Skip to main content

2019 | OriginalPaper | Buchkapitel

Carbohydrate-Derived Spiroketals and Spirocyclic Lactones

verfasst von : Perali Ramu Sridhar

Erschienen in: Carbohydrate-spiro-heterocycles

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Various methods for the synthesis of carbohydrate-derived spiroketals and spirocyclic lactones starting from endo- and exo-glycals are discussed. Further conversion of the spiroketals and spirolactones to the natural products is also emphasized wherever applicable.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Nicolaou KC, Mitchell HJ (2001) Adventures in carbohydrate chemistry: new synthetic technologies, chemical synthesis, molecular design, and chemical biology. Angew Chem Int Ed 40:1576–1624 Nicolaou KC, Mitchell HJ (2001) Adventures in carbohydrate chemistry: new synthetic technologies, chemical synthesis, molecular design, and chemical biology. Angew Chem Int Ed 40:1576–1624
2.
Zurück zum Zitat Perron F, Albizati KF (1989) Chemistry of spiroketals. Chem Rev 89:1617–1661 Perron F, Albizati KF (1989) Chemistry of spiroketals. Chem Rev 89:1617–1661
3.
Zurück zum Zitat Jacobs MF, Kitching W (1998) Spiroacetals of marine origin. Curr Org Chem 2:395–436 Jacobs MF, Kitching W (1998) Spiroacetals of marine origin. Curr Org Chem 2:395–436
4.
Zurück zum Zitat Mead KT, Brewer BN (2003) Strategies in spiroketal synthesis revisited: recent applications and advances. Curr Org Chem 7:227–256 Mead KT, Brewer BN (2003) Strategies in spiroketal synthesis revisited: recent applications and advances. Curr Org Chem 7:227–256
5.
Zurück zum Zitat Brimble MA, Furkert DP (2003) Chemistry of bis-spiroacetal systems: natural products, synthesis and stereochemistry. Curr Org Chem 7:1461–1484 Brimble MA, Furkert DP (2003) Chemistry of bis-spiroacetal systems: natural products, synthesis and stereochemistry. Curr Org Chem 7:1461–1484
6.
Zurück zum Zitat Ley SV, Milroy LG, Myers RM (2007) Product class 9: spiroketals. Sci Synth 29:613–690 Ley SV, Milroy LG, Myers RM (2007) Product class 9: spiroketals. Sci Synth 29:613–690
7.
Zurück zum Zitat Verano AL, Tan DS (2017) Stereocontrolled synthesis of spiroketals: an engine for chemical and biological discovery. Isr J Chem 57:279–291PubMedPubMedCentral Verano AL, Tan DS (2017) Stereocontrolled synthesis of spiroketals: an engine for chemical and biological discovery. Isr J Chem 57:279–291PubMedPubMedCentral
8.
Zurück zum Zitat Macial FA, Galindo JLG, Varela RM, Torres A, Molinillo JMG, Fronczek FR (2006) Heliespirones B and C: two new plant heliespiranes with a novel spiro heterocyclic sesquiterpene skeleton. Org Lett 8:4513–4516 Macial FA, Galindo JLG, Varela RM, Torres A, Molinillo JMG, Fronczek FR (2006) Heliespirones B and C: two new plant heliespiranes with a novel spiro heterocyclic sesquiterpene skeleton. Org Lett 8:4513–4516
9.
Zurück zum Zitat Noguchi N, Nakada M (2006) Synthetic studies on (+)-ophiobolin A: asymmetric synthesis of the spirocyclic CD-ring moiety. Org Lett 8:2039–2042PubMed Noguchi N, Nakada M (2006) Synthetic studies on (+)-ophiobolin A: asymmetric synthesis of the spirocyclic CD-ring moiety. Org Lett 8:2039–2042PubMed
10.
Zurück zum Zitat Entzeroth M, Blackman AJ, Myndersel JS, Moore RE (1985) Structures and stereochemistries of oscillatoxin B, 31-noroscillatoxin B, oscillatoxin D, and 30-methyloscillatoxin D. J Org Chem 50:1255–1259 Entzeroth M, Blackman AJ, Myndersel JS, Moore RE (1985) Structures and stereochemistries of oscillatoxin B, 31-noroscillatoxin B, oscillatoxin D, and 30-methyloscillatoxin D. J Org Chem 50:1255–1259
11.
