Skip to main content
Erschienen in: Cognitive Neurodynamics 5/2012

01.10.2012 | Research Article

Bursts shape the NMDA-R mediated spike timing dependent plasticity curve: role of burst interspike interval and GABAergic inhibition

verfasst von: Vassilis Cutsuridis

Erschienen in: Cognitive Neurodynamics | Ausgabe 5/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Spike timing dependent plasticity (STDP) is a synaptic learning rule where the relative timing between the presynaptic and postsynaptic action potentials determines the sign and strength of synaptic plasticity. In its basic form STDP has an asymmetric form which incorporates both persistent increases and persistent decreases in synaptic strength. The basic form of STDP, however, is not a fixed property and depends on the dendritic location. An asymmetric curve is observed in the distal dendrites, whereas a symmetrical one is observed in the proximal ones. A recent computational study has shown that the transition from the asymmetry to symmetry is due to inhibition under certain conditions. Synapses have also been observed to be unreliable at generating plasticity when excitatory postsynaptic potentials and single spikes are paired at low frequencies. Bursts of spikes, however, are reliably signaled because transmitter release is facilitated. This article presents a two-compartment model of the CA1 pyramidal cell. The model is neurophysiologically plausible with its dynamics resulting from the interplay of many ionic and synaptic currents. Plasticity is measured by a deterministic Ca2+ dynamics model which measures the instantaneous calcium level and its time course in the dendrite and change the strength of the synapse accordingly. The model is validated to match the asymmetrical form of STDP from the pairing of a presynaptic (dendritic) and postsynaptic (somatic) spikes as observed experimentally. With the parameter set unchanged the model investigates how pairing of bursts with single spikes and bursts in the presence or absence of inhibition shapes the STDP curve. The model predicts that inhibition strength and frequency are not the only factors of the asymmetry-to-symmetry switch of the STDP curve. Burst interspike interval is another factor. This study is an important first step towards understanding how STDP is affected under natural firing patterns in vivo.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abarbanel HDI, Gibb L, Huerta R, Rabinovich MI (2003) Biophysical model of synaptic plasticity dynamics. Biol Cybern 89:214–226PubMedCrossRef Abarbanel HDI, Gibb L, Huerta R, Rabinovich MI (2003) Biophysical model of synaptic plasticity dynamics. Biol Cybern 89:214–226PubMedCrossRef
Zurück zum Zitat Aihara T, Abiru Y, Yamazaki Y, Watanabe H, Fukushima Y, Tsukada M (2007) The relation between spike-timing dependent plasticity and Ca2+ dynamics in the hippocampal CA1 network. Neuroscience 145:80–87PubMedCrossRef Aihara T, Abiru Y, Yamazaki Y, Watanabe H, Fukushima Y, Tsukada M (2007) The relation between spike-timing dependent plasticity and Ca2+ dynamics in the hippocampal CA1 network. Neuroscience 145:80–87PubMedCrossRef
Zurück zum Zitat Allen C, Stevens CF (1994) An evaluation of causes for unreliability of synaptic transmission. Proc Natl Acad Sci USA 91(22):10380–10383PubMedCrossRef Allen C, Stevens CF (1994) An evaluation of causes for unreliability of synaptic transmission. Proc Natl Acad Sci USA 91(22):10380–10383PubMedCrossRef
Zurück zum Zitat Bell CC, Han VZ, Sugawara Y, Grant K (1997) Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387:278–281PubMedCrossRef Bell CC, Han VZ, Sugawara Y, Grant K (1997) Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387:278–281PubMedCrossRef
