Skip to main content

2022 | OriginalPaper | Buchkapitel

Carbon Based Composites for Supercapacitor Applications

verfasst von : Mannayil Jasna, Muraleedharan Pillai Manoj, Madambi Kunjukutan Ezhuthachan Jayaraj

Erschienen in: Energy Harvesting and Storage

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Supercapacitors are emerging energy storage devices for future energy technology in respect of high power density and longer cycle life. Various parameters have been introduced for the analysis of the electrochemical performance of supercapacitor devices, such as specific capacitance, cyclic stability, and internal resistance of the device. Several materials have been developed for supercapacitor electrode applications. Carbon-based composite materials have attracted supercapacitor electrode applications due to their high surface area and electrochemical conductivity. Many researchers have developed carbon-based composite supercapacitors with excellent cyclic stability and high specific capacitance. Several attempts were made in the fabrication of electrode materials to enhance the specific capacitance. In this chapter, the focus is on the different types of supercapacitors such as electric double-layer capacitor EDLC, pseudo-capacitor, and hybrid capacitors, their analytical techniques, and potential nanostructured electrode materials such as carbon nanomaterials and carbon-based composite materials for high-performance supercapacitors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Andreas HA (2015) Self-discharge in electrochemical capacitors: a perspective article. J Electrochem Soc 162(5):A5047–A5053CrossRef Andreas HA (2015) Self-discharge in electrochemical capacitors: a perspective article. J Electrochem Soc 162(5):A5047–A5053CrossRef
Zurück zum Zitat Anilkumar KM, Manoj M, Jinisha B, Pradeep VS, Jayalekshmi S (2017) Mn3O4/reduced graphene oxide nanocomposite electrodes with tailored morphology for high power supercapacitor applications. Electrochim Acta 236:424–433 Anilkumar KM, Manoj M, Jinisha B, Pradeep VS, Jayalekshmi S (2017) Mn3O4/reduced graphene oxide nanocomposite electrodes with tailored morphology for high power supercapacitor applications. Electrochim Acta 236:424–433
Zurück zum Zitat Bansal RC, Goyal M (2005) Activated carbon adsorption. CRC Press, Boca Raton Bansal RC, Goyal M (2005) Activated carbon adsorption. CRC Press, Boca Raton
Zurück zum Zitat Becker HI (1957) Low voltage electrolytic capacitor. US patent 2800616, p 148 Becker HI (1957) Low voltage electrolytic capacitor. US patent 2800616, p 148
Zurück zum Zitat Black J, Andreas HA (2009) Effects of charge redistribution on self-discharge of electrochemical capacitors. Electrochim Acta 54(13):3568–3574CrossRef Black J, Andreas HA (2009) Effects of charge redistribution on self-discharge of electrochemical capacitors. Electrochim Acta 54(13):3568–3574CrossRef
Zurück zum Zitat Boos DL (1968) Electrolytic capacitor having carbon paste electrodes. United States Pat. Off., pp 1–6 Boos DL (1968) Electrolytic capacitor having carbon paste electrodes. United States Pat. Off., pp 1–6
Zurück zum Zitat Burk A (2000) Ultracapacitors: why, how, and where is the technology. J Power Sources 91(1):37–50CrossRef Burk A (2000) Ultracapacitors: why, how, and where is the technology. J Power Sources 91(1):37–50CrossRef
Zurück zum Zitat Carbon C, et al (2010) High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon. 4(3):1337–1344 Carbon C, et al (2010) High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon. 4(3):1337–1344
Zurück zum Zitat Chen T, Dai L (2013) Carbon nanomaterials for high-performance supercapacitors. Mater Today 16(7–8):272–280CrossRef Chen T, Dai L (2013) Carbon nanomaterials for high-performance supercapacitors. Mater Today 16(7–8):272–280CrossRef
Zurück zum Zitat Chen T et al (2012) An integrated ‘energy wire’ for both photoelectric conversion and energy storage. Angew Chem Int Ed 51(48):11977–11980CrossRef Chen T et al (2012) An integrated ‘energy wire’ for both photoelectric conversion and energy storage. Angew Chem Int Ed 51(48):11977–11980CrossRef