Zurück zum Zitat Springer JP, Arison BH, Hirshfield JM, Hoogsteen K (1981) The absolute stereochemistry and conformation of avermectin B2a aglycone and avermectin B1a. J Am Chem Soc 103:4221–4224 Springer JP, Arison BH, Hirshfield JM, Hoogsteen K (1981) The absolute stereochemistry and conformation of avermectin B2a aglycone and avermectin B1a. J Am Chem Soc 103:4221–4224
12.
Zurück zum Zitat Uemura D, Takahashi K, Yamamoto T, Katayama C, Tanaka J, Okumura Y, Hirata Y (1985) Norhalichondrin A: an antitumor polyether macrolide from a marine sponge. J Am Chem Soc 107:4796–4798 Uemura D, Takahashi K, Yamamoto T, Katayama C, Tanaka J, Okumura Y, Hirata Y (1985) Norhalichondrin A: an antitumor polyether macrolide from a marine sponge. J Am Chem Soc 107:4796–4798
13.
Zurück zum Zitat Tachibana K, Scheuer PJ, Tsukitani Y, Kikuchi H, van Engen D, Clardy J, Gopichand Y, Schmitz FJ (1981) Okadaic acid, a cytotoxic polyether from two marine sponges of the genus Halichondria. J Am Chem Soc 103:2469–2471 Tachibana K, Scheuer PJ, Tsukitani Y, Kikuchi H, van Engen D, Clardy J, Gopichand Y, Schmitz FJ (1981) Okadaic acid, a cytotoxic polyether from two marine sponges of the genus Halichondria. J Am Chem Soc 103:2469–2471
14.
Zurück zum Zitat Chaney MO, Demarco PV, Jones ND, Occolowitz JL (1974) Structure of A23187, a divalent cation ionophore. J Am Chem Soc 96:1932–1933PubMed Chaney MO, Demarco PV, Jones ND, Occolowitz JL (1974) Structure of A23187, a divalent cation ionophore. J Am Chem Soc 96:1932–1933PubMed
15.
Zurück zum Zitat Kato Y, Fusetani N, Matsunaga S, Hashimoto K, Fujita S, Furuya T (1986) Bioactive marine metabolites. Part 16. Calyculin A. A novel antitumor metabolite from the marine sponge Discodermia calyx. J Am Chem Soc 108:2780–2781 Kato Y, Fusetani N, Matsunaga S, Hashimoto K, Fujita S, Furuya T (1986) Bioactive marine metabolites. Part 16. Calyculin A. A novel antitumor metabolite from the marine sponge Discodermia calyx. J Am Chem Soc 108:2780–2781
16.
Zurück zum Zitat Jones ND, Chaney MO, Chamberlin JW, Hamill RL, Shen S (1973) Structure of A204A, a new polyether antibiotic. J Am Chem Soc 95:3399–3400PubMed Jones ND, Chaney MO, Chamberlin JW, Hamill RL, Shen S (1973) Structure of A204A, a new polyether antibiotic. J Am Chem Soc 95:3399–3400PubMed
17.
Zurück zum Zitat Deslongchamps P, Rowan DD, Pothier N, Saunders JK (1981) 1,7-Dithia and 1-oxa-7-thiaspiro[5.5]undecanes. Excellent systems for the study of stereoelectronic effects (anomeric and exo-anomeric effects) in the monothio and the dithioacetal functions. Can J Chem 59:1122–1131 Deslongchamps P, Rowan DD, Pothier N, Saunders JK (1981) 1,7-Dithia and 1-oxa-7-thiaspiro[5.5]undecanes. Excellent systems for the study of stereoelectronic effects (anomeric and exo-anomeric effects) in the monothio and the dithioacetal functions. Can J Chem 59:1122–1131
18.
Zurück zum Zitat Pothier N, Rowan DD, Deslongchamps P, Saunders JK (1981) 13C chemical shift data for 1,7-dioxaspiro[S.S]undecanes and related compounds. Can J Chem 59:1132–1139 Pothier N, Rowan DD, Deslongchamps P, Saunders JK (1981) 13C chemical shift data for 1,7-dioxaspiro[S.S]undecanes and related compounds. Can J Chem 59:1132–1139
19.
Zurück zum Zitat Moore RE, Blackman AJ, Cheuk CE, Mynderse JS (1984) Absolute stereochemistries of the aplysiatoxins and oscillatoxin A. J Org Chem 49:2484–2489 Moore RE, Blackman AJ, Cheuk CE, Mynderse JS (1984) Absolute stereochemistries of the aplysiatoxins and oscillatoxin A. J Org Chem 49:2484–2489
20.
