Skip to main content

2017 | OriginalPaper | Buchkapitel

8. Bouncing Gaits: Running, Trotting and Hopping

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter describes the mechanism of running, hopping and trotting. In these gaits, opposite to walking, kinetic energy of forward motion and gravitational potential energies of the center of mass of the body oscillate in phase during the step. The step period is divided into ‘effective’ contact time, t ce, and aerial time, t ae, corresponding to a vertical force exerted on the ground greater respectively lower than body weight. At low running speeds and in trotting t ce = t ae, the rebound is on-off-ground symmetric, and the step frequency equals the resonant frequency of the bouncing system. At high running speeds and in hopping t ce < t ae, the rebound is on-off-ground asymmetric, and the step frequency is lower than the resonant frequency of the bouncing system. Furthermore, in all bouncing gaits (from turkeys to humans) the duration of the brake following impact on the ground is shorter than the duration of the subsequent push, i.e., t brake < t push, which is expression of a landing-takeoff asymmetry: hard landing-soft takeoff. The landing-takeoff asymmetry implies that the average force exerted during the brake, when the muscles are stretched, is greater than that exerted during the push when the muscles shorten. This means that very different machines (lever systems) comply with the basic characteristics of the motor (muscle), unchanged from frog to humans, to resist stretching with a force greater than that exerted during shortening. When the operation of the machine is reversed, as in backward running, the resulting soft landing-hard takeoff results in a decreased efficiency.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bates BT, Morrison E, Hamill J (1986) A comparison between forward and backward running. In: Adrian M, Deutsch H (eds) Proceedings of the 1984 olympic scientific congress: biomechanics. Microform Publications, University of Oregon, pp 127–135 Bates BT, Morrison E, Hamill J (1986) A comparison between forward and backward running. In: Adrian M, Deutsch H (eds) Proceedings of the 1984 olympic scientific congress: biomechanics. Microform Publications, University of Oregon, pp 127–135
Zurück zum Zitat Blickhan R (1989) The spring-mass model for running and hopping. J Biomech 22:1217–1227CrossRef Blickhan R (1989) The spring-mass model for running and hopping. J Biomech 22:1217–1227CrossRef
Zurück zum Zitat Bullimore SR, Burn JF (2006) Consequences of forward translation of the point of force application for the mechanics of running. J Theor Biol 238:211–219CrossRef Bullimore SR, Burn JF (2006) Consequences of forward translation of the point of force application for the mechanics of running. J Theor Biol 238:211–219CrossRef
Zurück zum Zitat Carrier DR, Heglund NC, Earls KD (1994) Variable gearing during locomotion in the human musculoskeletal system. Science 265:651–653CrossRef Carrier DR, Heglund NC, Earls KD (1994) Variable gearing during locomotion in the human musculoskeletal system. Science 265:651–653CrossRef
Zurück zum Zitat Cavagna GA (1970) Elastic bounce of the body. J Appl Physiol 29:279–282 Cavagna GA (1970) Elastic bounce of the body. J Appl Physiol 29:279–282
Zurück zum Zitat Cavagna GA (2006) The landing-take-off asymmetry in human running. J Exp Biol 209:4051–4060CrossRef Cavagna GA (2006) The landing-take-off asymmetry in human running. J Exp Biol 209:4051–4060CrossRef
Zurück zum Zitat Cavagna GA (2010) Symmetry and asymmetry in bouncing gaits. Symmetry 2:1270–1321CrossRef Cavagna GA (2010) Symmetry and asymmetry in bouncing gaits. Symmetry 2:1270–1321CrossRef
Zurück zum Zitat Cavagna GA, Legramandi MA (2009) The bounce of the body in hopping, running and trotting: different machines with the same motor. Proc Roy Soc Lond B Biol 276:4279–4285CrossRef Cavagna GA, Legramandi MA (2009) The bounce of the body in hopping, running and trotting: different machines with the same motor. Proc Roy Soc Lond B Biol 276:4279–4285CrossRef
