Skip to main content
Erschienen in: Thermal Engineering 5/2022

01.05.2022 | HEAT AND MASS TRANSFER AND PROPERTIES OF WORKING FLUIDS AND MATERIALS

Boiling in Forced Convection of Subcooled Liquid as a Method for Removing High Heat Fluxes (Review): Part 2. Critical Heat Fluxes and Heat-Transfer Enhancement

verfasst von: N. V. Vasil’ev, Yu. A. Zeigarnik, K. A. Khodakov

Erschienen in: Thermal Engineering | Ausgabe 5/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The article is the second part of the review devoted to the boiling of a liquid subcooled to the saturation temperature, the process which enables the removal of heat fluxes of extremely high density1 The first part presents the specific features of the process mechanism, together with its phenomenological model, and analyzes data on heat transfer and hydraulic resistance. This article is devoted to the heat-transfer crisis during subcooled boiling and the issues of heat-transfer enhancement. The heat-transfer crisis has been demonstrated to be caused by a sharp change in the flow structure involving the corresponding transformation of the heat-transfer mechanism, when the ensemble of individual bubbles is replaced with the regime of coalesced bubbles and vapor agglomerates, thereby causing the conditions facilitating the rupture of near-wall liquid films and the formation of dry spots increasing in size. The simplest and sufficiently effective relationship for calculating the critical heat flux (qcr) at high subcooling values is the modified empirical formula proposed by Tong. It has been concluded that it would be impractical to describe qcr by a single formula in the entire range of studied subcoolings. Several processes for modifying the heating surface to enhance heat transfer and increase qcr are briefly examined. Engineering problems arising in implementing these processes are discussed. The advisability of continuing comprehensive studies into the subcooled liquid boiling, primarily for understanding the physical features of the phenomenon, has been demonstrated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
N.V. Vasil’ev, Yu.A. Zeigarnik, and K.A. Khodakov, Boiling in Forced Convection of Subcooled Liquid as a Method for Removing High Heat Fluxes (Review): Part 1. Characteristics, Mechanism and Model of the Process, Heat Transfer, and Hydraulic Resistance, Thermal Engineering, 69, 235–251 (2022).
 