Zurück zum Zitat Bender VA, Bender KJ, Brasier DJ, Feldman DE (2006) Two coincidence detectors for spike-timing-dependent plasticity in somatosensory cortex. J Neurosci 26:4166–4177PubMedCrossRef Bender VA, Bender KJ, Brasier DJ, Feldman DE (2006) Two coincidence detectors for spike-timing-dependent plasticity in somatosensory cortex. J Neurosci 26:4166–4177PubMedCrossRef
Zurück zum Zitat Bi GQ (2002) Spatiotemporal specificity of synaptic plasticity: cellular rules and mechanisms. Biol Cybern 87(5–6):319–332PubMedCrossRef Bi GQ (2002) Spatiotemporal specificity of synaptic plasticity: cellular rules and mechanisms. Biol Cybern 87(5–6):319–332PubMedCrossRef
Zurück zum Zitat Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464–10472PubMed Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464–10472PubMed
Zurück zum Zitat Bi GQ, Rubin J (2005) Timing in synaptic plasticity: from detection to integration. TINS 28(5):222–228PubMed Bi GQ, Rubin J (2005) Timing in synaptic plasticity: from detection to integration. TINS 28(5):222–228PubMed
Zurück zum Zitat Bienenstock EL, Cooper L, Munro P (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2(1):32–48PubMed Bienenstock EL, Cooper L, Munro P (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2(1):32–48PubMed
Zurück zum Zitat Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39PubMedCrossRef Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39PubMedCrossRef
Zurück zum Zitat Bliss TV, Lomo T (1970) Plasticity in a monosynaptic cortical pathway. J Physiol 207(2):61pPubMed Bliss TV, Lomo T (1970) Plasticity in a monosynaptic cortical pathway. J Physiol 207(2):61pPubMed
Zurück zum Zitat Caporale N, Dan Y (2009) Spike timing dependent plasticity: a Hebbian learning rule. Ann Rev Neurosci 31:25–46CrossRef Caporale N, Dan Y (2009) Spike timing dependent plasticity: a Hebbian learning rule. Ann Rev Neurosci 31:25–46CrossRef
Zurück zum Zitat Cassenaer S, Laurent G (2007) Hebbian STDP in mushroom bodies facilitates the synchronous flow of olfactory information in locusts. Nature 448:709–713PubMedCrossRef Cassenaer S, Laurent G (2007) Hebbian STDP in mushroom bodies facilitates the synchronous flow of olfactory information in locusts. Nature 448:709–713PubMedCrossRef
Zurück zum Zitat Clopath C, Busing L, Vasilaki E, Gerstner W (2010) Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nat Neurosci 13(3):344–352PubMedCrossRef Clopath C, Busing L, Vasilaki E, Gerstner W (2010) Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nat Neurosci 13(3):344–352PubMedCrossRef
Zurück zum Zitat Cobb S, Lawrence JJ (2010) Neuromodulation of hippocampal cells and circuits. In: Cutsuridis V et al (eds) Hippocampal microcircuits: a computational Modeller’s resource book. Springer, New York, pp 187–246CrossRef Cobb S, Lawrence JJ (2010) Neuromodulation of hippocampal cells and circuits. In: Cutsuridis V et al (eds) Hippocampal microcircuits: a computational Modeller’s resource book. Springer, New York, pp 187–246CrossRef
Zurück zum Zitat Cobb SR, Buhl EH, Halacy K, Paulsen O, Somogyi P (1995) Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378:75–77PubMedCrossRef Cobb SR, Buhl EH, Halacy K, Paulsen O, Somogyi P (1995) Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378:75–77PubMedCrossRef
Zurück zum Zitat Cutsuridis V (2010) Action potential bursts modulate the NMDA-R mediated spike timing dependent plasticity in a biophysical model. In: Diamantaras K, Duch W, Iliadis LS (eds) ICANN 2010, Part I, LNCS 6352, Springer, Berlin, pp 107–116 Cutsuridis V (2010) Action potential bursts modulate the NMDA-R mediated spike timing dependent plasticity in a biophysical model. In: Diamantaras K, Duch W, Iliadis LS (eds) ICANN 2010, Part I, LNCS 6352, Springer, Berlin, pp 107–116
