Skip to main content

2016 | OriginalPaper | Buchkapitel

17.  Graphene-Based Nanoelectronics

verfasst von : Vinod Kumar Khanna

Erschienen in: Integrated Nanoelectronics

Verlag: Springer India

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The ultrahigh room-temperature carrier mobility in graphene makes it very useful for microwave and high-frequency devices. Additionally, high current-carrying capability >108 A/cm2 together with high thermal conductivity ~2000–4000 Wm−1K−1 for freely suspended graphene and ~600 Wm−1K−1 for SiO2-supported graphene establish its superiority among nanoelectronic materials. Graphene flakes are easily isolated from graphite by mechanical exfoliation. Graphene can be grown on metal films and transferred to desired substrates. It can be grown epitaxially on silicon carbide. Graphene sheets can also be synthesized by a substrate-free process in the gas phase. Planarity of graphene makes widely practiced planar processes of semiconductor industry applicable to graphene. On the downside, the bandgap of graphene is zero. Hence, graphene transistors cannot be switched off effectively. However, single-layer graphene transistors show excellent performance in GHz analog circuits. By quantum confinement, a bandgap is opened in graphene when cut into nanoribbons. Bandgap is also created by applying a perpendicular electric field to bilayer graphene. However, carrier mobility in nanoribbons is lower than in large-area graphene. Present status of graphene nanoribbon and bilayer transistors is described. Although they display higher on-off current ratios than transistors fabricated on original graphene, intensive efforts are required to realize the full potentiality of graphene for nanoelectronics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Novoselov KS (2011) Graphene: the magic of flat carbon. In: The electrochemical society interface spring, pp 45–46 Novoselov KS (2011) Graphene: the magic of flat carbon. In: The electrochemical society interface spring, pp 45–46
2.
Zurück zum Zitat Berger C, Song Z, Li X et al (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312(5777):1191–1196CrossRef Berger C, Song Z, Li X et al (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312(5777):1191–1196CrossRef
3.
Zurück zum Zitat Bolotin KI, Sikes KJ, Jiang Z et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9–10):351–355CrossRef Bolotin KI, Sikes KJ, Jiang Z et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9–10):351–355CrossRef
5.
Zurück zum Zitat Reina A, Jia X, Ho J et al (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9(1):30–35CrossRef Reina A, Jia X, Ho J et al (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9(1):30–35CrossRef
6.
Zurück zum Zitat Emtsev KV, Bostwick A, Horn K et al (2009) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater 8:203–207CrossRef Emtsev KV, Bostwick A, Horn K et al (2009) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater 8:203–207CrossRef
7.
Zurück zum Zitat Dato A, Radmilovic V, Lee Z et al (2008) Substrate-free gas-phase synthesis of graphene sheets. Nano Lett 8(7):2012–2016CrossRef Dato A, Radmilovic V, Lee Z et al (2008) Substrate-free gas-phase synthesis of graphene sheets. Nano Lett 8(7):2012–2016CrossRef
8.
Zurück zum Zitat Lemme MC, Echtermeyer TJ, Baus M et al (2007) A graphene field-effect device. IEEE Electron Device Lett 28(4):282–284CrossRef Lemme MC, Echtermeyer TJ, Baus M et al (2007) A graphene field-effect device. IEEE Electron Device Lett 28(4):282–284CrossRef
11.
Zurück zum Zitat Liao L, Bai J, Cheng R et al (2010) Top-gated graphene nanoribbon transistors with ultra-thin high-k dielectrics. Nano Lett 10(5):1917–1921CrossRef Liao L, Bai J, Cheng R et al (2010) Top-gated graphene nanoribbon transistors with ultra-thin high-k dielectrics. Nano Lett 10(5):1917–1921CrossRef
12.
Zurück zum Zitat Xia F, Farmer DB, Lin YM et al (2010) Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett 10(2):715–718CrossRef Xia F, Farmer DB, Lin YM et al (2010) Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett 10(2):715–718CrossRef
13.
Zurück zum Zitat Wang H, Taychatanapat T, Hsu A et al (2011) BN/Graphene/BN transistors for RF applications. IEEE Electron Device Lett 32(9):1209–1211CrossRef Wang H, Taychatanapat T, Hsu A et al (2011) BN/Graphene/BN transistors for RF applications. IEEE Electron Device Lett 32(9):1209–1211CrossRef
Metadaten
Titel
GrapheneGraphene -Based Nanoelectronics
verfasst von
Vinod Kumar Khanna
Copyright-Jahr
2016
Verlag
Springer India
DOI
https://doi.org/10.1007/978-81-322-3625-2_17

Neuer Inhalt