Skip to main content

2009 | OriginalPaper | Buchkapitel

3. Carbon Nanotube Field-Effect Transistors

verfasst von : Ali Javey

Erschienen in: Carbon Nanotube Electronics

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Excerpt

In the past few decades, the electronics field has witnessed a dramatic miniaturization of transistor elements with the number of transistors on an integrated circuit doubling approximately every 2 years [14]. Innovation and integration of new materials, such as high-κ gate dielectrics, various metals, silicides and nitrides, has been the key for this evolutionary path of CMOS device scaling [14]. Notably, however, the active channel material has predominantly remained the same, mainly owing to the scalability and manufacturability of the Si technology. As the device dimensions, such as the channel lengths approach the sub-10 nm regime, direct tunneling between source (S) and drain (D), and sever short channel effects present a fundamental challenge in continued scaling of Si devices. As a result, tremendous research efforts have recently been undertaken by various academic and industrial research groups for integrating new semiconductors as the channel material to enable (i) more efficient transport of carriers (i.e., higher mobility) and (ii) improved electrostatics at nanoscale (i.e., non-planar channel materials) [57]. In most approaches, a hybrid technology is envisioned, where Si still remains the handling substrate for fabrication processing, heat transport, and mechanical support purposes, with a new semiconductor integrated on the top for enhanced device operations or added new functionalities. One such material is carbon nanotubes. The unique electron transport properties and band structure of nanotubes, as discussed in Chapter 1, and their quasi 1-D geometries make semiconducting SWNTs ideal channel materials for high-speed and low-power electronics [827]. In this chapter, we summarize some of the recent experimental advancements in the field of carbon nanotube transistors and discuss the device physics of 1-D channel materials. In Section 3.2, we discuss the nanotube–metal interface properties and the ability to attain Schottky barrier free contacts by utilizing an appropriate metal material due to the lack of Fermi-level pinning in 1-D junctions. In Section 3.3, we discuss the high-κ gate dielectric integration followed by a presentation on quantum capacitance associated with 1-D materials in Section 3.4. In Sections 3.5 and 3.6, we discuss the role of the molecular species absorbed on the surface of nanotubes in the chemical doping and device hysteresis. Finally, various nanotube transistor structures, including Schottky FETs, MOSFETs, and band-to-band tunneling FETs, are discussed in Sections 3.7–3.9. …

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Peercy, P. S. The drive to miniaturization. Nature 406, 1023–1026 (2000).CrossRef Peercy, P. S. The drive to miniaturization. Nature 406, 1023–1026 (2000).CrossRef
2.
3.
Zurück zum Zitat Wong, P. H.-S. Beyond the conventional transistor. Solid-State Electron 49, 755–762 (2005).CrossRef Wong, P. H.-S. Beyond the conventional transistor. Solid-State Electron 49, 755–762 (2005).CrossRef
4.
Zurück zum Zitat Chau, R. et al. Silicon nano-transistors and breaking the 10 nm physical gate length barrier. Device Research Conf. 2003, 123–126 (2003). Chau, R. et al. Silicon nano-transistors and breaking the 10 nm physical gate length barrier. Device Research Conf. 2003, 123–126 (2003).
5.
Zurück zum Zitat Datta, S. et al. 85 nm Gate Length Enhancement and Depletion Mode InSb Quantum Well Transistors for Ultra High Speed and Very Low Power Digital Logic Applications. International Electron Devices Meeting Technical Digest, December 5–7 (2005). Datta, S. et al. 85 nm Gate Length Enhancement and Depletion Mode InSb Quantum Well Transistors for Ultra High Speed and Very Low Power Digital Logic Applications. International Electron Devices Meeting Technical Digest, December 5–7 (2005).
6.
Zurück zum Zitat Kim, D.-H. and J. A. del Alamo, Logic Performance of 40 nm InAs HEMTs. International Electron Devices Meeting Technical Digest, December 10–12 (2007). Kim, D.-H. and J. A. del Alamo, Logic Performance of 40 nm InAs HEMTs. International Electron Devices Meeting Technical Digest, December 10–12 (2007).