Zurück zum Zitat Cavagna GA, Margaria R (1966) Mechanics of walking. J Appl Physiol 21:271–278 Cavagna GA, Margaria R (1966) Mechanics of walking. J Appl Physiol 21:271–278
Zurück zum Zitat Cavagna GA, Saibene FP, Margaria R (1964) Mechanical work in running. J Appl Physiol 19:249–256 Cavagna GA, Saibene FP, Margaria R (1964) Mechanical work in running. J Appl Physiol 19:249–256
Zurück zum Zitat Cavagna GA, Thys H, Zamboni A (1976) The sources of external work in level walking and running. J Physiol (Lond) 262:639–657CrossRef Cavagna GA, Thys H, Zamboni A (1976) The sources of external work in level walking and running. J Physiol (Lond) 262:639–657CrossRef
Zurück zum Zitat Cavagna GA, Heglund NC, Taylor CR (1977) Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. Am J Physiol 233:R243–R261 Cavagna GA, Heglund NC, Taylor CR (1977) Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. Am J Physiol 233:R243–R261
Zurück zum Zitat Cavagna GA, Franzetti P, Heglund NC, Willems P (1988) The determinants of the step frequency in running, trotting and hopping in man and other vertebrates. J Physiol (Lond) 399:81–92CrossRef Cavagna GA, Franzetti P, Heglund NC, Willems P (1988) The determinants of the step frequency in running, trotting and hopping in man and other vertebrates. J Physiol (Lond) 399:81–92CrossRef
Zurück zum Zitat Cavagna GA, Mantovani M, Willems PA, Musch G (1997) The resonant step frequency in human running. Pflugers Arch 434:678–684CrossRef Cavagna GA, Mantovani M, Willems PA, Musch G (1997) The resonant step frequency in human running. Pflugers Arch 434:678–684CrossRef
Zurück zum Zitat Cavagna GA, Hegland NC, Willems PA (2005) Effect of an increase in gravity on the power output and the rebound of the body in human running. J Exp Biol 208:2333–2346CrossRef Cavagna GA, Hegland NC, Willems PA (2005) Effect of an increase in gravity on the power output and the rebound of the body in human running. J Exp Biol 208:2333–2346CrossRef
Zurück zum Zitat Cavagna GA, Legramandi MA, Peyré-Tartaruga LA (2008) The landing-take-off asymmetry of human running is enhanced in old age. J Exp Biol 211:1571–1578CrossRef Cavagna GA, Legramandi MA, Peyré-Tartaruga LA (2008) The landing-take-off asymmetry of human running is enhanced in old age. J Exp Biol 211:1571–1578CrossRef
Zurück zum Zitat Cavagna GA, Legramandi MA, La Torre A (2011) Running backwards: soft landing-hard takeoff, a less efficient rebound. Proc Roy Soc Lond B Biol 278:339–346CrossRef Cavagna GA, Legramandi MA, La Torre A (2011) Running backwards: soft landing-hard takeoff, a less efficient rebound. Proc Roy Soc Lond B Biol 278:339–346CrossRef
Zurück zum Zitat Cavagna GA, Legramandi MA, La Torre A (2012) An analysis of the rebound of the body in backward human running. J Exp Biol 215:75–84CrossRef Cavagna GA, Legramandi MA, La Torre A (2012) An analysis of the rebound of the body in backward human running. J Exp Biol 215:75–84CrossRef
Zurück zum Zitat DeVita P, Stribling J (1991) Lower extremity joint kinetics and energetics during backward running. Med Sci Sports Exerc 23:602–610CrossRef DeVita P, Stribling J (1991) Lower extremity joint kinetics and energetics during backward running. Med Sci Sports Exerc 23:602–610CrossRef
Zurück zum Zitat Farley CT, Glasheen J, McMahon TA (1993) Running springs: speed and animal size. J Exp Biol 185:71–86 Farley CT, Glasheen J, McMahon TA (1993) Running springs: speed and animal size. J Exp Biol 185:71–86
Zurück zum Zitat Fenn WO (1930a) Frictional and kinetic factors in the work of sprint running. Am J Physiol 92:582–611 Fenn WO (1930a) Frictional and kinetic factors in the work of sprint running. Am J Physiol 92:582–611
Zurück zum Zitat Fenn WO (1930b) Work against gravity and work due to velocity changes in running. Am J Physiol 93:433–462 Fenn WO (1930b) Work against gravity and work due to velocity changes in running. Am J Physiol 93:433–462
Zurück zum Zitat Ferris DP, Farley CT (1997) Interaction of leg stiffness and surface stiffness during human hopping. J Appl Physiol 82:15–22 Ferris DP, Farley CT (1997) Interaction of leg stiffness and surface stiffness during human hopping. J Appl Physiol 82:15–22