Literatur
1.
Zurück zum Zitat Yu. A. Zeigarnik, “On the universal burnout model of subcooled liquid in channels,” Teplofiz. Vys. Temp. 34, 52–56 (1996). Yu. A. Zeigarnik, “On the universal burnout model of subcooled liquid in channels,” Teplofiz. Vys. Temp. 34, 52–56 (1996).
2.
Zurück zum Zitat F. C. Gunther, “Photographic study of surface boiling heat transfer to water with forced convection,” J. Heat Transfer 73, 115–123 (1951). F. C. Gunther, “Photographic study of surface boiling heat transfer to water with forced convection,” J. Heat Transfer 73, 115–123 (1951).
3.
Zurück zum Zitat S. Mirshak, W. S. Durant, and R. H. Towell, Heat Flux at Burnout, E. l. du Pont de Nemours and Company Report No. 355 (1959). S. Mirshak, W. S. Durant, and R. H. Towell, Heat Flux at Burnout, E. l. du Pont de Nemours and Company Report No. 355 (1959).
4.
Zurück zum Zitat A. P. Ornatskii and A. M. Kichigin, “Investigation of the dependence of the critical thermal load on the weight velocity, subcooling and pressure,” Teploenergetika, No. 2, 75–79 (1961). A. P. Ornatskii and A. M. Kichigin, “Investigation of the dependence of the critical thermal load on the weight velocity, subcooling and pressure,” Teploenergetika, No. 2, 75–79 (1961).
5.
Zurück zum Zitat A. P. Ornatskii and L. S. Vinyarskii, “Heat transfer crisis in conditions of forced movement of subcooled water in small-diameter tubes,” Teplofiz. Vys. Temp. 3, 444–451 (1965). A. P. Ornatskii and L. S. Vinyarskii, “Heat transfer crisis in conditions of forced movement of subcooled water in small-diameter tubes,” Teplofiz. Vys. Temp. 3, 444–451 (1965).
6.
Zurück zum Zitat V. N. Smolin and V. K. Polyakov, “Critical heat flux in the longitudinal flow in a bundle of rods,” Teploenergetika, No. 4, 54–58 (1967). V. N. Smolin and V. K. Polyakov, “Critical heat flux in the longitudinal flow in a bundle of rods,” Teploenergetika, No. 4, 54–58 (1967).
7.
Zurück zum Zitat “Look-up tables data for calculating the heat transfer crisis in water boiling in uniformly heated round tubes,” Teploenergetika, No. 9, 90–92 (1976). “Look-up tables data for calculating the heat transfer crisis in water boiling in uniformly heated round tubes,” Teploenergetika, No. 9, 90–92 (1976).
8.
Zurück zum Zitat Yu. A. Zeigarnik, N. P. Privalov, and A. I. Klimov, “Critical heat fluxes during boiling of subcooled water in rectangular channels with one-sided heat supply,” Teploenergetika, No. 1, 48–51 (1981). Yu. A. Zeigarnik, N. P. Privalov, and A. I. Klimov, “Critical heat fluxes during boiling of subcooled water in rectangular channels with one-sided heat supply,” Teploenergetika, No. 1, 48–51 (1981).
13.
Zurück zum Zitat G. P. Celata, M. Cumo, and A. Mariani, “Geometrical effects on the subcooled flow boiling critical heat flux,” Rev. Gen. Therm. 36, 807–814 (1997).CrossRef G. P. Celata, M. Cumo, and A. Mariani, “Geometrical effects on the subcooled flow boiling critical heat flux,” Rev. Gen. Therm. 36, 807–814 (1997).CrossRef
14.
Zurück zum Zitat Yu. A. Zeigarnik, A. I. Klimov, A. G. Rotinov, and B. A. Smyslov, “Some experimental results on burnout in subcooled water flow boiling,” Therm. Eng. 44, 184–191 (1997). Yu. A. Zeigarnik, A. I. Klimov, A. G. Rotinov, and B. A. Smyslov, “Some experimental results on burnout in subcooled water flow boiling,” Therm. Eng. 44, 184–191 (1997).
15.
Zurück zum Zitat G. P. Celata, M. Cumo, A. Mariani, and G. Zummo, “Physical insight in the burnout region of water-subcooled flow boiling,” Rev. Gen. Therm. 37, 450–458 (1998).CrossRef G. P. Celata, M. Cumo, A. Mariani, and G. Zummo, “Physical insight in the burnout region of water-subcooled flow boiling,” Rev. Gen. Therm. 37, 450–458 (1998).CrossRef
21.