Zurück zum Zitat Chen Y, Yang W, Yang D, Wangyang P, Li X (2019) Facile synthesis and electrochemical performances of multi-walled carbon nanotubes/poly(3,4-ethylenedioxythiophene) composite films as electrodes for fabric supercapacitors. J Mater Sci Mater Electron 30(7):6350–6357CrossRef Chen Y, Yang W, Yang D, Wangyang P, Li X (2019) Facile synthesis and electrochemical performances of multi-walled carbon nanotubes/poly(3,4-ethylenedioxythiophene) composite films as electrodes for fabric supercapacitors. J Mater Sci Mater Electron 30(7):6350–6357CrossRef
Zurück zum Zitat Cheng Q, Tang J, Shinya N, Qin LC (2013) Polyaniline modified graphene and carbon nanotube composite electrode for asymmetric supercapacitors of high energy density. J Power Sources 241:423–428CrossRef Cheng Q, Tang J, Shinya N, Qin LC (2013) Polyaniline modified graphene and carbon nanotube composite electrode for asymmetric supercapacitors of high energy density. J Power Sources 241:423–428CrossRef
Zurück zum Zitat Choi JW, McDonough J, Jeong S, Yoo JS, Chan CK, Cui Y (2010) Stepwise nanopore evolution in one-dimensional nanostructures. Nano Lett 10(4):1409–1413CrossRef Choi JW, McDonough J, Jeong S, Yoo JS, Chan CK, Cui Y (2010) Stepwise nanopore evolution in one-dimensional nanostructures. Nano Lett 10(4):1409–1413CrossRef
Zurück zum Zitat Choi BG, Yang M, Hong WH, Choi JW, Huh YS (2012) 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 6(5):4020–4028CrossRef Choi BG, Yang M, Hong WH, Choi JW, Huh YS (2012) 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 6(5):4020–4028CrossRef
Zurück zum Zitat Conway BE (1999b) Electrochemical supercapacitors: scientific fundamentals and technological application. Academic Plenum Publishers, New YorkCrossRef Conway BE (1999b) Electrochemical supercapacitors: scientific fundamentals and technological application. Academic Plenum Publishers, New YorkCrossRef
Zurück zum Zitat Conway BE, Pell WG, Liu TC (1997) Diagnostic analyses for mechanisms of self-discharge of electrochemical capacitors and batteries. J Power Sources 65(1–2):53–59CrossRef Conway BE, Pell WG, Liu TC (1997) Diagnostic analyses for mechanisms of self-discharge of electrochemical capacitors and batteries. J Power Sources 65(1–2):53–59CrossRef
Zurück zum Zitat Conway BE (1999a) Electrochemical supercapacitors scientific fundamentals and technological applications. Plenum Press. New York Conway BE (1999a) Electrochemical supercapacitors scientific fundamentals and technological applications. Plenum Press. New York
Zurück zum Zitat Conway BE (1999c) Electrochemical supercapacitors. Plenum Publishing, New York Conway BE (1999c) Electrochemical supercapacitors. Plenum Publishing, New York
Zurück zum Zitat Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes: their properties and applications. Elsevier, Amsterdam Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes: their properties and applications. Elsevier, Amsterdam
Zurück zum Zitat Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phys 9(15):1774–1785CrossRef Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phys 9(15):1774–1785CrossRef
Zurück zum Zitat Gao Y, Chen S, Cao D, Wang G, Yin J (2010) Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam. J Power Sources 195(6):1757–1760CrossRef Gao Y, Chen S, Cao D, Wang G, Yin J (2010) Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam. J Power Sources 195(6):1757–1760CrossRef
Zurück zum Zitat Hassan M et al (2014) Hierarchical assembly of graphene/polyaniline nanostructures to synthesize free-standing supercapacitor electrode. Compos Sci Technol 98:1–8CrossRef Hassan M et al (2014) Hierarchical assembly of graphene/polyaniline nanostructures to synthesize free-standing supercapacitor electrode. Compos Sci Technol 98:1–8CrossRef
Zurück zum Zitat Hu CC, Chang KH, Lin MC, Wu YT (2006) Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett 6(12):2690–2695CrossRef Hu CC, Chang KH, Lin MC, Wu YT (2006) Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett 6(12):2690–2695CrossRef