7.
Zurück zum Zitat Huang, X. Sub 50-nm FinFET: PMOS. International Electron Devices Meeting Technical Digest, p. 67. December 5–8 (1999). Huang, X. Sub 50-nm FinFET: PMOS. International Electron Devices Meeting Technical Digest, p. 67. December 5–8 (1999).
8.
Zurück zum Zitat Dekker, C. Carbon nanotubes as molecular quantum wires. Phys. Today 52, 22–28 (1999).CrossRef Dekker, C. Carbon nanotubes as molecular quantum wires. Phys. Today 52, 22–28 (1999).CrossRef
9.
Zurück zum Zitat Ando, T. and Nakanishi, T. Impurity scattering in carbon nanotubes- absence of backscattering. J. Phys. Soc. Jpn. 67, 1104–1113 (1998). Ando, T. and Nakanishi, T. Impurity scattering in carbon nanotubes- absence of backscattering. J. Phys. Soc. Jpn. 67, 1104–1113 (1998).
10.
Zurück zum Zitat White, C. T. and Todorov, T. N. Carbon nanotubes as long ballistic conductors. Nature 393, 240–242 (1998).CrossRef White, C. T. and Todorov, T. N. Carbon nanotubes as long ballistic conductors. Nature 393, 240–242 (1998).CrossRef
11.
Zurück zum Zitat Zhou, X., et al. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors, Phys. Rev. Lett. 95, 146805 (2005).CrossRef Zhou, X., et al. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors, Phys. Rev. Lett. 95, 146805 (2005).CrossRef
12.
Zurück zum Zitat Li, S., Yu, Z., Rutherglen, C., and Burke, P. J. Electrical properties of 0.4 cm long single-walled carbon nanotubes. Nano Lett. 4, 2003–2007 (2004).CrossRef Li, S., Yu, Z., Rutherglen, C., and Burke, P. J. Electrical properties of 0.4 cm long single-walled carbon nanotubes. Nano Lett. 4, 2003–2007 (2004).CrossRef
13.
Zurück zum Zitat Purewal, M., Hong, B. H., Ravi, A., Chandra, B., Hone, J., and Kim, P. Scaling of resistance and electron mean free path of single-walled carbon nanotubes. Phys. Rev. Lett. 98, 186808 (2007).CrossRef Purewal, M., Hong, B. H., Ravi, A., Chandra, B., Hone, J., and Kim, P. Scaling of resistance and electron mean free path of single-walled carbon nanotubes. Phys. Rev. Lett. 98, 186808 (2007).CrossRef
14.
Zurück zum Zitat McEuen, P. L., Fuhrer, M. S., and Park, H. K. Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 1, 78–85 (2003).CrossRef McEuen, P. L., Fuhrer, M. S., and Park, H. K. Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 1, 78–85 (2003).CrossRef
15.
Zurück zum Zitat Dai, H. Carbon nanotubes: opportunities and challenges. Surf. Sci. 500, 218–241 (2002).CrossRef Dai, H. Carbon nanotubes: opportunities and challenges. Surf. Sci. 500, 218–241 (2002).CrossRef
16.
Zurück zum Zitat Avouris, P. Carbon nanotube electronics. Proc. IEEE 91, 1772–1784 (2003). Avouris, P. Carbon nanotube electronics. Proc. IEEE 91, 1772–1784 (2003).
17.
Zurück zum Zitat Lefebvre, J. et al. Single-wall carbon nanotube based devices. Carbon 38, 1745–1749 (2000).CrossRef Lefebvre, J. et al. Single-wall carbon nanotube based devices. Carbon 38, 1745–1749 (2000).CrossRef
18.
