Skip to main content
Erschienen in: Mathematical Models and Computer Simulations 5/2022

01.10.2022

Calculation Block of the Solar Radiation Field in the General Circulation Model of the Lower and Middle Atmosphere of the Earth

verfasst von: B. N. Chetverushkin, I. V. Mingalev, E. A. Fedotova, K. G. Orlov, V. M. Chechetkin, V. S. Mingalev

Erschienen in: Mathematical Models and Computer Simulations | Ausgabe 5/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The methods for calculating the solar radiation field in the radiation block of the general circulation model of the Earth’s lower and middle atmosphere are described. These calculations use a new parametrization of molecular absorption in the frequency range from 2000 to 50  000 cm–1 in the range of heights from the Earth’s surface up to 100 km. The parametrization takes into account the change in the gas composition of the atmosphere with altitude and the violation of the local thermodynamic equilibrium in the vibrational bands of carbon dioxide with a wavelength of about 4.3 and 2.7 μm at altitudes above 70 km. The method of discrete ordinates is used for the numerical solution of the radiative transfer equation. The results of calculations performed using the radiation block of the model are compared with the results of the reference calculations of the solar radiation field in the lower and middle atmosphere of the Earth, performed with a very high frequency resolution. It is shown that the model block provides good calculation accuracy both in the absence of clouds and in the presence of cloud layers with a large optical thickness.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat O. M. Belotserkovskii, A. M. Oparin, and V. M. Chechetkin, Turbulence: New Approaches (Nauka, Moscow, 2003; Cambridge International Science, Cambridge, 2005). O. M. Belotserkovskii, A. M. Oparin, and V. M. Chechetkin, Turbulence: New Approaches (Nauka, Moscow, 2003; Cambridge International Science, Cambridge, 2005).
2.
Zurück zum Zitat I. V. Mingalev, N. M. Astaf’eva, K. G. Orlov, V. M. Chechetkin, V. S. Mingalev, and O. V. Mingalev, “Numerical simulation of formation of cyclone vortex flows in the intratropical zone of convergence and their early detection,” Cosmic Res. 50 (3), 233–248 (2012). https://doi.org/10.1134/S0010952512020062CrossRef I. V. Mingalev, N. M. Astaf’eva, K. G. Orlov, V. M. Chechetkin, V. S. Mingalev, and O. V. Mingalev, “Numerical simulation of formation of cyclone vortex flows in the intratropical zone of convergence and their early detection,” Cosmic Res. 50 (3), 233–248 (2012). https://​doi.​org/​10.​1134/​S001095251202006​2CrossRef
5.
Zurück zum Zitat Yu. M. Timofeev and A. V. Vasil’ev, Theoretical Foundations of Atmospheric Optics (Nauka, St. Petersburg, 2003) [in Russian]. Yu. M. Timofeev and A. V. Vasil’ev, Theoretical Foundations of Atmospheric Optics (Nauka, St. Petersburg, 2003) [in Russian].
6.
Zurück zum Zitat K. Ya. Kondrat’ev, Actinometry (Gidrometeoizdat, Leningrad, 1965) [in Russian]. K. Ya. Kondrat’ev, Actinometry (Gidrometeoizdat, Leningrad, 1965) [in Russian].
7.
Zurück zum Zitat K. N. Liou, An Introduction to Atmospheric Radiation (Academic Press, New York, 1980; Gidrometeoizdat, Leningrad, 1984). K. N. Liou, An Introduction to Atmospheric Radiation (Academic Press, New York, 1980; Gidrometeoizdat, Leningrad, 1984).