Zurück zum Zitat Ferris DP, Liang K, Farley CT (1999) Runners adjust leg stiffness for their first step on new running surface. J Biomech 32:787–794CrossRef Ferris DP, Liang K, Farley CT (1999) Runners adjust leg stiffness for their first step on new running surface. J Biomech 32:787–794CrossRef
Zurück zum Zitat Flynn TW, Soutas-Little RW (1993) Mechanical power and muscle action during forward and backward running. J Orthop Sports Phys Ther 17:108–112CrossRef Flynn TW, Soutas-Little RW (1993) Mechanical power and muscle action during forward and backward running. J Orthop Sports Phys Ther 17:108–112CrossRef
Zurück zum Zitat Flynn TW, Connery SM, Smutok MA, Zeballos RJ, Weisman I (1994) Comparison of cardiopulmonary responses to forward and backward walking and running. Med Sci Sports Exerc 26:89–94CrossRef Flynn TW, Connery SM, Smutok MA, Zeballos RJ, Weisman I (1994) Comparison of cardiopulmonary responses to forward and backward walking and running. Med Sci Sports Exerc 26:89–94CrossRef
Zurück zum Zitat Halliday D, Resnick R (1964) Fisica generale. Casa Editrice Ambrosiana, Milano Halliday D, Resnick R (1964) Fisica generale. Casa Editrice Ambrosiana, Milano
Zurück zum Zitat Hill AV (1950) The series elastic component of muscle. Proc Roy Soc Lond B Biol 137:273–280CrossRef Hill AV (1950) The series elastic component of muscle. Proc Roy Soc Lond B Biol 137:273–280CrossRef
Zurück zum Zitat Kerdok AE, Biewener AA, McMahon TA, Weyand PG, Herr HM (2002) Energetics and mechanics of human running on surfaces of different stiffnesses. J Appl Physiol 92:469–478CrossRef Kerdok AE, Biewener AA, McMahon TA, Weyand PG, Herr HM (2002) Energetics and mechanics of human running on surfaces of different stiffnesses. J Appl Physiol 92:469–478CrossRef
Zurück zum Zitat Margaria R (1938) Sulla fisiologia e specialmente suI consumo energetico della marcia e della corsa a varie velocita ed inclinazioni del terreno. Atti Reale Accad Naz Lincei Mem 7:299–368 Margaria R (1938) Sulla fisiologia e specialmente suI consumo energetico della marcia e della corsa a varie velocita ed inclinazioni del terreno. Atti Reale Accad Naz Lincei Mem 7:299–368
Zurück zum Zitat Margaria R, Cavagna GA (1964) Human locomotion in subgravity. Aerosp Med 35:1140–1146 Margaria R, Cavagna GA (1964) Human locomotion in subgravity. Aerosp Med 35:1140–1146
Zurück zum Zitat McGowan CP, Baudinette RV, Biewener AA (2008) Differential design for hopping in two species of wallabies. Comp Biochem Physiol Part A 150:151–158CrossRef McGowan CP, Baudinette RV, Biewener AA (2008) Differential design for hopping in two species of wallabies. Comp Biochem Physiol Part A 150:151–158CrossRef
Zurück zum Zitat McMahon TA, Cheng GC (1990) The mechanics of running: how does stiffness couple with speed? J Biomech 23:65–78CrossRef McMahon TA, Cheng GC (1990) The mechanics of running: how does stiffness couple with speed? J Biomech 23:65–78CrossRef
Zurück zum Zitat Muybridge E (1955) The human figure in motion. Dover Publications, New York Muybridge E (1955) The human figure in motion. Dover Publications, New York
Zurück zum Zitat Schepens B, Willems PA, Cavagna GA (1998) The mechanics of running in children. J Physiol 509:927–940CrossRef Schepens B, Willems PA, Cavagna GA (1998) The mechanics of running in children. J Physiol 509:927–940CrossRef
Zurück zum Zitat Threlkeld AJ, Horn TS, Wojtowicz GM, Rooney JG, Shapiro R (1989) Kinematics, ground reaction force, and muscle balance produced by backward running. J Orthop Sports Phys Ther 11:56–63CrossRef Threlkeld AJ, Horn TS, Wojtowicz GM, Rooney JG, Shapiro R (1989) Kinematics, ground reaction force, and muscle balance produced by backward running. J Orthop Sports Phys Ther 11:56–63CrossRef
Zurück zum Zitat Wright S, Weyand PG (2001) The application of ground force explains the energetic cost of running backward and forward. J Exp Biol 204:1805–1815 Wright S, Weyand PG (2001) The application of ground force explains the energetic cost of running backward and forward. J Exp Biol 204:1805–1815
Metadaten
Titel
Bouncing Gaits: Running, Trotting and Hopping
verfasst von
Giovanni Cavagna
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-49980-2_8

Neuer Inhalt