Skip to main content

2017 | OriginalPaper | Buchkapitel

Cable-Stayed Bridges: A Monitoring Challenge

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The monitoring of cable-stayed bridges has a core aspect: the cables. They are a significant component of the structural skeleton and are in so large number that a one-by-one response measurement is often too ambitious. In this paper, a footbridge is studied with only 16 cables in double symmetry. Despite the evident simplification of the problem, several aspects met in the process of collecting the data are worth being reported.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kim BH, Park T (2007) Estimation of cable tension force using the frequency-based system identification method. J Sound Vib 304:660–676CrossRef Kim BH, Park T (2007) Estimation of cable tension force using the frequency-based system identification method. J Sound Vib 304:660–676CrossRef
2.
Zurück zum Zitat Casas JR (1994) A combined method for measuring cable forces: the cable-stayed Alamillo Bridge, Spain. Struct Eng Int 4(4):235–240MathSciNetCrossRef Casas JR (1994) A combined method for measuring cable forces: the cable-stayed Alamillo Bridge, Spain. Struct Eng Int 4(4):235–240MathSciNetCrossRef
3.
Zurück zum Zitat Kim BH, Shin HY (2007) A comparative study of the tension estimation methods for cable supported bridges. Int J Steel Struct 7(1):77–84MathSciNet Kim BH, Shin HY (2007) A comparative study of the tension estimation methods for cable supported bridges. Int J Steel Struct 7(1):77–84MathSciNet
4.
Zurück zum Zitat Ren WX, Liu HL, Chen G (2008) Determination of cable tensions based on frequency differences. Eng Comput 25(2):172–189CrossRefMATH Ren WX, Liu HL, Chen G (2008) Determination of cable tensions based on frequency differences. Eng Comput 25(2):172–189CrossRefMATH
5.
Zurück zum Zitat Russell JC, Lardner TJ (1998) Experimental determination of frequencies and tension for elastic cables. J Eng Mech 124(10):1067–1072CrossRef Russell JC, Lardner TJ (1998) Experimental determination of frequencies and tension for elastic cables. J Eng Mech 124(10):1067–1072CrossRef
6.
Zurück zum Zitat Humar JL (2000) Dynamics of structures. Prentice-Hall, Upper Saddle RiverMATH Humar JL (2000) Dynamics of structures. Prentice-Hall, Upper Saddle RiverMATH
7.
Zurück zum Zitat Fang Z, Wang J (2012) Practical formula for cable tension estimation by vibration method. J Bridg Eng 17:161–164CrossRef Fang Z, Wang J (2012) Practical formula for cable tension estimation by vibration method. J Bridg Eng 17:161–164CrossRef
8.
Zurück zum Zitat Sim SH, Li J, Jo H, Park JW, Cho S, Spencer BF Jr, Jung HJ (2014) A wireless smart sensor network for automated monitoring of cable tension. Smart Mater Struct 23(2):025006CrossRef Sim SH, Li J, Jo H, Park JW, Cho S, Spencer BF Jr, Jung HJ (2014) A wireless smart sensor network for automated monitoring of cable tension. Smart Mater Struct 23(2):025006CrossRef
9.
Zurück zum Zitat Zui H, Shinke T, Namita YH (1996) Practical formulas for estimation of cable tension by vibration method. ASCE J Struct Eng 122(6):651–656CrossRef Zui H, Shinke T, Namita YH (1996) Practical formulas for estimation of cable tension by vibration method. ASCE J Struct Eng 122(6):651–656CrossRef
10.
Zurück zum Zitat Liao W, Ni Y, Zheng G (2012) Tension force and structural parameter identification of bridge cables. Adv Struct Eng 15(6):983–996CrossRef Liao W, Ni Y, Zheng G (2012) Tension force and structural parameter identification of bridge cables. Adv Struct Eng 15(6):983–996CrossRef
11.
Zurück zum Zitat Cho S, Lynch JP, Lee JJ, Yun CB (2010) Development of an automated wireless tension force estimation system for cable-stayed bridges. J Intell Mater Syst Struct 21(3):361–376CrossRef Cho S, Lynch JP, Lee JJ, Yun CB (2010) Development of an automated wireless tension force estimation system for cable-stayed bridges. J Intell Mater Syst Struct 21(3):361–376CrossRef
12.
Zurück zum Zitat Li H, Zhang F, Jin Y (2014) Real-time identification of time-varying tension in stay cables by monitoring cable transversal acceleration. Struct Control Health Monit 21:1100–1111CrossRef Li H, Zhang F, Jin Y (2014) Real-time identification of time-varying tension in stay cables by monitoring cable transversal acceleration. Struct Control Health Monit 21:1100–1111CrossRef
13.
Zurück zum Zitat Yang Y, Li S, Nagarajaiah S, Li H, Zhou P (2016) Real-time output-only identification of time-varying cable tension from accelerations via complexity pursuit. ASCE J Struct Eng 142(1):04015083CrossRef Yang Y, Li S, Nagarajaiah S, Li H, Zhou P (2016) Real-time output-only identification of time-varying cable tension from accelerations via complexity pursuit. ASCE J Struct Eng 142(1):04015083CrossRef
14.
Zurück zum Zitat Ni YQ, Wang YW, Xia YX (2015) Investigation of mode identifiability of a cable-stayed bridge: comparison from ambient vibration responses and from typhoon-induced dynamic responses. Smart Struct Syst 15(2):447–468CrossRef Ni YQ, Wang YW, Xia YX (2015) Investigation of mode identifiability of a cable-stayed bridge: comparison from ambient vibration responses and from typhoon-induced dynamic responses. Smart Struct Syst 15(2):447–468CrossRef
15.
Zurück zum Zitat Casciati S (2016) Human induced vibration vs. cable-stay footbridge deterioration. Smart Struct Syst 18(1):17–29CrossRef Casciati S (2016) Human induced vibration vs. cable-stay footbridge deterioration. Smart Struct Syst 18(1):17–29CrossRef
16.
Zurück zum Zitat Matlab (2016) Matlab user’s manual. Mathworks Inc., Lowell Matlab (2016) Matlab user’s manual. Mathworks Inc., Lowell
18.
Zurück zum Zitat Bortoluzzi D, Casciati S, Elia L, Faravelli L (2015) Design of a TMD solution to mitigate wind-induced local vibrations in an existing timber footbridge. Smart Struct Syst 16(3):459–478CrossRef Bortoluzzi D, Casciati S, Elia L, Faravelli L (2015) Design of a TMD solution to mitigate wind-induced local vibrations in an existing timber footbridge. Smart Struct Syst 16(3):459–478CrossRef
Metadaten
Titel
Cable-Stayed Bridges: A Monitoring Challenge
verfasst von
L. Faravelli
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-43080-5_18

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.