Zurück zum Zitat Yasumoto T, Murata M, Oshima Y, Sano M, Matsumoto GK, Clardy J (1985) Diarrhetic shellfish toxins. Tetrahedron 41:1019–1025 Yasumoto T, Murata M, Oshima Y, Sano M, Matsumoto GK, Clardy J (1985) Diarrhetic shellfish toxins. Tetrahedron 41:1019–1025
21.
Zurück zum Zitat Jung JH, Sim CJ, Lee CO (1995) Cytotoxic compounds from a two-sponge association. J Nat Prod 58:1722–1726PubMed Jung JH, Sim CJ, Lee CO (1995) Cytotoxic compounds from a two-sponge association. J Nat Prod 58:1722–1726PubMed
22.
Zurück zum Zitat Taillefumier C, Chapleur Y (2004) Synthesis and uses of exo-glycals. Chem Rev 104:263–292PubMed Taillefumier C, Chapleur Y (2004) Synthesis and uses of exo-glycals. Chem Rev 104:263–292PubMed
23.
Zurück zum Zitat Frederic CJM, Vincent SP (2018) Synthesis of exo-glycals and their biochemical applications. Tetrahedron 74:6512–6519 Frederic CJM, Vincent SP (2018) Synthesis of exo-glycals and their biochemical applications. Tetrahedron 74:6512–6519
24.
Zurück zum Zitat Pal P, Shaw AK (2017) The evolution of comprehensive strategies for furanoid glycal synthesis and their applications. RSC Adv 7:25897–25963 Pal P, Shaw AK (2017) The evolution of comprehensive strategies for furanoid glycal synthesis and their applications. RSC Adv 7:25897–25963
25.
Zurück zum Zitat Haraguchi K, Konno K, Yamada K, Kitagawa Y, Nakamura KT, Tanaka H (2010) Electrophilic glycosidation employing 3,5-O-(di-tert-butylsilylene)-erythro-furanoid glycal leads to exclusive formation of the β-anomer: synthesis of 2′-deoxynucleosides and its 1′-branched analogues. Tetrahedron 66:4587–4600 Haraguchi K, Konno K, Yamada K, Kitagawa Y, Nakamura KT, Tanaka H (2010) Electrophilic glycosidation employing 3,5-O-(di-tert-butylsilylene)-erythro-furanoid glycal leads to exclusive formation of the β-anomer: synthesis of 2′-deoxynucleosides and its 1′-branched analogues. Tetrahedron 66:4587–4600
26.
Zurück zum Zitat Paquette LA, Brand S, Behrens C (1999) An enantioselective ring expansion route leading to furanose and pyranose nucleosides featuring spirodiketopiperazines at the anomeric position. J Org Chem 64:2010–2025PubMed Paquette LA, Brand S, Behrens C (1999) An enantioselective ring expansion route leading to furanose and pyranose nucleosides featuring spirodiketopiperazines at the anomeric position. J Org Chem 64:2010–2025PubMed
27.
Zurück zum Zitat Boyce RS, Kennedy RM (1994) The oxidative spirocyclization of 2-(ω-(OH)-alkyl)cyclic enol ethers by rhenium (VII)-oxide. Tetrahedron Lett 35:5133–5136 Boyce RS, Kennedy RM (1994) The oxidative spirocyclization of 2-(ω-(OH)-alkyl)cyclic enol ethers by rhenium (VII)-oxide. Tetrahedron Lett 35:5133–5136
28.
Zurück zum Zitat Čorić I, List B (2012) Asymmetric spiroacetalization catalysed by confined Brønsted acids. Nature 483:315–319PubMed Čorić I, List B (2012) Asymmetric spiroacetalization catalysed by confined Brønsted acids. Nature 483:315–319PubMed
29.
Zurück zum Zitat Yang WB, Chang CF, Wang SH, Teo CF, Lin CH (2001) Expeditious synthesis of C-glycosyl conjugated dienes and aldehydes from sugar lactones. Tetrahedron Lett 42:4657–4660 Yang WB, Chang CF, Wang SH, Teo CF, Lin CH (2001) Expeditious synthesis of C-glycosyl conjugated dienes and aldehydes from sugar lactones. Tetrahedron Lett 42:4657–4660
30.