Zurück zum Zitat Huang Y, Liang J, Chen Y (2012) An overview of the applications of graphene-based materials in supercapacitors. Small 8(12):1805–1834CrossRef Huang Y, Liang J, Chen Y (2012) An overview of the applications of graphene-based materials in supercapacitors. Small 8(12):1805–1834CrossRef
Zurück zum Zitat Jost K et al (2013) Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics. Energy Environ Sci 6(9):2698–2705CrossRef Jost K et al (2013) Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics. Energy Environ Sci 6(9):2698–2705CrossRef
Zurück zum Zitat Kim BK, Chabot V, Yu A (2013) Carbon nanomaterials supported Ni(OH)2/NiO hybrid flower structure for supercapacitor. Electrochim Acta 109:370–380CrossRef Kim BK, Chabot V, Yu A (2013) Carbon nanomaterials supported Ni(OH)2/NiO hybrid flower structure for supercapacitor. Electrochim Acta 109:370–380CrossRef
Zurück zum Zitat Kim BK, Sy S, Yu A, Zhang J (2015) Electrochemical supercapacitors for energy storage and conversion. In: Handbook of clean energy systems, pp 1–25 Kim BK, Sy S, Yu A, Zhang J (2015) Electrochemical supercapacitors for energy storage and conversion. In: Handbook of clean energy systems, pp 1–25
Zurück zum Zitat Kotz R, Carlen MJ (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498 Kotz R, Carlen MJ (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498
Zurück zum Zitat Kyotani T (2000) Control of pore structure in carbon. Carbon (NY) 38(2):269–286CrossRef Kyotani T (2000) Control of pore structure in carbon. Carbon (NY) 38(2):269–286CrossRef
Zurück zum Zitat Le VT et al (2013) Coaxial fiber supercapacitor using all-carbon material electrodes. ACS Nano 7(7):5940–5947CrossRef Le VT et al (2013) Coaxial fiber supercapacitor using all-carbon material electrodes. ACS Nano 7(7):5940–5947CrossRef
Zurück zum Zitat Lee DG, Kim BH (2016) MnO2 decorated on electrospun carbon nanofiber/graphene composites as supercapacitor electrode materials. Synth Met 219:115–123CrossRef Lee DG, Kim BH (2016) MnO2 decorated on electrospun carbon nanofiber/graphene composites as supercapacitor electrode materials. Synth Met 219:115–123CrossRef
Zurück zum Zitat Lee J, Kim J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18(16):2073–2094CrossRef Lee J, Kim J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18(16):2073–2094CrossRef
Zurück zum Zitat Lee J et al (2017) Asymmetric tin-vanadium redox electrolyte for hybrid energy storage with nanoporous carbon electrodes. Sustain Energy Fuels 1(2):299–307CrossRef Lee J et al (2017) Asymmetric tin-vanadium redox electrolyte for hybrid energy storage with nanoporous carbon electrodes. Sustain Energy Fuels 1(2):299–307CrossRef
Zurück zum Zitat Lee JA, et al (2013) Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nat Commun 4 Lee JA, et al (2013) Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nat Commun 4
Zurück zum Zitat Li Y, Li Z, Shen PK (2013) Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors. Adv Mater 25(17):2474–2480CrossRef Li Y, Li Z, Shen PK (2013) Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors. Adv Mater 25(17):2474–2480CrossRef
Zurück zum Zitat Li X et al (2016) Facile synthesis of MoS2/reduced graphene oxide@polyaniline for high-performance supercapacitors. ACS Appl Mater Interfaces 8(33):21373–21380CrossRef Li X et al (2016) Facile synthesis of MoS2/reduced graphene oxide@polyaniline for high-performance supercapacitors. ACS Appl Mater Interfaces 8(33):21373–21380CrossRef
Zurück zum Zitat Liang YY, Li HL, Zhang XG (2007) Solid state synthesis of hydrous ruthenium oxide for supercapacitors. J Power Sources 173(1):599–605CrossRef Liang YY, Li HL, Zhang XG (2007) Solid state synthesis of hydrous ruthenium oxide for supercapacitors. J Power Sources 173(1):599–605CrossRef
Zurück zum Zitat Liu T, Pell WG, Conway BE (1997) Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes. Electrochim Acta 42(23–24):3541–3552CrossRef Liu T, Pell WG, Conway BE (1997) Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes. Electrochim Acta 42(23–24):3541–3552CrossRef
