, wear features and their dependence on sliding velocity and temperature. J. Glaciol. 51(174), 391–398 (2005)CrossRef B.A. Marmo, J.R. Blackford, C.E. Jeffree, Ice friction, wear features and their dependence on sliding velocity and temperature. J. Glaciol. 51(174), 391–398 (2005)CrossRef
15.
Zurück zum Zitat K. Itagaki, G.E. Lemieux, N.P. Huber, Preliminary study of friction between ice and sled runners. J. Phys. (Paris) Colloq. 48(C3), 297–301 (1987) K. Itagaki, G.E. Lemieux, N.P. Huber, Preliminary study of friction between ice and sled runners. J. Phys. (Paris) Colloq. 48(C3), 297–301 (1987)
16.
Zurück zum Zitat L. Poirier et al., Experimental analysis of ice friction in the sport of bobsleigh. Sports Eng. 14(2–4), 67–72 (2011)CrossRef L. Poirier et al., Experimental analysis of ice friction in the sport of bobsleigh. Sports Eng. 14(2–4), 67–72 (2011)CrossRef
17.
Zurück zum Zitat F. Braghin et al., Experimental assessment of Bobsleigh dynamics and ice-skate contact forces. Top. Modal Anal. II 6, 487–498 (2012) F. Braghin et al., Experimental assessment of Bobsleigh dynamics and ice-skate contact forces. Top. Modal Anal. II 6, 487–498 (2012)
18.
Zurück zum Zitat P.F. Vint et al., Kinetic analysis of the luge start technique. J. Biomech. 27(5), 620 (1994) P.F. Vint et al., Kinetic analysis of the luge start technique. J. Biomech. 27(5), 620 (1994)
19.
Zurück zum Zitat P. Stergiou, L. Katz, Performance analysis of the pull start in luge: Integrated and real-time use of video and force measurement technologies, Technical report (2010) P. Stergiou, L. Katz, Performance analysis of the pull start in luge: Integrated and real-time use of video and force measurement technologies, Technical report (2010)
20.
Zurück zum Zitat V. Fedotova, V. Pilipiv, Comparison of lugers’ start elements on a sliding track and an iced start ramp. Port. J. Sport Sci. 11(Suppl. 2), 223–226 (2011) V. Fedotova, V. Pilipiv, Comparison of lugers’ start elements on a sliding track and an iced start ramp. Port. J. Sport Sci. 11(Suppl. 2), 223–226 (2011)
21.
Zurück zum Zitat H.P. Platzera, C. Raschnera, C. Pattersona, Performance-determining physiological factors in the luge start. J. Sports Sci. 27, 221–226 (2009)CrossRef H.P. Platzera, C. Raschnera, C. Pattersona, Performance-determining physiological factors in the luge start. J. Sports Sci. 27, 221–226 (2009)CrossRef
22.
Zurück zum Zitat S. Lembert, O. Schanchner, C. Raschner, Development of a measurement and feedback training tool for the arm strokes of high-performance luge athletes. J. Sports Sci. 29, 1593–1601 (2011)CrossRef S. Lembert, O. Schanchner, C. Raschner, Development of a measurement and feedback training tool for the arm strokes of high-performance luge athletes. J. Sports Sci. 29, 1593–1601 (2011)CrossRef
23.
Zurück zum Zitat J. Roche, S. Turnock, S. Wright, An analysis of the interaction between slider physique and descent time for the bob skeleton. Eng. Sports 7(2), 101–109 (2008) J. Roche, S. Turnock, S. Wright, An analysis of the interaction between slider physique and descent time for the bob skeleton. Eng. Sports 7(2), 101–109 (2008)
24.
25.
Zurück zum Zitat A. Kelly, M. Hubbard, Design and construction of a bobsled driver training simulator. Sports Eng. 3.1 (2000), pp. 13–24.CrossRef A. Kelly, M. Hubbard, Design and construction of a bobsled driver training simulator. Sports Eng. 3.1 (2000), pp. 13–24.CrossRef
26.
Zurück zum Zitat M. Hubbard et al., Simulation of vehicle and track performance in the bobsled. Am. Soc. Mech. Eng. Appl. Mech. Div. 98, 373–376 (1989) M. Hubbard et al., Simulation of vehicle and track performance in the bobsled. Am. Soc. Mech. Eng. Appl. Mech. Div. 98, 373–376 (1989)
27.
