Skip to main content

2014 | OriginalPaper | Buchkapitel

39. Calculation of Bridge Function and Thermodynamic Properties of Lennard-Jones Fluid Using Integral Equation Theory

verfasst von : Rupa Pal

Erschienen in: Emerging Trends in Computing and Communication

Verlag: Springer India

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The integral equation theory is nowadays one of the most widely used approaches for prediction of thermodynamic behaviour of homogeneous liquid system based on Ornstein–Zernike equation together with Closure relation. For improvement of correlation functions these closure properties are replaced by bridge function expansion. In this paper, the bridge function is first calculated from soft sphere mean spherical model approximation (SMSA) theory. Then, for systematic study of phase behavior of L-J fluid, the thermodynamic properties of interest like isothermal compressibility and chemical potential are derived from state of equations based on integral equation theory.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ornstein LS, Zernike F (1914) Accidental deviations of density and opalescence at the critical point of a single substance. Proc Acad Sci Amsterdam 17:793–806 Ornstein LS, Zernike F (1914) Accidental deviations of density and opalescence at the critical point of a single substance. Proc Acad Sci Amsterdam 17:793–806
2.
Zurück zum Zitat Martynov GA (1992) Fundamental theory of fluids: methods of distribution functions. Higher Bristol Martynov GA (1992) Fundamental theory of fluids: methods of distribution functions. Higher Bristol
3.
Zurück zum Zitat Percus JK, Yevick GJ (1958) Analysis of classical statistical mechanics by means of collective coordinates. Phys Rev 110(1):1CrossRefMATHMathSciNet Percus JK, Yevick GJ (1958) Analysis of classical statistical mechanics by means of collective coordinates. Phys Rev 110(1):1CrossRefMATHMathSciNet
4.
Zurück zum Zitat Martynov GA, Sarkisov GN (1983) Exact equations and the theory of liquids. Mol Phys 49:1495–1504CrossRef Martynov GA, Sarkisov GN (1983) Exact equations and the theory of liquids. Mol Phys 49:1495–1504CrossRef
5.
Zurück zum Zitat Mortynov GA, Sarkisov GN, Vompe AG (1999) New closure for the Ornstein–Zernike equation. J Chem Phys 110:3961–3969CrossRef Mortynov GA, Sarkisov GN, Vompe AG (1999) New closure for the Ornstein–Zernike equation. J Chem Phys 110:3961–3969CrossRef
6.
Zurück zum Zitat Lee LL (1997) The potential distribution-based closures to the integral equations for liquid structure: The Lennard-Jones fluid. J Chem Phys 107:7360–7370CrossRef Lee LL (1997) The potential distribution-based closures to the integral equations for liquid structure: The Lennard-Jones fluid. J Chem Phys 107:7360–7370CrossRef
7.
Zurück zum Zitat Choudhury N, Ghosh SK (2002) Integral equation theory of Lennard-Jones fluids: A modified verlet bridge function approach. J Chem Phys 116:8517–8622CrossRef Choudhury N, Ghosh SK (2002) Integral equation theory of Lennard-Jones fluids: A modified verlet bridge function approach. J Chem Phys 116:8517–8622CrossRef
8.
Zurück zum Zitat Charpentier I, Jakse N (2001) Exact numerical derivation of the pair-correlation function of simple liquids using the tangent linear method. J Chem Phys 114:2284–2292CrossRef Charpentier I, Jakse N (2001) Exact numerical derivation of the pair-correlation function of simple liquids using the tangent linear method. J Chem Phys 114:2284–2292CrossRef
9.
Zurück zum Zitat Tikhonov DA, Sarkisov GN (2000) Russ J Phys Chem 74:470 Tikhonov DA, Sarkisov GN (2000) Russ J Phys Chem 74:470
10.
Zurück zum Zitat Pollack GL (1991) Why gases dissolve in liquids. Science 251:1323–1330CrossRef Pollack GL (1991) Why gases dissolve in liquids. Science 251:1323–1330CrossRef
11.
Zurück zum Zitat Lee LL (1992) Chemical potentials based on the molecular distribution functions. An exact diagrammatical representation and the star function. J Chem Phys 97:8606–8616CrossRef Lee LL (1992) Chemical potentials based on the molecular distribution functions. An exact diagrammatical representation and the star function. J Chem Phys 97:8606–8616CrossRef
12.
Zurück zum Zitat Lomba F, Alsarez M, Lee LL, Almarza NG (1996) Phase stability of binary non-additive hard-sphere mixtures. A self-consistent integral equation study. J Chem Phys 104:4180–4188CrossRef Lomba F, Alsarez M, Lee LL, Almarza NG (1996) Phase stability of binary non-additive hard-sphere mixtures. A self-consistent integral equation study. J Chem Phys 104:4180–4188CrossRef
13.
Zurück zum Zitat Goin K, Mo KC, Starling KE (1977) Proc Okla Acad Sec 57:119 Goin K, Mo KC, Starling KE (1977) Proc Okla Acad Sec 57:119
14.
Zurück zum Zitat Verlet L, Weis JJ (1972) Equilibrium theory of simple liquids. Phys Rev A5:939–952CrossRef Verlet L, Weis JJ (1972) Equilibrium theory of simple liquids. Phys Rev A5:939–952CrossRef
15.
Zurück zum Zitat Carnahan NF, Starling KE (1969) Equation of states for nonattracting rigid spheres. J Chem Phys 51:635–636CrossRef Carnahan NF, Starling KE (1969) Equation of states for nonattracting rigid spheres. J Chem Phys 51:635–636CrossRef
16.
Zurück zum Zitat Sarkisov G, Lomba E (2005) The gas-liquid phase-transition singularities in the framework of the liquid-state integral equation formalism. J Chem Phys 122(214504):1–6 Sarkisov G, Lomba E (2005) The gas-liquid phase-transition singularities in the framework of the liquid-state integral equation formalism. J Chem Phys 122(214504):1–6
17.
Zurück zum Zitat Sarkisov G (2001) Approximate integral equation theory for classical fluids. J Chem Phys 114:9496–9505CrossRef Sarkisov G (2001) Approximate integral equation theory for classical fluids. J Chem Phys 114:9496–9505CrossRef
Metadaten
Titel
Calculation of Bridge Function and Thermodynamic Properties of Lennard-Jones Fluid Using Integral Equation Theory
verfasst von
Rupa Pal
Copyright-Jahr
2014
Verlag
Springer India
DOI
https://doi.org/10.1007/978-81-322-1817-3_39