Zurück zum Zitat Liu C, Li F, Lai-Peng M, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22(8):28–62CrossRef Liu C, Li F, Lai-Peng M, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22(8):28–62CrossRef
Zurück zum Zitat Ma W et al (2017) Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density. Carbon (NY) 113:151–158CrossRef Ma W et al (2017) Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density. Carbon (NY) 113:151–158CrossRef
Zurück zum Zitat Mallika S, Saravana Kumar R (2011) Review on ultracapacitor-battery interface for energy management system. Int J Eng Technol 3(1):37–43 Mallika S, Saravana Kumar R (2011) Review on ultracapacitor-battery interface for energy management system. Int J Eng Technol 3(1):37–43
Zurück zum Zitat Mannayil J, Manoj M, Jayalekshmi S, Jayaraj MK (2018) PANI/MWCNT composite electrode for supercapacitor applications. 25 Mannayil J, Manoj M, Jayalekshmi S, Jayaraj MK (2018) PANI/MWCNT composite electrode for supercapacitor applications. 25
Zurück zum Zitat Manoj M, Anilkumar KM, Jinisha B, Jayalekshmi S (2017) Polyaniline–graphene oxide based ordered nanocomposite electrodes for high-performance supercapacitor applications. J Mater Sci Mater Electron 28(19):14323–14330CrossRef Manoj M, Anilkumar KM, Jinisha B, Jayalekshmi S (2017) Polyaniline–graphene oxide based ordered nanocomposite electrodes for high-performance supercapacitor applications. J Mater Sci Mater Electron 28(19):14323–14330CrossRef
Zurück zum Zitat Meng Q, Wu H, Meng Y, Xie K, Wei Z, Guo Z (2014) High-performance all-carbon yarn micro-supercapacitor for an integrated energy system. Adv Mater 26(24):4100–4106CrossRef Meng Q, Wu H, Meng Y, Xie K, Wei Z, Guo Z (2014) High-performance all-carbon yarn micro-supercapacitor for an integrated energy system. Adv Mater 26(24):4100–4106CrossRef
Zurück zum Zitat Naoi K, Ishimoto S, Miyamoto JI, Naoi W (2012) Second generation ‘nanohybrid supercapacitor’: evolution of capacitive energy storage devices. Energy Environ Sci 5(11):9363–9373CrossRef Naoi K, Ishimoto S, Miyamoto JI, Naoi W (2012) Second generation ‘nanohybrid supercapacitor’: evolution of capacitive energy storage devices. Energy Environ Sci 5(11):9363–9373CrossRef
Zurück zum Zitat Nguyen TD, Ryu JK, Bramhe Sachin N, Kim TN (2013) Performance of electric double layers capacitor using activated carbon materials from rice husk as electrodes. Korean J Mater Res 23(11):643–648 Nguyen TD, Ryu JK, Bramhe Sachin N, Kim TN (2013) Performance of electric double layers capacitor using activated carbon materials from rice husk as electrodes. Korean J Mater Res 23(11):643–648
Zurück zum Zitat Noked M, Avraham E, Bohadana Y, Soffer A, Aurbach D (2009) Development of anion stereoselective, activated carbon molecular sieve electrodes prepared by chemical vapor deposition. J Phys Chem C 113(17):7316–7321CrossRef Noked M, Avraham E, Bohadana Y, Soffer A, Aurbach D (2009) Development of anion stereoselective, activated carbon molecular sieve electrodes prepared by chemical vapor deposition. J Phys Chem C 113(17):7316–7321CrossRef
Zurück zum Zitat Ojha K, Kumar B, Ganguli AK (2017) Biomass derived graphene-like activated and non-activated porous carbon for advanced supercapacitors. J Chem Sci 129(3):397–404CrossRef Ojha K, Kumar B, Ganguli AK (2017) Biomass derived graphene-like activated and non-activated porous carbon for advanced supercapacitors. J Chem Sci 129(3):397–404CrossRef
Zurück zum Zitat Park JH, Ko JM, Park OO, Kim DW (2002) Capacitance properties of graphite/polypyrrole composite electrode prepared by chemical polymerization of pyrrole on graphite fiber. J Power Sources 105(1):20–25CrossRef Park JH, Ko JM, Park OO, Kim DW (2002) Capacitance properties of graphite/polypyrrole composite electrode prepared by chemical polymerization of pyrrole on graphite fiber. J Power Sources 105(1):20–25CrossRef
Zurück zum Zitat Service RF (2003) Electronic textiles charge ahead. Am Assoc Adv Sci Service RF (2003) Electronic textiles charge ahead. Am Assoc Adv Sci