Zurück zum Zitat Cutsuridis V (2011) GABA inhibition modulates NMDA-R mediated spike timing-dependent plasticity (STDP) in a biophysical model. Neural Netw 24(1):29–42PubMedCrossRef Cutsuridis V (2011) GABA inhibition modulates NMDA-R mediated spike timing-dependent plasticity (STDP) in a biophysical model. Neural Netw 24(1):29–42PubMedCrossRef
Zurück zum Zitat Cutsuridis V, Wennekers T (2009) Hippocampus, microcircuits and associative memory. Neural Netw 22(8):1120–1128PubMedCrossRef Cutsuridis V, Wennekers T (2009) Hippocampus, microcircuits and associative memory. Neural Netw 22(8):1120–1128PubMedCrossRef
Zurück zum Zitat Cutsuridis V, Cobb S, Graham BP (2008) Encoding and retrieval in a CA1 microcircuit model of the hippocampus. In: Kurkova V, Neruda R, Koutnik J (eds) ICANN 2008, LNCS 5164. Springer, Berlin, pp 238–247 Cutsuridis V, Cobb S, Graham BP (2008) Encoding and retrieval in a CA1 microcircuit model of the hippocampus. In: Kurkova V, Neruda R, Koutnik J (eds) ICANN 2008, LNCS 5164. Springer, Berlin, pp 238–247
Zurück zum Zitat Cutsuridis V, Cobb S, Graham BP (2009a) How bursts shape the STDP curve in the presence/absence of GABA inhibition. In: Alippi C et al. (eds) LNCS 5768. Springer, Berlin, pp 229–238 Cutsuridis V, Cobb S, Graham BP (2009a) How bursts shape the STDP curve in the presence/absence of GABA inhibition. In: Alippi C et al. (eds) LNCS 5768. Springer, Berlin, pp 229–238
Zurück zum Zitat Cutsuridis V, Cobb S, Graham BP (2009b) Modelling the STDP symmetry-to-asymmetry transition in the presence of GABAergic inhibition. Neural Netw World 19(5):471–481 Cutsuridis V, Cobb S, Graham BP (2009b) Modelling the STDP symmetry-to-asymmetry transition in the presence of GABAergic inhibition. Neural Netw World 19(5):471–481
Zurück zum Zitat Cutsuridis V, Cobb S, Graham BP (2010a) Encoding and retrieval in the hippocampal CA1 microcircuit model. Hippocampus 20(3):423–446PubMed Cutsuridis V, Cobb S, Graham BP (2010a) Encoding and retrieval in the hippocampal CA1 microcircuit model. Hippocampus 20(3):423–446PubMed
Zurück zum Zitat Cutsuridis V, Graham BP, Cobb S, Vida I (2010b) Hippocampal microcircuits: a computational modeler’s resource book. Springer, New YorkCrossRef Cutsuridis V, Graham BP, Cobb S, Vida I (2010b) Hippocampal microcircuits: a computational modeler’s resource book. Springer, New YorkCrossRef
Zurück zum Zitat Cutsuridis V, Graham BP, Cobb S, Hasselmo M (2011) Bio-inspired models of recall performance, memory capacity and theta phase precession. In: IJCNN 2011, San Hose, CA, July 31–Aug 5 Cutsuridis V, Graham BP, Cobb S, Hasselmo M (2011) Bio-inspired models of recall performance, memory capacity and theta phase precession. In: IJCNN 2011, San Hose, CA, July 31–Aug 5
Zurück zum Zitat Debanne D, Gahwiler BH, Thompson SM (1998) Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J Physiol 507:237–247PubMedCrossRef Debanne D, Gahwiler BH, Thompson SM (1998) Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J Physiol 507:237–247PubMedCrossRef
Zurück zum Zitat Ermentrout B (2002) Simulating, analyzing and animating dynamical systems. A guide to XPPAUT for researchers and students. SIAM, Philadelphia Ermentrout B (2002) Simulating, analyzing and animating dynamical systems. A guide to XPPAUT for researchers and students. SIAM, Philadelphia
Zurück zum Zitat Feldman DE (2000) Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron 27:45–56PubMedCrossRef Feldman DE (2000) Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron 27:45–56PubMedCrossRef
Zurück zum Zitat Froemke RC, Dan Y (2002) Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416:433–438PubMedCrossRef Froemke RC, Dan Y (2002) Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416:433–438PubMedCrossRef
