Skip to main content

2018 | OriginalPaper | Buchkapitel

Brain Tumor Segmentation in MRI Scans Using Deeply-Supervised Neural Networks

verfasst von : Reza Pourreza, Ying Zhuge, Holly Ning, Robert Miller

Erschienen in: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Gliomas are the most frequent primary brain tumors in adults. Improved quantification of the various aspects of a glioma requires accurate segmentation of the tumor in magnetic resonance images (MRI). Since the manual segmentation is time-consuming and subject to human error and irreproducibility, automatic segmentation has received a lot of attention in recent years. This paper presents a fully automated segmentation method which is capable of automatic segmentation of brain tumor from multi-modal MRI scans. The proposed method is comprised of a deeply-supervised neural network based on Holistically-Nested Edge Detection (HED) network. The HED method, which is originally developed for the binary classification task of image edge detection, is extended for multiple-class segmentation. The classes of interest include the whole tumor, tumor core, and enhancing tumor. The dataset provided by 2017 Multimodal Brain Tumor Image Segmentation Benchmark (BraTS) challenge is used in this work for training the neural network and performance evaluations. Experiments on BraTS 2017 challenge datasets demonstrate that the method performs well compared to the existing works. The assessments revealed the Dice scores of 0.86, 0.60, and 0.69 for whole tumor, tumor core, and enhancing tumor classes, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Holland, E.C.: Progenitor cells and glioma formation. Curr. Opin. Neurol. 14(6), 683–688 (2001)CrossRef Holland, E.C.: Progenitor cells and glioma formation. Curr. Opin. Neurol. 14(6), 683–688 (2001)CrossRef
2.
Zurück zum Zitat Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35, 1240–1251 (2016)CrossRef Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35, 1240–1251 (2016)CrossRef
3.
Zurück zum Zitat Njeh, I., Sallemi, L., Ayed, I.B., et al.: 3D multimodal MRI brain glioma tumor and edema segmentation: a graph cut distribution matching approach. Comput. Med. Imaging Graph. 40, 108–119 (2015)CrossRef Njeh, I., Sallemi, L., Ayed, I.B., et al.: 3D multimodal MRI brain glioma tumor and edema segmentation: a graph cut distribution matching approach. Comput. Med. Imaging Graph. 40, 108–119 (2015)CrossRef
4.
Zurück zum Zitat Hamamci, A., Kucuk, N., Karaman, K., Engin, K., Unal, G.: Tumor-Cut: segmentation of brain tumors on contrast enhanced MR images for radiosurgery applications. IEEE Trans. Med. Imaging 31, 790–804 (2012)CrossRef Hamamci, A., Kucuk, N., Karaman, K., Engin, K., Unal, G.: Tumor-Cut: segmentation of brain tumors on contrast enhanced MR images for radiosurgery applications. IEEE Trans. Med. Imaging 31, 790–804 (2012)CrossRef
5.
Zurück zum Zitat Raviv, T.R., Van Leemput, K., Menze, B.H., Wells 3rd, W.M., Golland, P.: Segmentation of image ensembles via latent atlases. Med. Image Anal. 14, 654–665 (2010)CrossRef Raviv, T.R., Van Leemput, K., Menze, B.H., Wells 3rd, W.M., Golland, P.: Segmentation of image ensembles via latent atlases. Med. Image Anal. 14, 654–665 (2010)CrossRef
6.
Zurück zum Zitat Guo, X.G., Schwartz, L., Zhao, B.: Semi-automatic segmentation of multimodal brain tumor using active contours. In: Medical Image Computing and Computer Assisted Intervention, pp. 27–30 (2013) Guo, X.G., Schwartz, L., Zhao, B.: Semi-automatic segmentation of multimodal brain tumor using active contours. In: Medical Image Computing and Computer Assisted Intervention, pp. 27–30 (2013)
7.
Zurück zum Zitat Prastawa, M., Bullitt, E., Ho, S., Gerig, G.: A brain tumor segmentation framework based on outlier detection. Med. Image Anal. 8, 275–283 (2004)CrossRef Prastawa, M., Bullitt, E., Ho, S., Gerig, G.: A brain tumor segmentation framework based on outlier detection. Med. Image Anal. 8, 275–283 (2004)CrossRef
8.