Zurück zum Zitat M. Hubbard, M. Kallay, P. Rowhani, Three-dimensional bobsled turning dynamics. Int. J. Sport Biomech. 5, 222–237 (1989) M. Hubbard, M. Kallay, P. Rowhani, Three-dimensional bobsled turning dynamics. Int. J. Sport Biomech. 5, 222–237 (1989)
28.
Zurück zum Zitat F. Braghin et al., Bobsleigh performance optimization through a multi-body model, in Multi-body Dynamics 2009 ECCOMAS Thematic Conference, Warsav, Poland, 29 June–2 July, Institute of Aeronautics and applied Mechanics – Warsaw University of Technology (2009), pp. 1–12 F. Braghin et al., Bobsleigh performance optimization through a multi-body model, in Multi-body Dynamics 2009 ECCOMAS Thematic Conference, Warsav, Poland, 29 June–2 July, Institute of Aeronautics and applied Mechanics – Warsaw University of Technology (2009), pp. 1–12
29.
Zurück zum Zitat F. Braghin et al., Race driver model. Comput. Struct. 89, 1503–1516 (2008)CrossRef F. Braghin et al., Race driver model. Comput. Struct. 89, 1503–1516 (2008)CrossRef
30.
Zurück zum Zitat O. Lewis, Aerodynamic analysis of a 2-man bobsleigh. MA thesis, TU Delft, 2006 O. Lewis, Aerodynamic analysis of a 2-man bobsleigh. MA thesis, TU Delft, 2006
31.
Zurück zum Zitat F.M. White, Viscous Fluid Flow (McGraw-Hill, New York, 1991) F.M. White, Viscous Fluid Flow (McGraw-Hill, New York, 1991)
32.
Zurück zum Zitat S.F. Hoerner, Fluid-Dynamic Drag, Hoerner Fluid Dynamics (Backersfield, 1965) S.F. Hoerner, Fluid-Dynamic Drag, Hoerner Fluid Dynamics (Backersfield, 1965)
33.
Zurück zum Zitat F. Motallebi, P. Dabnichki, D. Luck, Advanced bobsleigh design. Part 2: Aerodynamic modifications to a two-man bobsleigh. Proc. Inst. Mech. Eng. B J. Mater. Des. Appl. 218(2), 139–144 (2004) F. Motallebi, P. Dabnichki, D. Luck, Advanced bobsleigh design. Part 2: Aerodynamic modifications to a two-man bobsleigh. Proc. Inst. Mech. Eng. B J. Mater. Des. Appl. 218(2), 139–144 (2004)
34.
Zurück zum Zitat A. Winkler, A. Pernpeintner, Improving the performance of a bobsleigh by aerodynamic optimization. Eng. Sport 7(2), 329–338 (2008) A. Winkler, A. Pernpeintner, Improving the performance of a bobsleigh by aerodynamic optimization. Eng. Sport 7(2), 329–338 (2008)
35.
Zurück zum Zitat P. Dabnichki, E. Avital, Influence of the postion of crew members on aerodynamics performance of two-man bobsleigh. J. Biomech. 39, 2733–2742 (2006)CrossRef P. Dabnichki, E. Avital, Influence of the postion of crew members on aerodynamics performance of two-man bobsleigh. J. Biomech. 39, 2733–2742 (2006)CrossRef
36.
Zurück zum Zitat A. Winkler, A. Pernpeintner, Automated aerodynamic optimization of the position and posture of a bobsleigh crew. Proc. Eng. 2(2), 2399–2405 (2010)CrossRef A. Winkler, A. Pernpeintner, Automated aerodynamic optimization of the position and posture of a bobsleigh crew. Proc. Eng. 2(2), 2399–2405 (2010)CrossRef
37.
Zurück zum Zitat F.R. Menter, Improved two-equation k-omega turbulence models for aerodynamic flows, NASA Technical Memorandum 103975, 1992 F.R. Menter, Improved two-equation k-omega turbulence models for aerodynamic flows, NASA Technical Memorandum 103975, 1992
38.