Zurück zum Zitat Chang CF, Yang WB, Chang CC, Lin CH (2002) Inter- and intramolecular alcohol additions to exo-glycals. Tetrahedron Lett 43:6515–6519 Chang CF, Yang WB, Chang CC, Lin CH (2002) Inter- and intramolecular alcohol additions to exo-glycals. Tetrahedron Lett 43:6515–6519
31.
Zurück zum Zitat Ramakrishna B, Sridhar PR (2015) Stereoselective synthesis of 1,6-dioxaspirolactones from spiro-cyclopropanecarboxylated sugars: total synthesis of dihydro-pyrenolide D. RSC Adv 5:8142–8145 Ramakrishna B, Sridhar PR (2015) Stereoselective synthesis of 1,6-dioxaspirolactones from spiro-cyclopropanecarboxylated sugars: total synthesis of dihydro-pyrenolide D. RSC Adv 5:8142–8145
32.
Zurück zum Zitat Schneider TF, Kaschel J, Werz DB (2014) A new golden age for donor–acceptor cyclopropanes. Angew Chem Int Ed 53:5504–5523 Schneider TF, Kaschel J, Werz DB (2014) A new golden age for donor–acceptor cyclopropanes. Angew Chem Int Ed 53:5504–5523
33.
Zurück zum Zitat Agtarap A, Chamberlin JW, Pinkerton M, Steinrauf L (1967) Structure of monensic acid, a new biologically active compound. J Am Chem Soc 89:5737–5739PubMed Agtarap A, Chamberlin JW, Pinkerton M, Steinrauf L (1967) Structure of monensic acid, a new biologically active compound. J Am Chem Soc 89:5737–5739PubMed
34.
Zurück zum Zitat Haney Jr ME, Hoehn MM (1967) Monensin, a new biologically active compound. I. Discovery and isolation. Antimicrob Agents Chemother 7:349–352PubMed Haney Jr ME, Hoehn MM (1967) Monensin, a new biologically active compound. I. Discovery and isolation. Antimicrob Agents Chemother 7:349–352PubMed
35.
Zurück zum Zitat Fuwa H, Sakamoto K, Muto T, Sasaki M (2015) Concise synthesis of the C15-C38 fragment of okadaic acid, a specific inhibitor of protein phosphatases 1 and 2A. Tetrahedron 71:6369–6383 Fuwa H, Sakamoto K, Muto T, Sasaki M (2015) Concise synthesis of the C15-C38 fragment of okadaic acid, a specific inhibitor of protein phosphatases 1 and 2A. Tetrahedron 71:6369–6383
36.
Zurück zum Zitat Zhankui S, Grace AW, Alina B, Pavel N (2012) Chiral phosphoric acid-catalyzed enantioselective and diastereoselective spiroketalizations. J Am Chem Soc 134:8074–8077 Zhankui S, Grace AW, Alina B, Pavel N (2012) Chiral phosphoric acid-catalyzed enantioselective and diastereoselective spiroketalizations. J Am Chem Soc 134:8074–8077
37.
Zurück zum Zitat Potuzak JS, Moilanen SB, Tan DS (2005) Stereocontrolled synthesis of spiroketals via a remarkable methanol-induced kinetic spirocyclization reaction. J Am Chem Soc 127:13796–13797PubMed Potuzak JS, Moilanen SB, Tan DS (2005) Stereocontrolled synthesis of spiroketals via a remarkable methanol-induced kinetic spirocyclization reaction. J Am Chem Soc 127:13796–13797PubMed
38.
Zurück zum Zitat Wurst JM, Liu G, Tan DS (2011) Hydrogen-bonding catalysis and inhibition by simple solvents in the stereoselective kinetic epoxide-opening spirocyclization of glycal epoxides to form spiroketals. J Am Chem Soc 133:7916–7925PubMedPubMedCentral Wurst JM, Liu G, Tan DS (2011) Hydrogen-bonding catalysis and inhibition by simple solvents in the stereoselective kinetic epoxide-opening spirocyclization of glycal epoxides to form spiroketals. J Am Chem Soc 133:7916–7925PubMedPubMedCentral
39.
Zurück zum Zitat Moilanen SB, Potuzak JS, Tan DS (2006) Stereocontrolled synthesis of spiroketals via Ti(Oi-Pr)4-mediated kinetic spirocyclization of glycal epoxides with retention of configuration. J Am Chem Soc 128:1792–1793PubMedPubMedCentral Moilanen SB, Potuzak JS, Tan DS (2006) Stereocontrolled synthesis of spiroketals via Ti(Oi-Pr)4-mediated kinetic spirocyclization of glycal epoxides with retention of configuration. J Am Chem Soc 128:1792–1793PubMedPubMedCentral
40.