8.
Zurück zum Zitat T. A. Sushkevich, Mathematical Models of Radiation Transfer (BINOM, Lab. Znanii, Moscow, 2006) [in Russian]. T. A. Sushkevich, Mathematical Models of Radiation Transfer (BINOM, Lab. Znanii, Moscow, 2006) [in Russian].
9.
Zurück zum Zitat S. D. Tvorogov, “Application of exponential series to frequency integration of the radiative transfer equations,” Atmos. Oceanic Opt. 12 (9), 730–734 (1999). S. D. Tvorogov, “Application of exponential series to frequency integration of the radiative transfer equations,” Atmos. Oceanic Opt. 12 (9), 730–734 (1999).
10.
Zurück zum Zitat S. D. Tvorogov and O. B. Rodimova, “Calculation of transmission functions at small pressures,” Atmos. Oceanic Opt. 21 (11), 797–803 (2008). S. D. Tvorogov and O. B. Rodimova, “Calculation of transmission functions at small pressures,” Atmos. Oceanic Opt. 21 (11), 797–803 (2008).
11.
Zurück zum Zitat B. A. Fomin, “Method for parameterization of gas absorption of atmospheric radiation giv-ing the k-distribution with minimum number of terms,” Atmos. Oceanic Opt. 16 (3), 244–246 (2003). B. A. Fomin, “Method for parameterization of gas absorption of atmospheric radiation giv-ing the k-distribution with minimum number of terms,” Atmos. Oceanic Opt. 16 (3), 244–246 (2003).
12.
14.
Zurück zum Zitat M.-D. Chou and M. J. Suarez, “A solar radiation parameterization for atmospheric studies,” NASA/TM-1999-104606, in Technical Report Series on Global Modeling and Data Assimilation, Vol. 15 (NASA Goddard Space Flight Center, Greenbelt, MD, 1999). https://ntrs.nasa.gov/citations/19990060930 M.-D. Chou and M. J. Suarez, “A solar radiation parameterization for atmospheric studies,” NASA/TM-1999-104606, in Technical Report Series on Global Modeling and Data Assimilation, Vol. 15 (NASA Goddard Space Flight Center, Greenbelt, MD, 1999). https://​ntrs.​nasa.​gov/​citations/​19990060930
18.
Zurück zum Zitat B. N. Chetverushkin, Mathematical Modeling of Problems of Radiating Gas Dynamics (Nauka, Moscow, 1985) [in Russian].MATH B. N. Chetverushkin, Mathematical Modeling of Problems of Radiating Gas Dynamics (Nauka, Moscow, 1985) [in Russian].MATH
23.
Zurück zum Zitat M. López-Puertas and F. W. Taylor, Non-LTE Radiative Transfer in the Atmosphere, in Series on Atmospheric, Oceanic and Planetary Physics, Vol. 3 (World Scientific, Singapore, 2001). https://doi.org/10.1142/4650 M. López-Puertas and F. W. Taylor, Non-LTE Radiative Transfer in the Atmosphere, in Series on Atmospheric, Oceanic and Planetary Physics, Vol. 3 (World Scientific, Singapore, 2001). https://​doi.​org/​10.​1142/​4650
24.
Zurück zum Zitat G. M. Shved, Introduction to the Dynamics and Energetics of the Atmosphere (Izd. S.-Peterb. Gos. Univ., St. P-etersburg, 2020) [in Russian]. G. M. Shved, Introduction to the Dynamics and Energetics of the Atmosphere (Izd. S.-Peterb. Gos. Univ., St. P-etersburg, 2020) [in Russian].
27.