Zurück zum Zitat Sheng K, Sun Y, Li C, Yuan W, Shi G (2012) Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering. Sci Rep 2:3–7CrossRef Sheng K, Sun Y, Li C, Yuan W, Shi G (2012) Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering. Sci Rep 2:3–7CrossRef
Zurück zum Zitat Simon P, Gogotsi Y (2010) Materials for electrochemical capacitors. Nanoscience and technology: a collection of reviews from Nature journals, pp 320–329 Simon P, Gogotsi Y (2010) Materials for electrochemical capacitors. Nanoscience and technology: a collection of reviews from Nature journals, pp 320–329
Zurück zum Zitat Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854CrossRef Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854CrossRef
Zurück zum Zitat Song Y, Li Z, Guo K, Shao T (2016) Hierarchically ordered mesoporous carbon/graphene composites as supercapacitor electrode materials. Nanoscale 8(34):15671–15680CrossRef Song Y, Li Z, Guo K, Shao T (2016) Hierarchically ordered mesoporous carbon/graphene composites as supercapacitor electrode materials. Nanoscale 8(34):15671–15680CrossRef
Zurück zum Zitat Stoller MD, Ruoff RS (2010) Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy Environ Sci 3(9):1294–1301CrossRef Stoller MD, Ruoff RS (2010) Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy Environ Sci 3(9):1294–1301CrossRef
Zurück zum Zitat Textiles E (2007) A logical step. Nat Mater 6:328–329 Textiles E (2007) A logical step. Nat Mater 6:328–329
Zurück zum Zitat Thakur AK, Deshmukh AB, Choudhary RB, Karbhal I, Majumder M, Shelke MV (2017) Facile synthesis and electrochemical evaluation of PANI/CNT/MoS2 ternary composite as an electrode material for high performance supercapacitor. Mater Sci Eng B Solid-State Mater Adv Technol 223:24–34 Thakur AK, Deshmukh AB, Choudhary RB, Karbhal I, Majumder M, Shelke MV (2017) Facile synthesis and electrochemical evaluation of PANI/CNT/MoS2 ternary composite as an electrode material for high performance supercapacitor. Mater Sci Eng B Solid-State Mater Adv Technol 223:24–34
Zurück zum Zitat Wang YG, Wang ZD, Xia YY (2005) An asymmetric supercapacitor using RuO2/TiO2 nanotube composite and activated carbon electrodes. Electrochim Acta 50(28):5641–5646CrossRef Wang YG, Wang ZD, Xia YY (2005) An asymmetric supercapacitor using RuO2/TiO2 nanotube composite and activated carbon electrodes. Electrochim Acta 50(28):5641–5646CrossRef
Zurück zum Zitat Wang YG, Cheng L, Xia YY (2006) Electrochemical profile of nano-particle CoAl double hydroxide/active carbon supercapacitor using KOH electrolyte solution. J Power Sources 153(1):191–196CrossRef Wang YG, Cheng L, Xia YY (2006) Electrochemical profile of nano-particle CoAl double hydroxide/active carbon supercapacitor using KOH electrolyte solution. J Power Sources 153(1):191–196CrossRef
Zurück zum Zitat Wang G, Qu M, Yu Z, Yuan R (2007) LiNi0.8Co0.2O2/MWCNT composite electrodes for supercapacitors. Mater Chem Phys 105(2–3):169–174CrossRef Wang G, Qu M, Yu Z, Yuan R (2007) LiNi0.8Co0.2O2/MWCNT composite electrodes for supercapacitors. Mater Chem Phys 105(2–3):169–174CrossRef
Zurück zum Zitat Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828CrossRef Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828CrossRef
Zurück zum Zitat Wang R et al (2017a) Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors. Sci Rep 7(174):1–9 Wang R et al (2017a) Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors. Sci Rep 7(174):1–9
Zurück zum Zitat Wang L, Yang H, Pan G, Miao L, Chen S, Song Y (2017b) Polyaniline-carbon nanotubes@zeolite imidazolate framework67-carbon cloth hierarchical nanostructures for supercapacitor electrode. Electrochim Acta 240:16–23CrossRef Wang L, Yang H, Pan G, Miao L, Chen S, Song Y (2017b) Polyaniline-carbon nanotubes@zeolite imidazolate framework­67-carbon cloth hierarchical nanostructures for supercapacitor electrode. Electrochim Acta 240:16–23CrossRef
Zurück zum Zitat Wang Z et al (2019) Extremely low self-discharge solid-state supercapacitors: via the confinement effect of ion transfer. J Mater Chem A 7(14):8633–8640CrossRef Wang Z et al (2019) Extremely low self-discharge solid-state supercapacitors: via the confinement effect of ion transfer. J Mater Chem A 7(14):8633–8640CrossRef