Zurück zum Zitat Froemke RC, Poo MM, Dan Y (2005) Spike-timing-dependent synaptic plasticity depends on dendritic location. Nature 434(7030):221–225PubMedCrossRef Froemke RC, Poo MM, Dan Y (2005) Spike-timing-dependent synaptic plasticity depends on dendritic location. Nature 434(7030):221–225PubMedCrossRef
Zurück zum Zitat Froemke RC, Tsay IA, Raad M, Long JD, Dan Y (2006) Contribution of individual spikes in burst-induced long term synaptic modification. J Neurophysiol 95:1620–1629PubMedCrossRef Froemke RC, Tsay IA, Raad M, Long JD, Dan Y (2006) Contribution of individual spikes in burst-induced long term synaptic modification. J Neurophysiol 95:1620–1629PubMedCrossRef
Zurück zum Zitat Gloveli T, Kopell N, Dugladze T (2010) Network activity patterns during hippocampal network oscillations in vitro. In: Cutsuridis V et al. (eds) Hippocampal microcircuits: a computational modeler’s resource book. Springer series in computational neuroscience, vol 5. Springer, Berlin, pp 247–276 Gloveli T, Kopell N, Dugladze T (2010) Network activity patterns during hippocampal network oscillations in vitro. In: Cutsuridis V et al. (eds) Hippocampal microcircuits: a computational modeler’s resource book. Springer series in computational neuroscience, vol 5. Springer, Berlin, pp 247–276
Zurück zum Zitat Golding NL, Staff NP, Spruston N (2002) Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418:326–331PubMedCrossRef Golding NL, Staff NP, Spruston N (2002) Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418:326–331PubMedCrossRef
Zurück zum Zitat Hayashi H, Igarashi J (2009) LTD windows of the STDP learning rule and synaptic connections having a large transmission delay enable robust sequence learning amid background noise. Cogn Neurodyn 3:119–130PubMedCrossRef Hayashi H, Igarashi J (2009) LTD windows of the STDP learning rule and synaptic connections having a large transmission delay enable robust sequence learning amid background noise. Cogn Neurodyn 3:119–130PubMedCrossRef
Zurück zum Zitat Hebb DO (1949) The organization of behavior. Wiley, New York Hebb DO (1949) The organization of behavior. Wiley, New York
Zurück zum Zitat Ismailov I, Kalikulov D, Inoue T, Friedlander MJ (2004) The kinetic profile of intracellular calcium predicts long-term potentiation and long-term depression. J Neurosci 24(44):9847–9861PubMedCrossRef Ismailov I, Kalikulov D, Inoue T, Friedlander MJ (2004) The kinetic profile of intracellular calcium predicts long-term potentiation and long-term depression. J Neurosci 24(44):9847–9861PubMedCrossRef
Zurück zum Zitat Ito HT, Schuman EM (2007) Frequency-dependent gating of synaptic transmission and plasticity by dopamine. Front Neural Circ 1(1):1–13 Ito HT, Schuman EM (2007) Frequency-dependent gating of synaptic transmission and plasticity by dopamine. Front Neural Circ 1(1):1–13
Zurück zum Zitat Izhikevich EM, Desai NS, Walcott EC, Hoppensteadt FC (2003) Bursts as a unit of neural information: selective communication via resonance. TINS 26(3):161–167PubMed Izhikevich EM, Desai NS, Walcott EC, Hoppensteadt FC (2003) Bursts as a unit of neural information: selective communication via resonance. TINS 26(3):161–167PubMed
Zurück zum Zitat Jarsky T, Roxin A, Kath WL, Spruston N (2005) Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons. Nat Neurosci 8(12):1667–1676PubMedCrossRef Jarsky T, Roxin A, Kath WL, Spruston N (2005) Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons. Nat Neurosci 8(12):1667–1676PubMedCrossRef
Zurück zum Zitat Kampa BM, Stuart GJ (2006) Calcium spikes in basal dendrites of layer 5 pyramidal neurons during action potential bursts. J Neurosci 26:7424–7432PubMedCrossRef Kampa BM, Stuart GJ (2006) Calcium spikes in basal dendrites of layer 5 pyramidal neurons during action potential bursts. J Neurosci 26:7424–7432PubMedCrossRef