Zurück zum Zitat Takaoka LR, Buckmelter AJ, LaCruz TE, Rychnovsky SD (2005) Rational synthesis of contra-thermodynamic spiroacetals by reductive cyclizations. J Am Chem Soc 127:528–529PubMed Takaoka LR, Buckmelter AJ, LaCruz TE, Rychnovsky SD (2005) Rational synthesis of contra-thermodynamic spiroacetals by reductive cyclizations. J Am Chem Soc 127:528–529PubMed
41.
Zurück zum Zitat Lorenc C, Saur J, Moser A, Buevich AV, Williams AJ, Williamson RT, Martin GE, Peczuh MW (2015) Turning spiroketals inside out: a rearrangement triggered by an enol ether epoxidation. ChemistryOpen 4:577–580PubMedPubMedCentral Lorenc C, Saur J, Moser A, Buevich AV, Williams AJ, Williamson RT, Martin GE, Peczuh MW (2015) Turning spiroketals inside out: a rearrangement triggered by an enol ether epoxidation. ChemistryOpen 4:577–580PubMedPubMedCentral
42.
Zurück zum Zitat Hasegawa S, Koyanagi H, Hirose Y (1990) Decarboxylated ascorbigens in the heartwood of Chamaecyparis pisifera. Phytochemistry 29:261–266 Hasegawa S, Koyanagi H, Hirose Y (1990) Decarboxylated ascorbigens in the heartwood of Chamaecyparis pisifera. Phytochemistry 29:261–266
43.
Zurück zum Zitat Robertson J, Chovatia PT, Fowler TG, Withey JM, Woollaston DJ (2010) Oxidative spirocyclisation routes towards the sawaranospirolides. Synthesis of ent-sawaranospirolides C and D. Org Biomol Chem 8:226–233PubMed Robertson J, Chovatia PT, Fowler TG, Withey JM, Woollaston DJ (2010) Oxidative spirocyclisation routes towards the sawaranospirolides. Synthesis of ent-sawaranospirolides C and D. Org Biomol Chem 8:226–233PubMed
44.
Zurück zum Zitat Alcaraz ML, Griffin FK, Paterson DE, Taylor RJK (1998) Synthetic applications of Ramberg-Bäcklund derived exo-glycals. Tetrahedron Lett 39:8183–8186 Alcaraz ML, Griffin FK, Paterson DE, Taylor RJK (1998) Synthetic applications of Ramberg-Bäcklund derived exo-glycals. Tetrahedron Lett 39:8183–8186
45.
Zurück zum Zitat Brand C, Rauch G, Zanoni M, Dittrich B, Werz DB (2009) Synthesis of [n,5]-spiroketals by ring enlargement of donor-acceptor-substituted cyclopropane derivatives. J Org Chem 74:8779–8786PubMed Brand C, Rauch G, Zanoni M, Dittrich B, Werz DB (2009) Synthesis of [n,5]-spiroketals by ring enlargement of donor-acceptor-substituted cyclopropane derivatives. J Org Chem 74:8779–8786PubMed
46.
Zurück zum Zitat Kulkarni BA, Roth GP, Lobkovsky E, Porco JA (2002) Combinatorial synthesis of natural product-like molecules using a first-generation spiroketal scaffold. J Comb Chem 4:56–72PubMed Kulkarni BA, Roth GP, Lobkovsky E, Porco JA (2002) Combinatorial synthesis of natural product-like molecules using a first-generation spiroketal scaffold. J Comb Chem 4:56–72PubMed
47.
Zurück zum Zitat Lynn DG, Phillips NJ, Hutton WC, Shabanowitz J, Fennell DI, Cole RJ (1983) Talaromycins: application of homonuclear spin correlation maps to structure assignment. J Am Chem Soc 104:7319–7322 Lynn DG, Phillips NJ, Hutton WC, Shabanowitz J, Fennell DI, Cole RJ (1983) Talaromycins: application of homonuclear spin correlation maps to structure assignment. J Am Chem Soc 104:7319–7322
48.
Zurück zum Zitat Hutton WC, Phillips NJ, Graden DW, Lynn DG (1983) The application of two-dimensional N.M.R. Cross relaxation spectroscopy to natural product structure determination: talaromycin B. J Chem Soc Chem Commun 16:864–866 Hutton WC, Phillips NJ, Graden DW, Lynn DG (1983) The application of two-dimensional N.M.R. Cross relaxation spectroscopy to natural product structure determination: talaromycin B. J Chem Soc Chem Commun 16:864–866
49.