Zurück zum Zitat E. Berton et al., Aerodynamic optimization of a bobsleigh configuration. Int. J. Appl. Sports Sci. 16, 1–13 (2004) E. Berton et al., Aerodynamic optimization of a bobsleigh configuration. Int. J. Appl. Sports Sci. 16, 1–13 (2004)
39.
Zurück zum Zitat R. Hastings, The use of computational fluid dynamics to investigate and improve the aerodynamics of bob skeleton racing, University of Edinburgh, 2008 R. Hastings, The use of computational fluid dynamics to investigate and improve the aerodynamics of bob skeleton racing, University of Edinburgh, 2008
40.
Zurück zum Zitat C.R. Walpert, R.A. Kyle, Aerodynamics of the human body in sports. J. Biomech. 22(1), 1096 (1989) C.R. Walpert, R.A. Kyle, Aerodynamics of the human body in sports. J. Biomech. 22(1), 1096 (1989)
41.
Zurück zum Zitat K. Bromley, Factors affecting performance of skeleton bobsled. Ph.D. thesis, Mechanical Engineering, University of Nottingham, 1999 K. Bromley, Factors affecting performance of skeleton bobsled. Ph.D. thesis, Mechanical Engineering, University of Nottingham, 1999
42.
Zurück zum Zitat G.R.L. Dempster, W.T. Gaughran, Properties of body segments based on size and weight. Amer. J. Anatomy 120, 33–54 (1969)CrossRef G.R.L. Dempster, W.T. Gaughran, Properties of body segments based on size and weight. Amer. J. Anatomy 120, 33–54 (1969)CrossRef
43.
Zurück zum Zitat L.W. Brownlie, Aerodynamic characteristics of sports apparel. Ph.D. thesis, Simon Fraser University, 1992 L.W. Brownlie, Aerodynamic characteristics of sports apparel. Ph.D. thesis, Simon Fraser University, 1992
44.
Zurück zum Zitat Aerodynamic testing methodology for sports garments (2008) Aerodynamic testing methodology for sports garments (2008)
45.
Zurück zum Zitat H. Chowdhury et al., Design and methodology for evaluating aerodynamic characteristics of sports textiles. Sports Technol. 2(3–4), 81–86 (2009)CrossRef H. Chowdhury et al., Design and methodology for evaluating aerodynamic characteristics of sports textiles. Sports Technol. 2(3–4), 81–86 (2009)CrossRef
46.
Zurück zum Zitat H. Chowdhury, F. Alam, A. Subic, Aerodynamic performance evaluation of sports textile. Procedia Eng. 2(2), 2517–2522 (2010)CrossRef H. Chowdhury, F. Alam, A. Subic, Aerodynamic performance evaluation of sports textile. Procedia Eng. 2(2), 2517–2522 (2010)CrossRef
47.
Zurück zum Zitat M. Hubbard, Recreating the cresta run. Phys. World, Feb 21–22. International Olympics Committee “Salt Lake City 2002 Olympic Winter Games Global Television Report” (2002) M. Hubbard, Recreating the cresta run. Phys. World, Feb 21–22. International Olympics Committee “Salt Lake City 2002 Olympic Winter Games Global Television Report” (2002)
48.
Zurück zum Zitat Wikipedia, List of bobsleigh, luge, and skeleton tracks -Wikipedia, The Free Encyclopedia (2013) Wikipedia, List of bobsleigh, luge, and skeleton tracks -Wikipedia, The Free Encyclopedia (2013)
49.
Zurück zum Zitat F. Braghin et al., Design and verification of bobsleigh track, in ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, vol. 4 (2010), pp. 505–512 F. Braghin et al., Design and verification of bobsleigh track, in ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, vol. 4 (2010), pp. 505–512
50.
51.
Zurück zum Zitat Sait Polytechnic, Whistler Sliding Center -Sled Trajectory and Track Construction Study, Technical report (2010) Sait Polytechnic, Whistler Sliding Center -Sled Trajectory and Track Construction Study, Technical report (2010)
52.
Zurück zum Zitat International Luge Federation, Official report to the International Olympic Committee on the accident of Georgian athlete, Nodar Kumaritashvili, at the Whistler Sliding Center, Canada, on February 12, 2010, during official luge training for the XXI Olympic Winter Games. Technical report (2010) International Luge Federation, Official report to the International Olympic Committee on the accident of Georgian athlete, Nodar Kumaritashvili, at the Whistler Sliding Center, Canada, on February 12, 2010, during official luge training for the XXI Olympic Winter Games. Technical report (2010)
53.
