Skip to main content
Erschienen in: Electrical Engineering 2/2022

30.06.2021 | Original Paper

Broadband finite-element impedance computation for parasitic extraction

verfasst von: J. Stysch, A. Klaedtke, H. De Gersem

Erschienen in: Electrical Engineering | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Parasitic extraction is a powerful tool in the design process of electromechanical devices, specifically as part of workflows that check electromagnetic compatibility. A novel scheme to extract impedances from CAD device models, suitable for a finite element implementation, is derived from Maxwell’s equations in differential form. It provides a foundation for parasitic extraction across a broad frequency range and is able to handle inhomogeneous permittivities and permeabilities, making it more flexible than existing integral equation approaches. The approach allows for the automatic treatment of multi-port models of arbitrary conductor geometry without requiring any significant manual user interaction. This is achieved by computing a connecting source current density that supplies current to the model’s terminals, whatever their location in the model, subsequently using this current density to compute the electric field, and finally calculating the impedance via a scalar potential. A mandatory low-frequency stabilization scheme is outlined, ensuring a stable evaluation of the model at low frequencies as well. Two quasistatic approximations and the special case of perfect electric conductors are treated theoretically. The magnetoquasistatic approximation is validated against an analytical model in a numerical experiment. Moreover, the intrinsic capability of the method to treat inhomogeneous permittivities and permeabilities is demonstrated with a simple capacitor-coil model including dielectric insulation and magnetic core materials. Finally, the method’s practicality is exemplified with a common mode choke model in a comparison of simulated and measured results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ruehli AE (1974) Equivalent circuit models for three-dimensional multiconductor systems. IEEE Trans Microw Theory Tech 22(3):216–221CrossRef Ruehli AE (1974) Equivalent circuit models for three-dimensional multiconductor systems. IEEE Trans Microw Theory Tech 22(3):216–221CrossRef
2.
Zurück zum Zitat Kamon M, Marques NA, Silveira LM, White J (1998) Automatic generation of accurate circuit models of 3-D interconnect. IEEE Trans Comp Packaging Manuf Technol Part B 21(3):225–240CrossRef Kamon M, Marques NA, Silveira LM, White J (1998) Automatic generation of accurate circuit models of 3-D interconnect. IEEE Trans Comp Packaging Manuf Technol Part B 21(3):225–240CrossRef
5.
Zurück zum Zitat Traub F, Hansen J, Ackermann W, Weiland T (2012) Generation of physical equivalent circuits using 3d simulations. In: 2012 IEEE international symposium on electromagnetic compatibility, IEEE, pp 486–491 Traub F, Hansen J, Ackermann W, Weiland T (2012) Generation of physical equivalent circuits using 3d simulations. In: 2012 IEEE international symposium on electromagnetic compatibility, IEEE, pp 486–491
9.
Zurück zum Zitat Jordan EC, Balmain KG (1968) Electromagnetic waves and radiating systems, 2nd edn. Prentice-Hall Electrical Engineering Series. Prentice-Hall, Englewood Cliffs, oCLC, p 439397 Jordan EC, Balmain KG (1968) Electromagnetic waves and radiating systems, 2nd edn. Prentice-Hall Electrical Engineering Series. Prentice-Hall, Englewood Cliffs, oCLC, p 439397
10.
Zurück zum Zitat Paul CR (2010) Inductance: loop and partial. Wiley, Hoboken, oCLC, p ocn428031806806 Paul CR (2010) Inductance: loop and partial. Wiley, Hoboken, oCLC, p ocn428031806806
11.
Zurück zum Zitat Monk P (2003) Finite element methods for Maxwell’s equations. In: Numerical mathematics and scientific computation, Clarendon Press, Oxford University Press, Oxford, oCLC: ocm51109019 Monk P (2003) Finite element methods for Maxwell’s equations. In: Numerical mathematics and scientific computation, Clarendon Press, Oxford University Press, Oxford, oCLC: ocm51109019
13.
Zurück zum Zitat Sacks ZS, Kingsland DM, Lee R, Lee JF (1995) A perfectly matched anisotropic absorber for use as an absorbing boundary condition. IEEE Trans Antennas Propag 43(12):1460–1463CrossRef Sacks ZS, Kingsland DM, Lee R, Lee JF (1995) A perfectly matched anisotropic absorber for use as an absorbing boundary condition. IEEE Trans Antennas Propag 43(12):1460–1463CrossRef
19.
Zurück zum Zitat Albanese R, Rubinacci G (1988) Integral formulation for 3d eddy-current computation using edge elements. IEE Proc A (Phys Sci Meas Instrum Manag Educ Rev) 135(7):457–462CrossRef Albanese R, Rubinacci G (1988) Integral formulation for 3d eddy-current computation using edge elements. IEE Proc A (Phys Sci Meas Instrum Manag Educ Rev) 135(7):457–462CrossRef
20.
Zurück zum Zitat Ramo S, Whinnery JR, Van Duzer T (1994) Fields and waves in communication electronics, 3rd edn. Wiley, New York Ramo S, Whinnery JR, Van Duzer T (1994) Fields and waves in communication electronics, 3rd edn. Wiley, New York
22.
Zurück zum Zitat Traub F, Hansen J, Ackermann W, Weiland T (2013) Automated construction of physical equivalent circuits for inductive components. In: 2013 international symposium on electromagnetic compatibility, IEEE, pp 67–72 Traub F, Hansen J, Ackermann W, Weiland T (2013) Automated construction of physical equivalent circuits for inductive components. In: 2013 international symposium on electromagnetic compatibility, IEEE, pp 67–72
Metadaten
Titel
Broadband finite-element impedance computation for parasitic extraction
verfasst von
J. Stysch
A. Klaedtke
H. De Gersem
Publikationsdatum
30.06.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 2/2022
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-021-01348-9

Weitere Artikel der Ausgabe 2/2022

Electrical Engineering 2/2022 Zur Ausgabe

Neuer Inhalt