Zurück zum Zitat Fischer, J. E. and Johnson, A. T. Electronic properties of carbon nanotubes, Curr. Opinion Solid State Mater. Sci. 1999, 28–33 (1999).CrossRef Fischer, J. E. and Johnson, A. T. Electronic properties of carbon nanotubes, Curr. Opinion Solid State Mater. Sci. 1999, 28–33 (1999).CrossRef
19.
Zurück zum Zitat Dai, H., Javey, A., Pop, E., Mann, D., and Lu, Y. Electrical transport properties and field-effect transistors of carbon nanotubes. NANO, 1, 1–4 (2006).CrossRefMATH Dai, H., Javey, A., Pop, E., Mann, D., and Lu, Y. Electrical transport properties and field-effect transistors of carbon nanotubes. NANO, 1, 1–4 (2006).CrossRefMATH
20.
Zurück zum Zitat McEuen, P. L. and Park, J.-Y. Electron transport in single-walled carbon nanotubes. MRS Bulletin 29, 272 (2004).CrossRef McEuen, P. L. and Park, J.-Y. Electron transport in single-walled carbon nanotubes. MRS Bulletin 29, 272 (2004).CrossRef
21.
Zurück zum Zitat Javey, A. et al. High-k dielectrics for advanced carbon-nanotube transistors and logic gates. Nat. Mater. 1, 241–246 (2002).CrossRef Javey, A. et al. High-k dielectrics for advanced carbon-nanotube transistors and logic gates. Nat. Mater. 1, 241–246 (2002).CrossRef
22.
Zurück zum Zitat Javey, A., Guo, J., Wang, Q., Lundstrom, M., and Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003).CrossRef Javey, A., Guo, J., Wang, Q., Lundstrom, M., and Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003).CrossRef
23.
Zurück zum Zitat Javey, A. et al. Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays. Nano Lett. 4, 1319–1322 (2004).CrossRef Javey, A. et al. Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays. Nano Lett. 4, 1319–1322 (2004).CrossRef
24.
Zurück zum Zitat Seidel, R. V. et al. Sub-20 nm short channel carbon nanotube transistors. Nano Lett. 5, 147–150 (2005).CrossRef Seidel, R. V. et al. Sub-20 nm short channel carbon nanotube transistors. Nano Lett. 5, 147–150 (2005).CrossRef
25.
Zurück zum Zitat Kim, B. M. et al. High-performance carbon nanotube transistors on SrTiO3/Si substrates. Appl. Phys. Lett. 84, 1946 (2004).CrossRef Kim, B. M. et al. High-performance carbon nanotube transistors on SrTiO3/Si substrates. Appl. Phys. Lett. 84, 1946 (2004).CrossRef
26.
Zurück zum Zitat Durkop, T., Getty, S. A., Cobas, E., and Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 4, 35–39 (2004).CrossRef Durkop, T., Getty, S. A., Cobas, E., and Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 4, 35–39 (2004).CrossRef
27.
Zurück zum Zitat Lin, Y. M. et al. High-performance dual-gate carbon nanotube FETs with 40-nm gate length. IEEE Elec. Dev. Lett. 26, 823–825 (2005).CrossRef Lin, Y. M. et al. High-performance dual-gate carbon nanotube FETs with 40-nm gate length. IEEE Elec. Dev. Lett. 26, 823–825 (2005).CrossRef
28.
Zurück zum Zitat Tans, S., Verschueren, A., and Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998).CrossRef Tans, S., Verschueren, A., and Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998).CrossRef
29.
Zurück zum Zitat Martel, R., Schmidt, T., Shea, H. R., Hertel, T., and Avouris, P. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447–2449 (1998).CrossRef Martel, R., Schmidt, T., Shea, H. R., Hertel, T., and Avouris, P. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447–2449 (1998).CrossRef
30.
Zurück zum Zitat Soh, H. et al. Integrated nanotube circuits: controlled growth and ohmic contacting of single-walled carbon nanotubes. Appl. Phys. Lett. 75, 627–629 (1999).CrossRef Soh, H. et al. Integrated nanotube circuits: controlled growth and ohmic contacting of single-walled carbon nanotubes. Appl. Phys. Lett. 75, 627–629 (1999).CrossRef
31.