Zurück zum Zitat Phillips NJ, Cole RJ, Lynn DG (1987) Talaromycins C,D,E, and F. Tetrahedron Lett 28:1619–1621 Phillips NJ, Cole RJ, Lynn DG (1987) Talaromycins C,D,E, and F. Tetrahedron Lett 28:1619–1621
50.
Zurück zum Zitat Petit GR, Cichacs ZA, Gao F, Herald CL, Boyd MR, Schmidt JM, Hooper JNA (1993) Antineoplastic agents. 257. Isolation and structure of spongistatin 1. J Org Chem 58:1302–1304 Petit GR, Cichacs ZA, Gao F, Herald CL, Boyd MR, Schmidt JM, Hooper JNA (1993) Antineoplastic agents. 257. Isolation and structure of spongistatin 1. J Org Chem 58:1302–1304
51.
Zurück zum Zitat Uckun FM, Mao C, Vassilev AO, Huang H, Jan ST (2009) Structure-based design of a novel synthetic spiroketal pyran as a pharmacophore for the marine natural product spongistatin 1. Bioorg Med Chem Lett 10:541–545 Uckun FM, Mao C, Vassilev AO, Huang H, Jan ST (2009) Structure-based design of a novel synthetic spiroketal pyran as a pharmacophore for the marine natural product spongistatin 1. Bioorg Med Chem Lett 10:541–545
52.
Zurück zum Zitat Mitsuhashi S, Shima H, Kawamura T, Kikuchi K, Oikawa M, Ichihara A, Oikawa H (1999) The spiroketals containing a benzyloxymethyl moiety at C8 position showed the most potent apoptosis-inducing activity. Bioorg Med Chem Lett 9:2007–2012PubMed Mitsuhashi S, Shima H, Kawamura T, Kikuchi K, Oikawa M, Ichihara A, Oikawa H (1999) The spiroketals containing a benzyloxymethyl moiety at C8 position showed the most potent apoptosis-inducing activity. Bioorg Med Chem Lett 9:2007–2012PubMed
53.
Zurück zum Zitat Conway JC, Urch CJ, Quayle P, Xu J (2006) Spiroketalization reactions on a carbohydrate template. Synlett 5:776–780 Conway JC, Urch CJ, Quayle P, Xu J (2006) Spiroketalization reactions on a carbohydrate template. Synlett 5:776–780
54.
Zurück zum Zitat Fuwa H, Sasaki M (2008) An efficient strategy for the synthesis of endocyclic enol ethers and its application to the synthesis of spiroacetals. Org Lett 10:2549–2552PubMed Fuwa H, Sasaki M (2008) An efficient strategy for the synthesis of endocyclic enol ethers and its application to the synthesis of spiroacetals. Org Lett 10:2549–2552PubMed
55.
Zurück zum Zitat Holson EB, Roush WR (2002) Diastereoselective synthesis of the C(17)−C(28) fragment (the C−D spiroketal unit) of spongistatin 1 (altohyrtin A) via a kinetically controlled iodo-spiroketalization reaction. Org Lett 4:3719–3722PubMed Holson EB, Roush WR (2002) Diastereoselective synthesis of the C(17)−C(28) fragment (the C−D spiroketal unit) of spongistatin 1 (altohyrtin A) via a kinetically controlled iodo-spiroketalization reaction. Org Lett 4:3719–3722PubMed
56.
Zurück zum Zitat Holson EB, Roush WR (2002) Synthesis of the C(2)−C(13) fragment (the A−B spiroketal unit) of spongistatin 1 (altohyrtin A): use of a common intermediate for the synthesis of both spongistatin spiroketals. Org Lett 4:3723–3725PubMed Holson EB, Roush WR (2002) Synthesis of the C(2)−C(13) fragment (the A−B spiroketal unit) of spongistatin 1 (altohyrtin A): use of a common intermediate for the synthesis of both spongistatin spiroketals. Org Lett 4:3723–3725PubMed
57.
Zurück zum Zitat Mori K, Ikunaka M (1987) Synthesis of (-)-talaromycins a and b. Tetrahedron 43:45–58 Mori K, Ikunaka M (1987) Synthesis of (-)-talaromycins a and b. Tetrahedron 43:45–58
58.