Zurück zum Zitat Wen ZB et al (2009) An activated carbon with high capacitance from carbonization of a resorcinol–formaldehyde resin. Electrochem Commun 11(3):715–718CrossRef Wen ZB et al (2009) An activated carbon with high capacitance from carbonization of a resorcinol–formaldehyde resin. Electrochem Commun 11(3):715–718CrossRef
Zurück zum Zitat Xia M, Nie J, Zhang Z, Lu X, Wang ZL (2018) Suppressing self-discharge of supercapacitors via electrorheological effect of liquid crystals. Nano Energy 47:43–50CrossRef Xia M, Nie J, Zhang Z, Lu X, Wang ZL (2018) Suppressing self-discharge of supercapacitors via electrorheological effect of liquid crystals. Nano Energy 47:43–50CrossRef
Zurück zum Zitat Yan J, et al (2017) Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv Funct Mater 27(30) Yan J, et al (2017) Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv Funct Mater 27(30)
Zurück zum Zitat Yi F, Ren H, Shan J, Sun X, Wei D, Liu Z (2018) Wearable energy sources based on 2D materials. Chem Soc Rev 47(9):3152–3188CrossRef Yi F, Ren H, Shan J, Sun X, Wei D, Liu Z (2018) Wearable energy sources based on 2D materials. Chem Soc Rev 47(9):3152–3188CrossRef
Zurück zum Zitat Yu A, Chabot V, Zhang J (2013) Electrochemical supercapacitors for energy storage and delivery: fundamentals and applications. Taylor & Francis, Abingdon Yu A, Chabot V, Zhang J (2013) Electrochemical supercapacitors for energy storage and delivery: fundamentals and applications. Taylor & Francis, Abingdon
Zurück zum Zitat Yu Y, Zhong J, Sun W, Kumar R, Koratkar N (2017) Solid-state hybrid fibrous supercapacitors produced by dead-end tube membrane ultrafiltration. Adv Funct Mater 27(24) Yu Y, Zhong J, Sun W, Kumar R, Koratkar N (2017) Solid-state hybrid fibrous supercapacitors produced by dead-end tube membrane ultrafiltration. Adv Funct Mater 27(24)
Zurück zum Zitat Yuan C, Zhang X, Su L, Gao B, Shen L (2009) Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. J Mater Chem 19(32):5772–5777CrossRef Yuan C, Zhang X, Su L, Gao B, Shen L (2009) Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. J Mater Chem 19(32):5772–5777CrossRef
Zurück zum Zitat Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531CrossRef Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531CrossRef
Zurück zum Zitat Zhang W et al (2020) Self-discharge of supercapacitors based on carbon nanotubes with different diameters. Electrochim Acta 357:136855CrossRef Zhang W et al (2020) Self-discharge of supercapacitors based on carbon nanotubes with different diameters. Electrochim Acta 357:136855CrossRef
Zurück zum Zitat Zhao S, Wu F, Yang L, Gao L, Burke AF (2010) A measurement method for determination of dc internal resistance of batteries and supercapacitors. Electrochem Commun 12(2):242–245CrossRef Zhao S, Wu F, Yang L, Gao L, Burke AF (2010) A measurement method for determination of dc internal resistance of batteries and supercapacitors. Electrochem Commun 12(2):242–245CrossRef
Zurück zum Zitat Zhou H et al (2018) Preparation of graphene nanowalls on nickel foam as supercapacitor electrodes. Micro Nano Lett 13(6):842–844CrossRef Zhou H et al (2018) Preparation of graphene nanowalls on nickel foam as supercapacitor electrodes. Micro Nano Lett 13(6):842–844CrossRef
Zurück zum Zitat Zhu Y et al (2018) Ag-doped PEDOT:PSS/CNT composites for thin-film all-solid-state supercapacitors with a stretchability of 480%. J Mater Chem A 6(3):941–947CrossRef Zhu Y et al (2018) Ag-doped PEDOT:PSS/CNT composites for thin-film all-solid-state supercapacitors with a stretchability of 480%. J Mater Chem A 6(3):941–947CrossRef
Zurück zum Zitat Zhu Y, et al (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332(6037):1537–1541 Zhu Y, et al (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332(6037):1537–1541
Metadaten
Titel
Carbon Based Composites for Supercapacitor Applications
verfasst von
Mannayil Jasna
Muraleedharan Pillai Manoj
Madambi Kunjukutan Ezhuthachan Jayaraj
Copyright-Jahr
2022
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-4526-7_9