Zurück zum Zitat Kampa BM, Clemens J, Jonas P, Stuart GJ (2004) Kinetics of Mg2+ unblock of NMDA receptors: implications for spike-timing dependent synaptic plasticity. J Physiol 556:337–345PubMedCrossRef Kampa BM, Clemens J, Jonas P, Stuart GJ (2004) Kinetics of Mg2+ unblock of NMDA receptors: implications for spike-timing dependent synaptic plasticity. J Physiol 556:337–345PubMedCrossRef
Zurück zum Zitat Karmarkar UR, Buonomano DV (2002) A model of spike timing dependent plasticity: one or two coincidence detectors? J Neurosci 88:507–513 Karmarkar UR, Buonomano DV (2002) A model of spike timing dependent plasticity: one or two coincidence detectors? J Neurosci 88:507–513
Zurück zum Zitat Koester HJ, Sakmann B (1998) Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials. PNAS 95:9596–9601PubMedCrossRef Koester HJ, Sakmann B (1998) Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials. PNAS 95:9596–9601PubMedCrossRef
Zurück zum Zitat Larkum ME, Kaiser KM, Sakmann B (1999) Calcium electrogenesis in distal apical dendrites of layer 5 pyramidal cells at a critical frequency of backpropagating action potentials. PNAS 96:14600–14604PubMedCrossRef Larkum ME, Kaiser KM, Sakmann B (1999) Calcium electrogenesis in distal apical dendrites of layer 5 pyramidal cells at a critical frequency of backpropagating action potentials. PNAS 96:14600–14604PubMedCrossRef
Zurück zum Zitat Letzkus JJ, Kampa BM, Stuart GJ (2006) Learning rules for spike timing-dependent plasticity depend on dendritic synapse location. J Neurosci 26(41):10420–10429PubMedCrossRef Letzkus JJ, Kampa BM, Stuart GJ (2006) Learning rules for spike timing-dependent plasticity depend on dendritic synapse location. J Neurosci 26(41):10420–10429PubMedCrossRef
Zurück zum Zitat Lisman J (1997) Bursts as a unit of neural information: making unreliable synapses reliable. TINS 20(1):38–43PubMed Lisman J (1997) Bursts as a unit of neural information: making unreliable synapses reliable. TINS 20(1):38–43PubMed
Zurück zum Zitat Magee JC, Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275:209–213PubMedCrossRef Magee JC, Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275:209–213PubMedCrossRef
Zurück zum Zitat Markram H, Luebke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215PubMedCrossRef Markram H, Luebke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215PubMedCrossRef
Zurück zum Zitat Mayer ML, Westbrook GL, Guthrie BP (1984) Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurons. Nature 309:261–263PubMedCrossRef Mayer ML, Westbrook GL, Guthrie BP (1984) Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurons. Nature 309:261–263PubMedCrossRef
Zurück zum Zitat Nevian T, Sakmann B (2004) Single spine Ca2+ signals evoked by coincident EPSPs and backpropagating action potentials in spiny stellate cells of layer 4 in the juvenile rate somatosensory barrel cortex. J Neurosci 24:1689–1699PubMedCrossRef Nevian T, Sakmann B (2004) Single spine Ca2+ signals evoked by coincident EPSPs and backpropagating action potentials in spiny stellate cells of layer 4 in the juvenile rate somatosensory barrel cortex. J Neurosci 24:1689–1699PubMedCrossRef
Zurück zum Zitat Nishiyama M, Hong K, Mikoshiba K, Poo MM, Kato K (2000) Calcium stores regulate the polarity and input specificity of synaptic modification. Nature 408:584–588PubMedCrossRef Nishiyama M, Hong K, Mikoshiba K, Poo MM, Kato K (2000) Calcium stores regulate the polarity and input specificity of synaptic modification. Nature 408:584–588PubMedCrossRef