Zurück zum Zitat Zhou, C., Kong, J., and Dai, H. Electrical measurements of individual semiconducting single-walled nanotubes of various diameters. Appl. Phys. Lett. 76, 1597 (1999).CrossRef Zhou, C., Kong, J., and Dai, H. Electrical measurements of individual semiconducting single-walled nanotubes of various diameters. Appl. Phys. Lett. 76, 1597 (1999).CrossRef
32.
Zurück zum Zitat Heinze, S. et al. Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 89, 6801 (2002).CrossRef Heinze, S. et al. Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 89, 6801 (2002).CrossRef
33.
Zurück zum Zitat Tersoff, J. Schottky barrier heights and the continuum of gap states. Phys. Rev. Lett. 52, 465–468 (1984).CrossRef Tersoff, J. Schottky barrier heights and the continuum of gap states. Phys. Rev. Lett. 52, 465–468 (1984).CrossRef
34.
Zurück zum Zitat Leonard, F. and Tersoff, J. Role of Fermi-level pinning in nanotube Schottky diodes. Phys. Rev. Lett. 84, 4693–4696 (2000).CrossRef Leonard, F. and Tersoff, J. Role of Fermi-level pinning in nanotube Schottky diodes. Phys. Rev. Lett. 84, 4693–4696 (2000).CrossRef
35.
Zurück zum Zitat Derycke, V., Martel, R., Appenzeller, J., and Avouris, P. Controlling doping and carrier injection in Carbon Nanotube transistors, Appl. Phys. Lett. 80, 2773 (2002).CrossRef Derycke, V., Martel, R., Appenzeller, J., and Avouris, P. Controlling doping and carrier injection in Carbon Nanotube transistors, Appl. Phys. Lett. 80, 2773 (2002).CrossRef
36.
Zurück zum Zitat Javey, A., Wang, Q., Ural, A., Li, Y., and Dai, H. Carbon nanotube transistor arrays for multistage complementary logic and ring oscillators. Nano Lett. 2, 929–932 (2002).CrossRef Javey, A., Wang, Q., Ural, A., Li, Y., and Dai, H. Carbon nanotube transistor arrays for multistage complementary logic and ring oscillators. Nano Lett. 2, 929–932 (2002).CrossRef
37.
Zurück zum Zitat Martel, R. et al. Ambipolar electrical transport in semiconducting single-wall carbon nanotubes, Phys. Rev. Lett. 87 256805 (2001). Martel, R. et al. Ambipolar electrical transport in semiconducting single-wall carbon nanotubes, Phys. Rev. Lett. 87 256805 (2001).
38.
Zurück zum Zitat Appenzeller, J., Knoch, J., Radosavljević, M., and Avouris, P. Multimode transport in Schottky-barrier carbon-nanotube field-effect transistors. Phys. Rev. Lett. 92, 226802 (2004).CrossRef Appenzeller, J., Knoch, J., Radosavljević, M., and Avouris, P. Multimode transport in Schottky-barrier carbon-nanotube field-effect transistors. Phys. Rev. Lett. 92, 226802 (2004).CrossRef
39.
Zurück zum Zitat Appenzeller, J. et al. Field-modulated carrier transport in carbon nanotube transistors. Phys. Rev. Lett. 89, 126801 (2002).CrossRef Appenzeller, J. et al. Field-modulated carrier transport in carbon nanotube transistors. Phys. Rev. Lett. 89, 126801 (2002).CrossRef
40.
Zurück zum Zitat Appenzeller, J., Radosavljevi, M., Knoch, J., and Avouris, P. Tunneling versus thermionic emission in one-dimensional semiconductors. Phys. Rev. Lett. 92, 048301 (2004).CrossRef Appenzeller, J., Radosavljevi, M., Knoch, J., and Avouris, P. Tunneling versus thermionic emission in one-dimensional semiconductors. Phys. Rev. Lett. 92, 048301 (2004).CrossRef
41.