Zurück zum Zitat Prastawa, M., Bullitt, E., Moon, N., Van Leemput, K., Gerig, G.: Automatic brain tumor segmentation by subject specific modification of atlas priors. Acad. Radiol. 10, 1341–1348 (2003)CrossRef Prastawa, M., Bullitt, E., Moon, N., Van Leemput, K., Gerig, G.: Automatic brain tumor segmentation by subject specific modification of atlas priors. Acad. Radiol. 10, 1341–1348 (2003)CrossRef
9.
Zurück zum Zitat Cuadra, M.B., Pollo, C., Bardera, A., Cuisenaire, O., Villemure, J.G., Thiran, J.P.: Atlas-based segmentation of pathological MR brain images using a model of lesion growth. IEEE Trans. Med. Imaging 23, 1301–1314 (2004)CrossRef Cuadra, M.B., Pollo, C., Bardera, A., Cuisenaire, O., Villemure, J.G., Thiran, J.P.: Atlas-based segmentation of pathological MR brain images using a model of lesion growth. IEEE Trans. Med. Imaging 23, 1301–1314 (2004)CrossRef
10.
Zurück zum Zitat Mohamed, A., Zacharaki, E.I., Shen, D., Davatzikos, C.: Deformable registration of brain tumor images via a statistical model of tumor-induced deformation. Med. Image Anal. 10, 752–763 (2006)CrossRef Mohamed, A., Zacharaki, E.I., Shen, D., Davatzikos, C.: Deformable registration of brain tumor images via a statistical model of tumor-induced deformation. Med. Image Anal. 10, 752–763 (2006)CrossRef
11.
Zurück zum Zitat Zhang, N., Ruan, S., Lebonvallet, S., Liao, Q., Zhu, Y.: Kernel feature selection to fuse multi-spectral MRI images for brain tumor segmentation. Comput. Vis. Image Underst. 115, 256–259 (2011)CrossRef Zhang, N., Ruan, S., Lebonvallet, S., Liao, Q., Zhu, Y.: Kernel feature selection to fuse multi-spectral MRI images for brain tumor segmentation. Comput. Vis. Image Underst. 115, 256–259 (2011)CrossRef
13.
Zurück zum Zitat Tustison, N.J., Shrinidhi, K.L., Wintermark, M., et al.: Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with ANTsR. Neuroinformatics 13, 209–225 (2015)CrossRef Tustison, N.J., Shrinidhi, K.L., Wintermark, M., et al.: Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with ANTsR. Neuroinformatics 13, 209–225 (2015)CrossRef
14.
Zurück zum Zitat Pinto, A., Pereira, S., Correia, H., Oliveira, J., Rasteiro, D.M., Silva, C.A.: Brain tumour segmentation based on extremely randomized forest with highlevel features. In: Conference Proceedings IEEE Engineering in Medicine and Biology Society 2015, pp. 3037–3040 (2015) Pinto, A., Pereira, S., Correia, H., Oliveira, J., Rasteiro, D.M., Silva, C.A.: Brain tumour segmentation based on extremely randomized forest with highlevel features. In: Conference Proceedings IEEE Engineering in Medicine and Biology Society 2015, pp. 3037–3040 (2015)
15.
Zurück zum Zitat LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)CrossRef LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)CrossRef
16.
Zurück zum Zitat Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 1, 1097–1115 (2012) Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 1, 1097–1115 (2012)
17.
Zurück zum Zitat Zhao, L., Jia, K.: Multiscale CNNs for brain tumor segmentation and diagnosis. Comput. Math. Methods Med. 2016, 8356291–8356297 (2016)CrossRef Zhao, L., Jia, K.: Multiscale CNNs for brain tumor segmentation and diagnosis. Comput. Math. Methods Med. 2016, 8356291–8356297 (2016)CrossRef
18.