Zurück zum Zitat Nishiyama M, Togashi K, Aihara T, Hong K (2010) GABAergic activities control spike timing- and frequency-dependent long-term depression at hippocampal excitatory synapses. Front Syn Neurosci 2(22):1–15 Nishiyama M, Togashi K, Aihara T, Hong K (2010) GABAergic activities control spike timing- and frequency-dependent long-term depression at hippocampal excitatory synapses. Front Syn Neurosci 2(22):1–15
Zurück zum Zitat Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307:462–465PubMedCrossRef Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307:462–465PubMedCrossRef
Zurück zum Zitat Otmakhova NA, Lisman JE (1999) Dopamine selectively inhibits the direct cortical pathway to the CA1 hippocampal region. J Neurosci 19:1437–1445PubMed Otmakhova NA, Lisman JE (1999) Dopamine selectively inhibits the direct cortical pathway to the CA1 hippocampal region. J Neurosci 19:1437–1445PubMed
Zurück zum Zitat Paulsen O, Li YG, Anderson P, Bliss TV (1993) Failure to induce long-term depression by an anti-correlation procedure in area CA1 of the rat hippocampal slice. Eur J Neurosci 5(10):1241–1246PubMedCrossRef Paulsen O, Li YG, Anderson P, Bliss TV (1993) Failure to induce long-term depression by an anti-correlation procedure in area CA1 of the rat hippocampal slice. Eur J Neurosci 5(10):1241–1246PubMedCrossRef
Zurück zum Zitat Pawlak V, Kerr JN (2008) Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity. J Neurosci 28:2435–2446PubMedCrossRef Pawlak V, Kerr JN (2008) Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity. J Neurosci 28:2435–2446PubMedCrossRef
Zurück zum Zitat Poirazzi P, Brannon T, Mel BW (2003) Pyramidal neuron as a 2-layer neural network. Neuron 37:989–999CrossRef Poirazzi P, Brannon T, Mel BW (2003) Pyramidal neuron as a 2-layer neural network. Neuron 37:989–999CrossRef
Zurück zum Zitat Rubin JE, Gerkin RC, Bi GQ, Chow CC (2005) Calcium time course as a signal for spike-timing-dependent plasticity. J Neurophysiol 93:2600–2613PubMedCrossRef Rubin JE, Gerkin RC, Bi GQ, Chow CC (2005) Calcium time course as a signal for spike-timing-dependent plasticity. J Neurophysiol 93:2600–2613PubMedCrossRef
Zurück zum Zitat Sabatini BL, Oertner TG, Svoboda K (2001) Ca2+ signalling in dendritic spines. Curr Opin Neurobiol 33(3):439–452 Sabatini BL, Oertner TG, Svoboda K (2001) Ca2+ signalling in dendritic spines. Curr Opin Neurobiol 33(3):439–452
Zurück zum Zitat Shimono K, Kubota D, Brucher F, Taketani M, Lynch G (2002) Asymmetrical distribution of the Schaffer projections within the apical dendrites of hippocampal CA1 field. Brain Res 950:279–287PubMedCrossRef Shimono K, Kubota D, Brucher F, Taketani M, Lynch G (2002) Asymmetrical distribution of the Schaffer projections within the apical dendrites of hippocampal CA1 field. Brain Res 950:279–287PubMedCrossRef
Zurück zum Zitat Shouval HZ, Bear MF, Cooper LN (2002) A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proc Natl Acad Sci USA 99:10831–10836PubMedCrossRef Shouval HZ, Bear MF, Cooper LN (2002) A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proc Natl Acad Sci USA 99:10831–10836PubMedCrossRef
Zurück zum Zitat Sjostrom PJ, Turrigiano GG, Nelson SB (2001) Rate, timing, and co-operativity jointly determine cortical synaptic plasticity. Neuron 32:1149–1164PubMedCrossRef Sjostrom PJ, Turrigiano GG, Nelson SB (2001) Rate, timing, and co-operativity jointly determine cortical synaptic plasticity. Neuron 32:1149–1164PubMedCrossRef
Zurück zum Zitat Stent GS (1973) A physiological mechanism for Hebb’s postulate of learning. PNAS 70(4):997–1001PubMedCrossRef Stent GS (1973) A physiological mechanism for Hebb’s postulate of learning. PNAS 70(4):997–1001PubMedCrossRef
Zurück zum Zitat Stuart GJ, Hausser M (2001) Dendritic coincidence detection of EPSPs and action potentials. Nat Neurosci 4:63–71PubMedCrossRef Stuart GJ, Hausser M (2001) Dendritic coincidence detection of EPSPs and action potentials. Nat Neurosci 4:63–71PubMedCrossRef