Zurück zum Zitat Radosavljevic, M., Heinze, S., Tersoff, J., and Avouris, P. Drain voltage scaling in carbon nanotube transistors. Appl. Phys. Lett. 83, 2435–2437 (2003).CrossRef Radosavljevic, M., Heinze, S., Tersoff, J., and Avouris, P. Drain voltage scaling in carbon nanotube transistors. Appl. Phys. Lett. 83, 2435–2437 (2003).CrossRef
42.
Zurück zum Zitat Kim, W. et al. Electrical contacts to carbon nanotubes down to 1 nm in diameter. Appl. Phys. Lett. 87, 1–3 (2005). Kim, W. et al. Electrical contacts to carbon nanotubes down to 1 nm in diameter. Appl. Phys. Lett. 87, 1–3 (2005).
43.
Zurück zum Zitat Javey, A., Shim, M., and Dai, H. Electrical properties and devices of large-diameter single-walled carbon nanotubes. Appl. Phys. Lett. 80(6), 1064–1066 (2002).CrossRef Javey, A., Shim, M., and Dai, H. Electrical properties and devices of large-diameter single-walled carbon nanotubes. Appl. Phys. Lett. 80(6), 1064–1066 (2002).CrossRef
44.
Zurück zum Zitat Javey, A., Wang, Q., Kim, W., and Dai, H. Advancements in complementary carbon nanotube field-effect transistors. IEDM Technical Digest (2003). Javey, A., Wang, Q., Kim, W., and Dai, H. Advancements in complementary carbon nanotube field-effect transistors. IEDM Technical Digest (2003).
45.
Zurück zum Zitat Chen, Z., Appenzeller, J. Knoch, J., Lin, Y.-M., and Avouris, P. The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett. 5, 1497–1502 (2005).CrossRef Chen, Z., Appenzeller, J. Knoch, J., Lin, Y.-M., and Avouris, P. The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett. 5, 1497–1502 (2005).CrossRef
46.
Zurück zum Zitat Javey, A. et al. High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. Nano Lett. 5, 345–348 (2005).CrossRef Javey, A. et al. High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. Nano Lett. 5, 345–348 (2005).CrossRef
47.
Zurück zum Zitat Javey, A. et al. Carbon nanotube field-effect transistors with integrated ohmic contacts and high-k gate dielectrics. Nano Lett. 4(3), 447–450 (2004).CrossRef Javey, A. et al. Carbon nanotube field-effect transistors with integrated ohmic contacts and high-k gate dielectrics. Nano Lett. 4(3), 447–450 (2004).CrossRef
48.
Zurück zum Zitat Chen, J., Klinke, C., Afzali, A., and Avouris, P. Self-aligned carbon nanotube transistors with charge transfer doping. Appl. Phys. Lett. 86, 123108 (2005).CrossRef Chen, J., Klinke, C., Afzali, A., and Avouris, P. Self-aligned carbon nanotube transistors with charge transfer doping. Appl. Phys. Lett. 86, 123108 (2005).CrossRef
49.
Zurück zum Zitat Klinke, C., Chen, J., Afzali, A., and Avouris, P. Charge transfer induced polarity switching in carbon nanotube transistors. Nano Lett. 5, 555–558 (2006).CrossRef Klinke, C., Chen, J., Afzali, A., and Avouris, P. Charge transfer induced polarity switching in carbon nanotube transistors. Nano Lett. 5, 555–558 (2006).CrossRef
50.
Zurück zum Zitat Zhang, Y., Franklin, N., Chen, R., and Dai, H. A metal coating study of suspended carbon nanotubes and its implications to metal-tube interactions. Chem. Phys. Lett. 331, 35–41 (2000).CrossRef Zhang, Y., Franklin, N., Chen, R., and Dai, H. A metal coating study of suspended carbon nanotubes and its implications to metal-tube interactions. Chem. Phys. Lett. 331, 35–41 (2000).CrossRef
51.