Zurück zum Zitat T. Pawlowski, Coroner’s report into the death of Kumaritashvili, Nodar. British Columbia Ministry of Public Safety and Solicitor General. Case No: 2010-0269-0002. Technical report (2010) T. Pawlowski, Coroner’s report into the death of Kumaritashvili, Nodar. British Columbia Ministry of Public Safety and Solicitor General. Case No: 2010-0269-0002. Technical report (2010)
54.
Zurück zum Zitat F. Braghin et al., A driver model of a two-man bobsleigh. Sports Eng. 13(4), 181–193 (2011)CrossRef F. Braghin et al., A driver model of a two-man bobsleigh. Sports Eng. 13(4), 181–193 (2011)CrossRef
55.
Zurück zum Zitat F. Braghin et al., Bobsleigh driver model, in Proceedings of the Mini Conference on Vehicle System Dynamics, Identification and Anomalies, 2008, pp. 673–679 F. Braghin et al., Bobsleigh driver model, in Proceedings of the Mini Conference on Vehicle System Dynamics, Identification and Anomalies, 2008, pp. 673–679
56.
Zurück zum Zitat F. Braghin et al., Multi-body model of a bobsleigh, in Proceedings of the Mini Conference on Vehicle System Dynamics, Identification and Anoma lies, 2008, pp. 661–672 F. Braghin et al., Multi-body model of a bobsleigh, in Proceedings of the Mini Conference on Vehicle System Dynamics, Identification and Anoma lies, 2008, pp. 661–672
57.
Zurück zum Zitat R.M. Levy, L. Katz, Virtual reality simulation: bobsled and luge, in IACSS International Symposium Computer Science in Sport, 2007 R.M. Levy, L. Katz, Virtual reality simulation: bobsled and luge, in IACSS International Symposium Computer Science in Sport, 2007
59.
Zurück zum Zitat M. Hubbard, Simulating sensitive dynamic control of a bobsled. Simulation 65(2), 147–151 (1995)CrossRef M. Hubbard, Simulating sensitive dynamic control of a bobsled. Simulation 65(2), 147–151 (1995)CrossRef
60.
Zurück zum Zitat U. Holmlund, von H. Raimo, Model of sprinting based on the Newton’s second law of motion and their comparison. Rakenteiden Mekaniikka 30, 7–16 (1997) U. Holmlund, von H. Raimo, Model of sprinting based on the Newton’s second law of motion and their comparison. Rakenteiden Mekaniikka 30, 7–16 (1997)
61.
Zurück zum Zitat M. Wacker et al., Design build and test of a bobsled simulator for olympic athletes. Trans. ASME 1, 96–102 (2007) M. Wacker et al., Design build and test of a bobsled simulator for olympic athletes. Trans. ASME 1, 96–102 (2007)
62.
Zurück zum Zitat F. Braghin, Cheli, M. Donzelli, S. Melzi, E. Sabbioni, Multi-body model of a bobsleigh: comparison with experimental data. J Multibody Syst. Dyn. 25(2), 185–201 (2011)CrossRef F. Braghin, Cheli, M. Donzelli, S. Melzi, E. Sabbioni, Multi-body model of a bobsleigh: comparison with experimental data. J Multibody Syst. Dyn. 25(2), 185–201 (2011)CrossRef
63.
Zurück zum Zitat F. Braghin, F. Cheli, S. Melzi, E. Sabbioni, Development of a numerical model of a bobsled driver: trajectory planning, in Proceeding of 12th Mini Conference on Vehicle System Dynamics, Identification and Anomalies, 2010, pp. 501–510 F. Braghin, F. Cheli, S. Melzi, E. Sabbioni, Development of a numerical model of a bobsled driver: trajectory planning, in Proceeding of 12th Mini Conference on Vehicle System Dynamics, Identification and Anomalies, 2010, pp. 501–510
Metadaten
Titel
Bobsleigh and Skeleton
verfasst von
Edoardo Sabbioni
Stefano Melzi
Federico Cheli
Francesco Braghin
Copyright-Jahr
2016
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-3020-3_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.