Zurück zum Zitat Stuart G, Schiller J, Sakmann B (1997) Action potential initiation and backpropagation in neurons of the mammalian CNS. TINS 20:125–131PubMed Stuart G, Schiller J, Sakmann B (1997) Action potential initiation and backpropagation in neurons of the mammalian CNS. TINS 20:125–131PubMed
Zurück zum Zitat Tsukada M, Aihara T, Kobayashi Y, Shimazaki H (2005) Spatial analysis of spike-timing-dependent LTP and LTD in the CA1 area of hippocampal slices using optical imaging. Hippocampus 15:104–109PubMedCrossRef Tsukada M, Aihara T, Kobayashi Y, Shimazaki H (2005) Spatial analysis of spike-timing-dependent LTP and LTD in the CA1 area of hippocampal slices using optical imaging. Hippocampus 15:104–109PubMedCrossRef
Zurück zum Zitat Tzounopoulos T, Kim Y, Oerstel D, Trussell LO (2004) Cell-specific, spike timing-dependent plasticities in the dorsal cochlear nucleus. Nat Neurosci 7:719–725PubMedCrossRef Tzounopoulos T, Kim Y, Oerstel D, Trussell LO (2004) Cell-specific, spike timing-dependent plasticities in the dorsal cochlear nucleus. Nat Neurosci 7:719–725PubMedCrossRef
Zurück zum Zitat Vargas-Caballero M, Robinson HP (2003) A slow fraction of Mg2+ unblock of NMDA receptors limits their contribution to spike generation in cortical pyramidal neurons. J Neurophysiol 89:2778–2783PubMedCrossRef Vargas-Caballero M, Robinson HP (2003) A slow fraction of Mg2+ unblock of NMDA receptors limits their contribution to spike generation in cortical pyramidal neurons. J Neurophysiol 89:2778–2783PubMedCrossRef
Zurück zum Zitat White JA, Banks MI, Pearce RA, Kopell NJ (2000) Networks of interneurons with fast and slow gamma-aminobutyric acid type A (GABAA) kinetics provide substrate for mixed gamma–theta rhythm. PNAS 97(10):8128–8133PubMedCrossRef White JA, Banks MI, Pearce RA, Kopell NJ (2000) Networks of interneurons with fast and slow gamma-aminobutyric acid type A (GABAA) kinetics provide substrate for mixed gamma–theta rhythm. PNAS 97(10):8128–8133PubMedCrossRef
Zurück zum Zitat Whittington MA, Traub RD, Jeffreys JGR (1995) Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373:612–615PubMedCrossRef Whittington MA, Traub RD, Jeffreys JGR (1995) Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373:612–615PubMedCrossRef
Zurück zum Zitat Williams SR, Stuart GJ (1999) Mechanisms and consequences of action potential burst firing in rat neocortical pyramidal neurons. J Physiol 521:467–482PubMedCrossRef Williams SR, Stuart GJ (1999) Mechanisms and consequences of action potential burst firing in rat neocortical pyramidal neurons. J Physiol 521:467–482PubMedCrossRef
Zurück zum Zitat Yao H, Dan Y (2001) Stimulus timing-dependent plasticity in cortical processing of orientation. Neuron 32:315–323PubMedCrossRef Yao H, Dan Y (2001) Stimulus timing-dependent plasticity in cortical processing of orientation. Neuron 32:315–323PubMedCrossRef
Zurück zum Zitat Zhang LI, Tao HW, Holt CE, Harris WA, Poo M (1998) A critical window for cooperation and competition among developing retinotectal synapses. Nature 395:37–44PubMedCrossRef Zhang LI, Tao HW, Holt CE, Harris WA, Poo M (1998) A critical window for cooperation and competition among developing retinotectal synapses. Nature 395:37–44PubMedCrossRef
Metadaten
Titel
Bursts shape the NMDA-R mediated spike timing dependent plasticity curve: role of burst interspike interval and GABAergic inhibition
verfasst von
Vassilis Cutsuridis
Publikationsdatum
01.10.2012
Verlag
Springer Netherlands
Erschienen in
Cognitive Neurodynamics / Ausgabe 5/2012
Print ISSN: 1871-4080
Elektronische ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-012-9205-1

Weitere Artikel der Ausgabe 5/2012

Cognitive Neurodynamics 5/2012 Zur Ausgabe

Neuer Inhalt