Zurück zum Zitat Zhang, Y. and Dai, H. Formation of metal nanowires on suspended single-walled carbon nanotubes. Appl. Phys. Lett. 77, 3015 (2000).CrossRef Zhang, Y. and Dai, H. Formation of metal nanowires on suspended single-walled carbon nanotubes. Appl. Phys. Lett. 77, 3015 (2000).CrossRef
52.
Zurück zum Zitat Lu, Y. et al. DNA functionalization of carbon nanotubes for ultrathin atomic layer deposition of high kappa dielectrics for nanotube transistors with 60 mV/decade switching. J. Am. Chem. Soc. 128, 3518–3519 (2006).CrossRef Lu, Y. et al. DNA functionalization of carbon nanotubes for ultrathin atomic layer deposition of high kappa dielectrics for nanotube transistors with 60 mV/decade switching. J. Am. Chem. Soc. 128, 3518–3519 (2006).CrossRef
53.
Zurück zum Zitat Farmer, D. B. and Gordon, R. G. ALD of high-kapp dielectrics on suspended functionalized SWNTs. Electrochem. Solid-State Lett. 8, G89–G91 (2005).CrossRef Farmer, D. B. and Gordon, R. G. ALD of high-kapp dielectrics on suspended functionalized SWNTs. Electrochem. Solid-State Lett. 8, G89–G91 (2005).CrossRef
54.
Zurück zum Zitat Guo, J. et al. Assessment of silicon MOS and carbon nanotube FET performance using a general theory of ballistic transistors. IEDM Technical Digest (2002). Guo, J. et al. Assessment of silicon MOS and carbon nanotube FET performance using a general theory of ballistic transistors. IEDM Technical Digest (2002).
55.
Zurück zum Zitat Guo, J., Goasguen, S., Lundstrom, M., and Datta, S. Metal–insulator–semiconductor electrostatics of carbon nanotubes. Appl. Phys. Lett. 81, 1486–1488 (2002).CrossRef Guo, J., Goasguen, S., Lundstrom, M., and Datta, S. Metal–insulator–semiconductor electrostatics of carbon nanotubes. Appl. Phys. Lett. 81, 1486–1488 (2002).CrossRef
56.
Zurück zum Zitat John, D. L., Castro, L. C., and Pulfrey, D. L. Quantum capacitance in nanoscale device modeling. J. Appl. Phys. 96, 5180–5184 (2004).CrossRef John, D. L., Castro, L. C., and Pulfrey, D. L. Quantum capacitance in nanoscale device modeling. J. Appl. Phys. 96, 5180–5184 (2004).CrossRef
57.
Zurück zum Zitat Ilani, S., Donev, L. A. K., Kindermann, M., and McEuen, P. L. Measurement of the quantum capacitance of interacting electrons in carbon nanotubes. Nat. Phys. 2, 687–691 (2006).CrossRef Ilani, S., Donev, L. A. K., Kindermann, M., and McEuen, P. L. Measurement of the quantum capacitance of interacting electrons in carbon nanotubes. Nat. Phys. 2, 687–691 (2006).CrossRef
58.
Zurück zum Zitat Rosenblatt, S. et al. High performance electrolyte gated carbon nanotube transistors. Nano Lett. 2, 869 (2002).CrossRef Rosenblatt, S. et al. High performance electrolyte gated carbon nanotube transistors. Nano Lett. 2, 869 (2002).CrossRef
59.
Zurück zum Zitat Zhou, C., Kong, J., Yenilmez, E., and Dai, H. Modulated chemical doping of individual carbon nanotubes. Science 290, 1552 (2000).CrossRef Zhou, C., Kong, J., Yenilmez, E., and Dai, H. Modulated chemical doping of individual carbon nanotubes. Science 290, 1552 (2000).CrossRef
60.