Zurück zum Zitat Corbet M, Bourdon B, Gueyrard D, Goekjian PGA (2008) Julia olefination approach to the synthesis of functionalized enol ethers and their transformation into carbohydrate-derived spiroketals. Tetrahedron Lett 49:750–754 Corbet M, Bourdon B, Gueyrard D, Goekjian PGA (2008) Julia olefination approach to the synthesis of functionalized enol ethers and their transformation into carbohydrate-derived spiroketals. Tetrahedron Lett 49:750–754
59.
Zurück zum Zitat Lin HC, Chen YB, Lin ZP, Wong FF, Lin CH, Lin SK (2008) Synthesis of 1,7-dioxaspiro[5.5]undecanes and 1-oxa-7-thiaspiro[5.5]undecanes from exo-glycal. Tetrahedron 66:5229–5234 Lin HC, Chen YB, Lin ZP, Wong FF, Lin CH, Lin SK (2008) Synthesis of 1,7-dioxaspiro[5.5]undecanes and 1-oxa-7-thiaspiro[5.5]undecanes from exo-glycal. Tetrahedron 66:5229–5234
60.
Zurück zum Zitat Matsuda S, Yoshida A, Nakagawa J, Watanabe M, Oda Y, Yamanoi T (2014) Stereocontrolled spirocyclization of exo-glucal derivatives for stereodivergent synthesis of spiro[5.5]ketals. Tetrahedron Lett 55:6394–6398 Matsuda S, Yoshida A, Nakagawa J, Watanabe M, Oda Y, Yamanoi T (2014) Stereocontrolled spirocyclization of exo-glucal derivatives for stereodivergent synthesis of spiro[5.5]ketals. Tetrahedron Lett 55:6394–6398
61.
Zurück zum Zitat Yamanoi T, Nara Y, Matsuda S, Oda Y, Yoshida A, Katsuraya K, Watanabe M (2007) Synthetic approach to exo-glycals from 1-C-vinyl-D-glycopyranose derivatives via an SN1′-substitution mechanism. Synlett 5:785–789 Yamanoi T, Nara Y, Matsuda S, Oda Y, Yoshida A, Katsuraya K, Watanabe M (2007) Synthetic approach to exo-glycals from 1-C-vinyl-D-glycopyranose derivatives via an SN1′-substitution mechanism. Synlett 5:785–789
62.
Zurück zum Zitat Deslongchamps P, Rowan DD, Pothier N, Sauvé G, Saunders JK (1981) 1,7-Dioxaspiro[5.5]undecanes. An excellent system for the study of stereoelectronic effects (anomeric and exo-anomeric effects) in acetals. Can J Chem 59:1105–1121 Deslongchamps P, Rowan DD, Pothier N, Sauvé G, Saunders JK (1981) 1,7-Dioxaspiro[5.5]undecanes. An excellent system for the study of stereoelectronic effects (anomeric and exo-anomeric effects) in acetals. Can J Chem 59:1105–1121
63.
Zurück zum Zitat Deslongchamps P (1983) Stereoelectronic effects in organic chemistry. Pergamon, Oxford Deslongchamps P (1983) Stereoelectronic effects in organic chemistry. Pergamon, Oxford
64.
Zurück zum Zitat Paquette LA, Kinney MJ, Dullweber U (1997) Practical synthesis of spirocyclic bis-C,C-glycosides. Mechanistic models in explanation of rearrangement stereoselectivity and the bifurcation of reaction pathways. J Org Chem 62:1713–1722 Paquette LA, Kinney MJ, Dullweber U (1997) Practical synthesis of spirocyclic bis-C,C-glycosides. Mechanistic models in explanation of rearrangement stereoselectivity and the bifurcation of reaction pathways. J Org Chem 62:1713–1722
65.
Zurück zum Zitat Smith MJ, Mazzola EP, Sims JJ, Midland SL, Keen NT, Burton V, Stayton MM (1993) The syringolides: bacterial C-glycosyl lipids that trigger plant disease resistance. Tetrahedron Lett 34:223–226 Smith MJ, Mazzola EP, Sims JJ, Midland SL, Keen NT, Burton V, Stayton MM (1993) The syringolides: bacterial C-glycosyl lipids that trigger plant disease resistance. Tetrahedron Lett 34:223–226
66.