Zurück zum Zitat N. V. Vasil’ev, Yu. A. Zeigarnik, K. A. Khodakov, and S. N. Vavilov, “Vapor agglomerates and dry spots as precursors of the subcooled liquid boiling crisi in a channel,” High Temp. 59, 373–383 (2021).CrossRef N. V. Vasil’ev, Yu. A. Zeigarnik, K. A. Khodakov, and S. N. Vavilov, “Vapor agglomerates and dry spots as precursors of the subcooled liquid boiling crisi in a channel,” High Temp. 59, 373–383 (2021).CrossRef
23.
Zurück zum Zitat Yu. A. Zeigarnik, N. V. Vasil’ev, E. A. Druzhinin, I. V. Kalmykov, A. S. Kosoi, and K. A. Khodakov, “Prospects for boiling of subcooled dielectric liquids for supercomputer cooling,” Dokl. Phys. 63, 58–60 (2018).CrossRef Yu. A. Zeigarnik, N. V. Vasil’ev, E. A. Druzhinin, I. V. Kalmykov, A. S. Kosoi, and K. A. Khodakov, “Prospects for boiling of subcooled dielectric liquids for supercomputer cooling,” Dokl. Phys. 63, 58–60 (2018).CrossRef
26.
Zurück zum Zitat P. Saha and N. Zuber, “Point of net vapor generation and vapor void fraction in subcooled boiling,” in Proc. 5th Int. Heat Transfer Conf. (IHTC-5), Tokyo, Japan, Sept. 3–7, 1974 (Japan Society of Mechanical Engineers, Tokyo, 1974), Vol. 4, pp. 175–179. https://doi.org/10.1615/IHTC5.430 P. Saha and N. Zuber, “Point of net vapor generation and vapor void fraction in subcooled boiling,” in Proc. 5th Int. Heat Transfer Conf. (IHTC-5), Tokyo, Japan, Sept. 3–7, 1974 (Japan Society of Mechanical Engineers, Tokyo, 1974), Vol. 4, pp. 175–179. https://​doi.​org/​10.​1615/​IHTC5.​430
27.
Zurück zum Zitat A. E. Bergles, “Burnout in boiling heat transfer. Part II. Subcooled and lowquality forced-convection systems,” Nucl. Saf. 18 (2), 154–167 (1977). A. E. Bergles, “Burnout in boiling heat transfer. Part II. Subcooled and lowquality forced-convection systems,” Nucl. Saf. 18 (2), 154–167 (1977).
28.
Zurück zum Zitat N. V. Vasil’ev, Yu. A. Zeigarnik, K. A. Khodakov, and V. M. Fedulenko, “The nature of "gas” burnout,” High Temp. 53, 837–840 (2015).CrossRef N. V. Vasil’ev, Yu. A. Zeigarnik, K. A. Khodakov, and V. M. Fedulenko, “The nature of "gas” burnout,” High Temp. 53, 837–840 (2015).CrossRef
29.
Zurück zum Zitat A. P. Ornatsky, “The effect of basic regime parameters and channel geometry on critical heat fluxes in forced convection of subcooled water,” Heat Transfer – Sov. Res. 1 (3), 17–22 (1969). A. P. Ornatsky, “The effect of basic regime parameters and channel geometry on critical heat fluxes in forced convection of subcooled water,” Heat Transfer – Sov. Res. 1 (3), 17–22 (1969).
35.
Zurück zum Zitat G. P. Celata, M. Cumo, and A. Mariani, “CHF in highly subcooled flow boiling with and without turbulence promoters,” in Proc. European Two-Phase Flow Group Meeting, Stockholm, Sweden, June 1–3, 1992 (Stockholm, 1992), paper no. C1. G. P. Celata, M. Cumo, and A. Mariani, “CHF in highly subcooled flow boiling with and without turbulence promoters,” in Proc. European Two-Phase Flow Group Meeting, Stockholm, Sweden, June 1–3, 1992 (Stockholm, 1992), paper no. C1.
36.
Zurück zum Zitat G. P. Celata, M. Cumo, and A. Mariani, “Subcooled water boiling CHF with very high heat fluxes,” Rev. Gen. Tech. 31, 106–114 (1992). G. P. Celata, M. Cumo, and A. Mariani, “Subcooled water boiling CHF with very high heat fluxes,” Rev. Gen. Tech. 31, 106–114 (1992).
42.
Zurück zum Zitat V. V. Yagov, Heat Transfer in Single-Phase Media and in Phase Transitions (Mosk. Energ. Inst., Moscow, 2014) [in Russian]. V. V. Yagov, Heat Transfer in Single-Phase Media and in Phase Transitions (Mosk. Energ. Inst., Moscow, 2014) [in Russian].
47.
Zurück zum Zitat A. S. Surtaev, V. S. Serdyukov, and A. N. Pavlenko, “Nanotechnologies in thermophysics: Heat transfer and crisis phenomena in boiling,” Ross. Nanotekhnol. 11 (11–12), 18–32 (2016). A. S. Surtaev, V. S. Serdyukov, and A. N. Pavlenko, “Nanotechnologies in thermophysics: Heat transfer and crisis phenomena in boiling,” Ross. Nanotekhnol. 11 (11–12), 18–32 (2016).