Zurück zum Zitat Havaei, M., Dutil, F., Pal, C., Larochelle, H., Jodoin, P.-M.: A convolutional neural network approach to brain tumor segmentation. In: Proceeding of the Multimodal Brain Tumor Segmentation Challenge, pp. 29–33 (2015) Havaei, M., Dutil, F., Pal, C., Larochelle, H., Jodoin, P.-M.: A convolutional neural network approach to brain tumor segmentation. In: Proceeding of the Multimodal Brain Tumor Segmentation Challenge, pp. 29–33 (2015)
19.
Zurück zum Zitat Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013)CrossRef Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013)CrossRef
20.
Zurück zum Zitat Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., Lanczi, L., Gerstner, E., Weber, M.A., Arbel, T., Avants, B.B., Ayache, N., Buendia, P., Collins, D.L., Cordier, N., Corso, J.J., Criminisi, A., Das, T., Delingette, H., Demiralp, Ç., Durst, C.R., Dojat, M., Doyle, S., Festa, J., Forbes, F., Geremia, E., Glocker, B., Golland, P., Guo, X., Hamamci, A., Iftekharuddin, K.M., Jena, R., John, N.M., Konukoglu, E., Lashkari, D., Mariz, J.A., Meier, R., Pereira, S., Precup, D., Price, S.J., Raviv, T.R., Reza, S.M., Ryan, M., Sarikaya, D., Schwartz, L., Shin, H.C., Shotton, J., Silva, C.A., Sousa, N., Subbanna, N.K., Szekely, G., Taylor, T.J., Thomas, O.M., Tustison, N.J., Unal, G., Vasseur, F., Wintermark, M., Ye, D.H., Zhao, L., Zhao, B., Zikic, D., Prastawa, M., Reyes, M., Van Leemput, K.: The multimodal brain tumor image segmentation benchmark (BraTS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)CrossRef Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., Lanczi, L., Gerstner, E., Weber, M.A., Arbel, T., Avants, B.B., Ayache, N., Buendia, P., Collins, D.L., Cordier, N., Corso, J.J., Criminisi, A., Das, T., Delingette, H., Demiralp, Ç., Durst, C.R., Dojat, M., Doyle, S., Festa, J., Forbes, F., Geremia, E., Glocker, B., Golland, P., Guo, X., Hamamci, A., Iftekharuddin, K.M., Jena, R., John, N.M., Konukoglu, E., Lashkari, D., Mariz, J.A., Meier, R., Pereira, S., Precup, D., Price, S.J., Raviv, T.R., Reza, S.M., Ryan, M., Sarikaya, D., Schwartz, L., Shin, H.C., Shotton, J., Silva, C.A., Sousa, N., Subbanna, N.K., Szekely, G., Taylor, T.J., Thomas, O.M., Tustison, N.J., Unal, G., Vasseur, F., Wintermark, M., Ye, D.H., Zhao, L., Zhao, B., Zikic, D., Prastawa, M., Reyes, M., Van Leemput, K.: The multimodal brain tumor image segmentation benchmark (BraTS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)CrossRef
21.
Zurück zum Zitat Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., Freymann, J.B., Farahani, K., Davatzikos, C.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Nat. Sci. Data (2017, in press) Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., Freymann, J.B., Farahani, K., Davatzikos, C.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Nat. Sci. Data (2017, in press)
24.
Zurück zum Zitat Urban, G., Bendszus, M., Hamprecht, F., Kleesiek, J.: Multi-modal brain tumor segmentation using deep convolutional neural networks. In: Proceeding of the Multimodal Brain Tumor Segmentation Challenge, pp. 31–35 (2014) Urban, G., Bendszus, M., Hamprecht, F., Kleesiek, J.: Multi-modal brain tumor segmentation using deep convolutional neural networks. In: Proceeding of the Multimodal Brain Tumor Segmentation Challenge, pp. 31–35 (2014)
25.
Zurück zum Zitat Davy, A., Havaei, M., Warde-farley, D., et al.: Brain tumor segmentation with deep neural networks. In: Proceeding of the Multimodal Brain Tumor Segmentation Challenge, pp. 1–5 (2014) Davy, A., Havaei, M., Warde-farley, D., et al.: Brain tumor segmentation with deep neural networks. In: Proceeding of the Multimodal Brain Tumor Segmentation Challenge, pp. 1–5 (2014)
26.