Zurück zum Zitat Kong, J., Cao, J., Anderson, E., and Dai, H. Chemical profiling of single nanotubes: intramolecular pnp junctions and on-tube single electron transistors. Appl. Phys. Lett. 80, 73–75 (2002).CrossRef Kong, J., Cao, J., Anderson, E., and Dai, H. Chemical profiling of single nanotubes: intramolecular pnp junctions and on-tube single electron transistors. Appl. Phys. Lett. 80, 73–75 (2002).CrossRef
61.
Zurück zum Zitat Kong, J., Zhou, C., Yenilmez, E., and Dai, H. Alkaline metal doped n-type nanotubes as quantum dots. Appl. Phys. Lett. 77, 3977 (2000).CrossRef Kong, J., Zhou, C., Yenilmez, E., and Dai, H. Alkaline metal doped n-type nanotubes as quantum dots. Appl. Phys. Lett. 77, 3977 (2000).CrossRef
62.
Zurück zum Zitat Kong, J., Franklin, N., Chou, C., Pan, S., Cho, K. J., and Dai, H. Nanotube molecular wires as chemical sensors. Science, 287, 622 (2000).CrossRef Kong, J., Franklin, N., Chou, C., Pan, S., Cho, K. J., and Dai, H. Nanotube molecular wires as chemical sensors. Science, 287, 622 (2000).CrossRef
63.
Zurück zum Zitat Kong, J. and Dai, H. Full and partial chemical gating of nanotubes by organic amine compounds. J. Phys. Chem. 105, 2890–2893 (2001). Kong, J. and Dai, H. Full and partial chemical gating of nanotubes by organic amine compounds. J. Phys. Chem. 105, 2890–2893 (2001).
64.
Zurück zum Zitat Shim, M., Javey, A., Kam, N., and Dai, H. Polymer functionalization for air-stable n-type carbon nanotube field effect transistors. J. Am. Chem. Soc. 123, 11512–11513 (2001).CrossRef Shim, M., Javey, A., Kam, N., and Dai, H. Polymer functionalization for air-stable n-type carbon nanotube field effect transistors. J. Am. Chem. Soc. 123, 11512–11513 (2001).CrossRef
65.
Zurück zum Zitat Radosavljevic, M., Appenzeller, J., Avouris, P., and Knoch, J., High performance of potassium n-doped carbon nanotube field-effect transistors, Appl. Phys. Lett. 84, 3693–3695 (2004).CrossRef Radosavljevic, M., Appenzeller, J., Avouris, P., and Knoch, J., High performance of potassium n-doped carbon nanotube field-effect transistors, Appl. Phys. Lett. 84, 3693–3695 (2004).CrossRef
66.
Zurück zum Zitat Derycke, V., Martel, R., Appenzeller, J., and Avouris, Ph. Carbon nanotube inter- and intramolecular logic gates. Nano Lett. 1, 453–456 (2001).CrossRef Derycke, V., Martel, R., Appenzeller, J., and Avouris, Ph. Carbon nanotube inter- and intramolecular logic gates. Nano Lett. 1, 453–456 (2001).CrossRef
67.
Zurück zum Zitat Kim, W., Javey, A., Vermesh, O., Wang, Q., Li, Y., and Dai, H. Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett. 3, 193–198 (2003).CrossRef Kim, W., Javey, A., Vermesh, O., Wang, Q., Li, Y., and Dai, H. Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett. 3, 193–198 (2003).CrossRef
68.
Zurück zum Zitat Guo, J., Wang, J., Polizzi, E., Datta, S., and Lundstrom, M. Electrostatics of nanowire transistors. IEEE Trans. Nanotech. 2, 329–334 (2003).CrossRef Guo, J., Wang, J., Polizzi, E., Datta, S., and Lundstrom, M. Electrostatics of nanowire transistors. IEEE Trans. Nanotech. 2, 329–334 (2003).CrossRef
69.
Zurück zum Zitat Yao, Z., Kane, C. L., and Dekker, C. High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 84, 2941–2944 (2000).CrossRef Yao, Z., Kane, C. L., and Dekker, C. High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 84, 2941–2944 (2000).CrossRef
70.