49.
Zurück zum Zitat H. Kinoshita, T. Ioshida, H. Nariai, and F. Inasaka, “Study of the mechanism of critical heat flux enhancement for subcooled flow boiling in a tube with internal twisted tape under subcooled boiling conditions,” Heat Transfer Jpn. Res. 25, 293–307 (1996).CrossRef H. Kinoshita, T. Ioshida, H. Nariai, and F. Inasaka, “Study of the mechanism of critical heat flux enhancement for subcooled flow boiling in a tube with internal twisted tape under subcooled boiling conditions,” Heat Transfer Jpn. Res. 25, 293–307 (1996).CrossRef
51.
Zurück zum Zitat I. A. Popov, A. V. Shchelchkov, Yu. F. Gortyshov, and N. N. Zubkov, “Heat transfer enhancement and critical heat fluxes in boiling of microfinned surfaces,” High Temp. 55, 524–534 (2017).CrossRef I. A. Popov, A. V. Shchelchkov, Yu. F. Gortyshov, and N. N. Zubkov, “Heat transfer enhancement and critical heat fluxes in boiling of microfinned surfaces,” High Temp. 55, 524–534 (2017).CrossRef
55.
Zurück zum Zitat N. V. Vasil’ev, A. Yu. Varaksin, Yu. A. Zeigarnik, K. A. Khodakov, and A. V. Epel’fel’d, “Characteristics of subcooled water boiling on structured surfaces,” High Temp. 55, 880–886 (2017).CrossRef N. V. Vasil’ev, A. Yu. Varaksin, Yu. A. Zeigarnik, K. A. Khodakov, and A. V. Epel’fel’d, “Characteristics of subcooled water boiling on structured surfaces,” High Temp. 55, 880–886 (2017).CrossRef
56.
Zurück zum Zitat I. V. Suminov, P. N. Belkin, A. V. Epel’fel’d, V. B. Lyudin, B. L. Krit, and A. M. Borisov, Plasma-Electrolytic Surface Modification of Metals and Alloys (Tekhnosfera, Moscow, 2011), Vol. 2 [in Russian]. I. V. Suminov, P. N. Belkin, A. V. Epel’fel’d, V. B. Lyudin, B. L. Krit, and A. M. Borisov, Plasma-Electrolytic Surface Modification of Metals and Alloys (Tekhnosfera, Moscow, 2011), Vol. 2 [in Russian].
59.
Zurück zum Zitat Yu. Kuzma-Kichta, A. Leontyev, A. Lavrikov, M. Shustov, and K. Suzuki, “Boiling investigation in the microchannel with nano-particles coating,” in Proc. 15th Int. Heat Transfer Conf., Kyoto, Japan, Aug. 10–15, 2014, paper id. IHTC15-9214. https://doi.org/10.1615/IHTC15.fbl.009214. Yu. Kuzma-Kichta, A. Leontyev, A. Lavrikov, M. Shustov, and K. Suzuki, “Boiling investigation in the microchannel with nano-particles coating,” in Proc. 15th Int. Heat Transfer Conf., Kyoto, Japan, Aug. 10–15, 2014, paper id. IHTC15-9214. https://​doi.​org/​10.​1615/​IHTC15.​fbl.​009214.
61.
Zurück zum Zitat V. V. Kuznetsov and A. S. Shamirzaev, “Flow boiling heat transfer mechanism in minichannels,” in Proc. ASME 5th Int. Conf. on Nanochannels, Microchannels and Minichannels, Puebla, Mexico, June 18–20, 2007 (American Society of Mechanical Engineers, New York, 2007), in Ser.: Proceedings of ASME, Vol. 4272, pp. 1113–1121. https://doi.org/10.1115/ICNMM2007-30210 V. V. Kuznetsov and A. S. Shamirzaev, “Flow boiling heat transfer mechanism in minichannels,” in Proc. ASME 5th Int. Conf. on Nanochannels, Microchannels and Minichannels, Puebla, Mexico, June 18–20, 2007 (American Society of Mechanical Engineers, New York, 2007), in Ser.: Proceedings of ASME, Vol. 4272, pp. 1113–1121. https://​doi.​org/​10.​1115/​ICNMM2007-30210
Metadaten
Titel
Boiling in Forced Convection of Subcooled Liquid as a Method for Removing High Heat Fluxes (Review): Part 2. Critical Heat Fluxes and Heat-Transfer Enhancement
verfasst von
N. V. Vasil’ev
Yu. A. Zeigarnik
K. A. Khodakov
Publikationsdatum
01.05.2022
Verlag
Pleiades Publishing
Erschienen in
Thermal Engineering / Ausgabe 5/2022
Print ISSN: 0040-6015
Elektronische ISSN: 1555-6301
DOI
https://doi.org/10.1134/S004060152205007X

Weitere Artikel der Ausgabe 5/2022

Thermal Engineering 5/2022 Zur Ausgabe

    Premium Partner