Skip to main content

2016 | OriginalPaper | Buchkapitel

16. Carbon Nanotube-Based Nanoelectronics

verfasst von : Vinod Kumar Khanna

Erschienen in: Integrated Nanoelectronics

Verlag: Springer India

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Carbon nanotubes serve as ideal one-dimensional materials for nanoscale electronic circuitry, not only because of their small size but also due to their overall exceptional properties, providing the necessary mechanical and chemical stability to the devices. Amongst the three main processes developed for CNT growth, namely arc discharge, laser ablation and chemical vapor deposition, the last one stands out prominently for its adaptability to nanoelectronics manufacturing. A noteworthy feature of fabrication of CNT devices is that the process is doping-free. Instead of doping, the polarity of the FETs is determined by the metals used as contacting electrodes. By appropriate choice of metals, P-channel, N-channel and complementary symmetry CNT FETs are realized. Elimination of the doping requirement for fabrication of CNT devices makes them invulnerable to dopant-related fluctuations. Semiconducting CNTs form the basis of transistor circuits whereas metallic CNTs are used as interconnects. Self-aligned process for large-scale fabrication of P-channel, N-channel and complementary CNT configurations paves the way towards adoption of CNT technology for bulk production.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Bandaru PR (2007) Electrical properties and applications of carbon nanotube structures. J Nanosci Nanotechnol 7:1–29CrossRef Bandaru PR (2007) Electrical properties and applications of carbon nanotube structures. J Nanosci Nanotechnol 7:1–29CrossRef
4.
Zurück zum Zitat Matsuda Y, Tahir-Kheli J, Goddard WA (2010) Definitive band gaps for single-wall carbon nanotubes. J Phys Chem Lett 1:2946–2950CrossRef Matsuda Y, Tahir-Kheli J, Goddard WA (2010) Definitive band gaps for single-wall carbon nanotubes. J Phys Chem Lett 1:2946–2950CrossRef
5.
Zurück zum Zitat Ruoff RS, Qian D, Liu WK (2003) Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. C R Physique 4:993–1008CrossRef Ruoff RS, Qian D, Liu WK (2003) Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. C R Physique 4:993–1008CrossRef
6.
Zurück zum Zitat Lourie O, Wagner HD (1998) Evaluation of Young’s modulus of carbon nanotubes by micro-Raman spectroscopy. J Mater Res 13(9):2418–2422CrossRef Lourie O, Wagner HD (1998) Evaluation of Young’s modulus of carbon nanotubes by micro-Raman spectroscopy. J Mater Res 13(9):2418–2422CrossRef
7.
Zurück zum Zitat Arora N, Sharma NN (2014) Arc discharge synthesis of carbon nanotubes: comprehensive review. Diam Relat Mater 50:135–150CrossRef Arora N, Sharma NN (2014) Arc discharge synthesis of carbon nanotubes: comprehensive review. Diam Relat Mater 50:135–150CrossRef
8.
Zurück zum Zitat Journet C, Maser WK, Bernier P et al (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388:756–758CrossRef Journet C, Maser WK, Bernier P et al (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388:756–758CrossRef
9.
Zurück zum Zitat Hornbostel B, Haluska M, Cech J et al (2006) Arc discharge and laser ablation synthesis of single-walled carbon nanotubes. In: Popov VN, Lambin P (eds) Carbon Nanotubes, Springer, pp 1–18 Hornbostel B, Haluska M, Cech J et al (2006) Arc discharge and laser ablation synthesis of single-walled carbon nanotubes. In: Popov VN, Lambin P (eds) Carbon Nanotubes, Springer, pp 1–18
10.
Zurück zum Zitat Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol 10(6):3739–3758CrossRef Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol 10(6):3739–3758CrossRef
11.
Zurück zum Zitat Tu X, Manohar S, Jagota A et al (2009) DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460(7252):250–253CrossRef Tu X, Manohar S, Jagota A et al (2009) DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460(7252):250–253CrossRef
12.
Zurück zum Zitat Peng L-M, Zhang Z, Wang S (2014) Carbon nanotube electronics: recent advances. Mater Today 17(9):433–442CrossRef Peng L-M, Zhang Z, Wang S (2014) Carbon nanotube electronics: recent advances. Mater Today 17(9):433–442CrossRef
13.
Zurück zum Zitat Javey A, Guo J, Farmer DB et al (2004) Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays. Nano Lett 4(7):1319–1322CrossRef Javey A, Guo J, Farmer DB et al (2004) Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays. Nano Lett 4(7):1319–1322CrossRef
14.
Zurück zum Zitat Biercuk MJ, Monsma DJ, Marcus CM et al (2003) Low-temperature atomic-layer-deposition lift-off method for microelectronic and nanoelectronic applications. Appl Phys Lett 83(12):2405–2407CrossRef Biercuk MJ, Monsma DJ, Marcus CM et al (2003) Low-temperature atomic-layer-deposition lift-off method for microelectronic and nanoelectronic applications. Appl Phys Lett 83(12):2405–2407CrossRef
15.
Zurück zum Zitat Zhang Z, Wang S, Ding L et al (2008) Self-aligned ballistic n-type single-walled carbon nanotube field-effect transistors with adjustable threshold voltage. Nano Lett 8(11):3696–3701CrossRef Zhang Z, Wang S, Ding L et al (2008) Self-aligned ballistic n-type single-walled carbon nanotube field-effect transistors with adjustable threshold voltage. Nano Lett 8(11):3696–3701CrossRef
16.
Zurück zum Zitat Zhang Z, Wang S, Wang Z et al (2009) Almost perfectly symmetric SWCNT-based CMOS devices and scaling. ACS Nano 3(11):3781–3787CrossRef Zhang Z, Wang S, Wang Z et al (2009) Almost perfectly symmetric SWCNT-based CMOS devices and scaling. ACS Nano 3(11):3781–3787CrossRef
17.
Zurück zum Zitat Zhou W, Han Z, Wang J et al (2006) Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett 6(12):2987–2990CrossRef Zhou W, Han Z, Wang J et al (2006) Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett 6(12):2987–2990CrossRef
18.
Zurück zum Zitat Ding L, Zhang Z, Pei T et al (2012) Carbon nanotube field-effect transistors for use as pass transistors in integrated logic gates and full subtractor circuits. ACS Nano 6(5):4013–4019CrossRef Ding L, Zhang Z, Pei T et al (2012) Carbon nanotube field-effect transistors for use as pass transistors in integrated logic gates and full subtractor circuits. ACS Nano 6(5):4013–4019CrossRef
Metadaten
Titel
Carbon Nanotube-Based Nanoelectronics
verfasst von
Vinod Kumar Khanna
Copyright-Jahr
2016
Verlag
Springer India
DOI
https://doi.org/10.1007/978-81-322-3625-2_16

Neuer Inhalt