Zurück zum Zitat Midland SL, Keen NT, Sims JJ, Midland MM, Stayton MM, Burton V, Smith MJ, Mazzola EP, Graham KJ, Clardy J (1993) The structures of syringolides 1 and 2, novel C-glycosidic elicitors from Pseudomonas syringae pv. Tomato. J Org Chem 58:2940–2945 Midland SL, Keen NT, Sims JJ, Midland MM, Stayton MM, Burton V, Smith MJ, Mazzola EP, Graham KJ, Clardy J (1993) The structures of syringolides 1 and 2, novel C-glycosidic elicitors from Pseudomonas syringae pv. Tomato. J Org Chem 58:2940–2945
67.
Zurück zum Zitat Umezawa S, Usui T, Umezawa H, Tsuchiya T, Takeuchi T, Hamada M (1971) A new microbial metabolite, sphydrofuran. I. J Antibiot 24:85–92PubMed Umezawa S, Usui T, Umezawa H, Tsuchiya T, Takeuchi T, Hamada M (1971) A new microbial metabolite, sphydrofuran. I. J Antibiot 24:85–92PubMed
68.
Zurück zum Zitat Umezawa S, Tsuchiya T, Naganawa H, Takeuchi T, Umezawa H (1971) A new microbial metabolite, sphydrofuran. II. J Antibiot 24:93–106PubMed Umezawa S, Tsuchiya T, Naganawa H, Takeuchi T, Umezawa H (1971) A new microbial metabolite, sphydrofuran. II. J Antibiot 24:93–106PubMed
69.
Zurück zum Zitat Sridhar PR, Seshadri K, Reddy GD (2012) Stereoselective synthesis of sugar fused β-disubstituted γ-butyro-lactones: C-spiro-glycosides from 1,2-cyclopropanecarboxylated sugars. Chem Commun 48:756–758 Sridhar PR, Seshadri K, Reddy GD (2012) Stereoselective synthesis of sugar fused β-disubstituted γ-butyro-lactones: C-spiro-glycosides from 1,2-cyclopropanecarboxylated sugars. Chem Commun 48:756–758
70.
Zurück zum Zitat Honda T, Mizutani H, Kanai K (1996) Enantioselective syntheses of syributin 1 and novel C-glycosidic elicitors syringolides 1 and 2. J Org Chem 61:9374–9378 Honda T, Mizutani H, Kanai K (1996) Enantioselective syntheses of syributin 1 and novel C-glycosidic elicitors syringolides 1 and 2. J Org Chem 61:9374–9378
71.
Zurück zum Zitat Mukai C, Moharram SM, Azukizawa S, Hanaoka M (1997) Total syntheses of (+)-secosyrins 1 and 2 and (+)-syributins 1 and 2. J Org Chem 62:8095–8103PubMed Mukai C, Moharram SM, Azukizawa S, Hanaoka M (1997) Total syntheses of (+)-secosyrins 1 and 2 and (+)-syributins 1 and 2. J Org Chem 62:8095–8103PubMed
72.
Zurück zum Zitat Edwards RL, Maitland DJ, Oliver CL, Pacey MS, Shields L, Whalley AJS (1999) Metabolites of the higher fungi. Part 31. Longianone, a C7H6O4 spiro bicyclic lactone from the fungus Xylaria longiana (Rehm.). J Chem Soc Perkin Trans 1:715–720 Edwards RL, Maitland DJ, Oliver CL, Pacey MS, Shields L, Whalley AJS (1999) Metabolites of the higher fungi. Part 31. Longianone, a C7H6O4 spiro bicyclic lactone from the fungus Xylaria longiana (Rehm.). J Chem Soc Perkin Trans 1:715–720
73.
Zurück zum Zitat Sridhar PR, Seshadri K (2012) First enantioselective total synthesis of (S)-(−)-longianone. Tetrahedron 68:3725–3728 Sridhar PR, Seshadri K (2012) First enantioselective total synthesis of (S)-(−)-longianone. Tetrahedron 68:3725–3728
74.
Zurück zum Zitat Lykakis IN, Zaravinos IP, Raptis C, Stratakis M (2009) Divergent synthesis of the Co-isolated mycotoxins longianone, isopatulin, and (Z)-ascladiol via furan oxidation. J Org Chem 74:6339–6342PubMed Lykakis IN, Zaravinos IP, Raptis C, Stratakis M (2009) Divergent synthesis of the Co-isolated mycotoxins longianone, isopatulin, and (Z)-ascladiol via furan oxidation. J Org Chem 74:6339–6342PubMed
Metadaten
Titel
Carbohydrate-Derived Spiroketals and Spirocyclic Lactones
verfasst von
Perali Ramu Sridhar
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/7081_2019_32

Neuer Inhalt