Zurück zum Zitat Rao, V., Sarabi, M.S., Jaiswal, A.: Brain tumor segmentation with deep learning. In: Proceeding of the Multimodal Brain Tumor Segmentation Challenge, pp. 56–59 (2015) Rao, V., Sarabi, M.S., Jaiswal, A.: Brain tumor segmentation with deep learning. In: Proceeding of the Multimodal Brain Tumor Segmentation Challenge, pp. 56–59 (2015)
27.
Zurück zum Zitat Lun, T.K., Hsu, W.: Brain tumor segmentation using deep convolutional neural network. In: Proceeding of the Multimodal Brain Tumor Image Segmentation Challenge, pp. 26–29 (2016) Lun, T.K., Hsu, W.: Brain tumor segmentation using deep convolutional neural network. In: Proceeding of the Multimodal Brain Tumor Image Segmentation Challenge, pp. 26–29 (2016)
28.
Zurück zum Zitat Zhao, X., Wu, Y., Song, G., Li, Z., Fan, Y., Zhang, Y.: Brain tumor segmentation using a fully convolutional neural network with conditional random fields. In: Proceeding of the Multimodal Brain Tumor Image Segmentation Challenge, pp. 77–80 (2016) Zhao, X., Wu, Y., Song, G., Li, Z., Fan, Y., Zhang, Y.: Brain tumor segmentation using a fully convolutional neural network with conditional random fields. In: Proceeding of the Multimodal Brain Tumor Image Segmentation Challenge, pp. 77–80 (2016)
29.
Zurück zum Zitat Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. In: Proceedings of AISTATS, pp. 562–570 (2015) Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. In: Proceedings of AISTATS, pp. 562–570 (2015)
30.
Zurück zum Zitat Xie, S., Tu, Z.: Holistically-nested edge detection. Int. J. Comput. Vision, 1–16 (2017) Xie, S., Tu, Z.: Holistically-nested edge detection. Int. J. Comput. Vision, 1–16 (2017)
31.
Zurück zum Zitat Zhuge, Y., Krauze, A.V., Ning, H., Cheng, J.C., Arora, B.C., Camphausen, K., Miller, R.W.: Brain tumor segmentation using holistically nested neural networks in MRI images. Med. Phys. 44, 5234–5243 (2017)CrossRef Zhuge, Y., Krauze, A.V., Ning, H., Cheng, J.C., Arora, B.C., Camphausen, K., Miller, R.W.: Brain tumor segmentation using holistically nested neural networks in MRI images. Med. Phys. 44, 5234–5243 (2017)CrossRef
32.
Zurück zum Zitat Guillemaud, R., Brady, M.: Estimating the bias field of MR images. IEEE Trans. Med. Imaging 16, 238–251 (1997)CrossRef Guillemaud, R., Brady, M.: Estimating the bias field of MR images. IEEE Trans. Med. Imaging 16, 238–251 (1997)CrossRef
33.
Zurück zum Zitat Tustison, N.J., Avants, B.B., Cook, P.A., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320 (2010)CrossRef Tustison, N.J., Avants, B.B., Cook, P.A., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320 (2010)CrossRef
34.
Zurück zum Zitat Zhuge, Y., Udupa, J.K.: Intensity standardization simplifies brain MR image segmentation. Comput. Vis. Image Underst. 113, 1095–1103 (2009)CrossRef Zhuge, Y., Udupa, J.K.: Intensity standardization simplifies brain MR image segmentation. Comput. Vis. Image Underst. 113, 1095–1103 (2009)CrossRef
35.
Zurück zum Zitat Nyul, L.G., Udupa, J.K., Zhang, X.: New variants of a method of MRI scale standardization. IEEE Trans. Med. Imaging 19, 143–150 (2000)CrossRef Nyul, L.G., Udupa, J.K., Zhang, X.: New variants of a method of MRI scale standardization. IEEE Trans. Med. Imaging 19, 143–150 (2000)CrossRef
Metadaten
Titel
Brain Tumor Segmentation in MRI Scans Using Deeply-Supervised Neural Networks
verfasst von
Reza Pourreza
Ying Zhuge
Holly Ning
Robert Miller
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-75238-9_28