Zurück zum Zitat M. López-Puertas, R. Rodrigo, J. J. López-Moreno, and F. W. Taylor, “A non-LTE radiative transfer model for infrared bands in the middle atmosphere. II. CO2 (2.7 and 4.3 μm) and water vapour (6.3 μm) bands and N2(1) and O2(1) vibrational levels,” J. Atmos. Terr. Phys. 48 (8), 749–764 (1986). https://doi.org/10.1016/0021-9169(86)90023-1CrossRef M. López-Puertas, R. Rodrigo, J. J. López-Moreno, and F. W. Taylor, “A non-LTE radiative transfer model for infrared bands in the middle atmosphere. II. CO2 (2.7 and 4.3 μm) and water vapour (6.3 μm) bands and N2(1) and O2(1) vibrational levels,” J. Atmos. Terr. Phys. 48 (8), 749–764 (1986). https://​doi.​org/​10.​1016/​0021-9169(86)90023-1CrossRef
28.
Zurück zum Zitat M. López-Puertas, G. Zaragoza, M. Á. López-Valverde, and F. W. Taylor, “Non local thermodynamic equilibrium (LTE) atmospheric limb emission at 4.6 μm: I. An update of the CO2 non-LTE radiative transfer model,” J. Geoph. Res.: Atmos. 103 (D7), 8499– 8513 (1998). https://doi.org/10.1029/98JD00209CrossRef M. López-Puertas, G. Zaragoza, M. Á. López-Valverde, and F. W. Taylor, “Non local thermodynamic equilibrium (LTE) atmospheric limb emission at 4.6 μm: I. An update of the CO2 non-LTE radiative transfer model,” J. Geoph. Res.: Atmos. 103 (D7), 8499– 8513 (1998). https://​doi.​org/​10.​1029/​98JD00209CrossRef
29.
Zurück zum Zitat V. P. Ogibalov, V. I. Fomichev, and A. A. Kutepov, “Radiative heating effected by infrared CO2 bands in the middle and upper atmosphere,” Izv.—Atmos. Oceanic Phys. 36 (4), 454−464 (2000). V. P. Ogibalov, V. I. Fomichev, and A. A. Kutepov, “Radiative heating effected by infrared CO2 bands in the middle and upper atmosphere,” Izv.—Atmos. Oceanic Phys. 36 (4), 454−464 (2000).
30.
Zurück zum Zitat H. Nebel, P. P. Wintersteiner, R. H. Picard, J. R. Winick, and R. D. Sharma, “CO2 non-local thermodynamic equilibrium radiative excitation and infrared dayglow at 4.3 μm: Application to Spectral Infrared Rocket Experiment data,” J. Geophys. Res.: Atmos. 99 (D5), 10409–10419 (1994). https://doi.org/10.1029/94JD00315CrossRef H. Nebel, P. P. Wintersteiner, R. H. Picard, J. R. Winick, and R. D. Sharma, “CO2 non-local thermodynamic equilibrium radiative excitation and infrared dayglow at 4.3 μm: Application to Spectral Infrared Rocket Experiment data,” J. Geophys. Res.: Atmos. 99 (D5), 10409–10419 (1994). https://​doi.​org/​10.​1029/​94JD00315CrossRef
34.
39.
Zurück zum Zitat R. A. McClatchey, H.-J. Bolle, K. Ya. Kondratyev, et al., “A preliminary cloudless standard atmosphere for r-adiation computation,” Report WCP–112, WMO/TD-No. 24, World Climate Research Programme, Int. A-ssociation for Meteorology and Atmospheric Physics, Radiation Commission (Boulder, CO, USA, 1986). R. A. McClatchey, H.-J. Bolle, K. Ya. Kondratyev, et al., “A preliminary cloudless standard atmosphere for r-adiation computation,” Report WCP–112, WMO/TD-No. 24, World Climate Research Programme, Int. A-ssociation for Meteorology and Atmospheric Physics, Radiation Commission (Boulder, CO, USA, 1986).
Metadaten
Titel
Calculation Block of the Solar Radiation Field in the General Circulation Model of the Lower and Middle Atmosphere of the Earth
verfasst von
B. N. Chetverushkin
I. V. Mingalev
E. A. Fedotova
K. G. Orlov
V. M. Chechetkin
V. S. Mingalev
Publikationsdatum
01.10.2022
Verlag
Pleiades Publishing
Erschienen in
Mathematical Models and Computer Simulations / Ausgabe 5/2022
Print ISSN: 2070-0482
Elektronische ISSN: 2070-0490
DOI
https://doi.org/10.1134/S2070048222050040

Weitere Artikel der Ausgabe 5/2022

Mathematical Models and Computer Simulations 5/2022 Zur Ausgabe

Premium Partner