Zurück zum Zitat Javey, A. et al. High-field, quasi-ballistic transport in short carbon nanotubes. Phys. Rev. Lett. 92, 106804 (2004).CrossRef Javey, A. et al. High-field, quasi-ballistic transport in short carbon nanotubes. Phys. Rev. Lett. 92, 106804 (2004).CrossRef
71.
Zurück zum Zitat Park, J.-Y. et al. Electron–phonon scattering in metallic single-walled carbon nanotubes. Nano Lett. 4, 517 (2004).CrossRef Park, J.-Y. et al. Electron–phonon scattering in metallic single-walled carbon nanotubes. Nano Lett. 4, 517 (2004).CrossRef
72.
Zurück zum Zitat Javey, A., Qi, P., Wang, Q., and Dai, H. 10- to 50-nm-long quasi-ballistic carbon nanotube devices obtained without complex lithography. Proc. Nat. Acad. Sci. 101, 13408 (2004). Javey, A., Qi, P., Wang, Q., and Dai, H. 10- to 50-nm-long quasi-ballistic carbon nanotube devices obtained without complex lithography. Proc. Nat. Acad. Sci. 101, 13408 (2004).
73.
Zurück zum Zitat Perebeinos, V., Tersoff, J., and Avouris, P. Electron–phonon interaction and transport in semiconducting carbon nanotubes. Phys. Rev. Lett. 94, 086802 (2005).CrossRef Perebeinos, V., Tersoff, J., and Avouris, P. Electron–phonon interaction and transport in semiconducting carbon nanotubes. Phys. Rev. Lett. 94, 086802 (2005).CrossRef
74.
Zurück zum Zitat Zhou, X., Park, J -Y, Huang, S., Liu, J., and McEuen, P. L. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 95, 146805 (2005). Zhou, X., Park, J -Y, Huang, S., Liu, J., and McEuen, P. L. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 95, 146805 (2005).
75.
Zurück zum Zitat Guo, J. and Lundstrom, M. Role of phonon scattering in carbon nanotube field-effect transistors. Appl. Phys. Lett. 86, 193103-05 (2005).CrossRef Guo, J. and Lundstrom, M. Role of phonon scattering in carbon nanotube field-effect transistors. Appl. Phys. Lett. 86, 193103-05 (2005).CrossRef
76.
Zurück zum Zitat Guo, J., Javey, A., Dai, H., and Lundstrom, M. Performance analysis and design optimization of near ballistic carbon nanotube field-effect transistors. International Electron Devices Meeting, 703–6 (2004). Guo, J., Javey, A., Dai, H., and Lundstrom, M. Performance analysis and design optimization of near ballistic carbon nanotube field-effect transistors. International Electron Devices Meeting, 703–6 (2004).
77.
Zurück zum Zitat Lochtefeld, A. and Antoniadis, D. On experimental determination of carrier velocity in deeply scaled NMOS: how close to the thermal limit? IEEE Electron Device Lett. 22, 95, (2001).CrossRef Lochtefeld, A. and Antoniadis, D. On experimental determination of carrier velocity in deeply scaled NMOS: how close to the thermal limit? IEEE Electron Device Lett. 22, 95, (2001).CrossRef
78.
Zurück zum Zitat Javey, A., Famer, D., Gordon, R., and Dai, H. Self-aligned 40 nm channel carbon nanotube field-effect transistors with subthreshold swings down to 70 mV/decade. Proceedings of SPIE – The International Society for Optical Engineering (Quantum Sensing and Nanophotonic Devices II, M. Razeghi, G.J. Brown, eds.), 5732, 14–18 (2005). Javey, A., Famer, D., Gordon, R., and Dai, H. Self-aligned 40 nm channel carbon nanotube field-effect transistors with subthreshold swings down to 70 mV/decade. Proceedings of SPIE – The International Society for Optical Engineering (Quantum Sensing and Nanophotonic Devices II, M. Razeghi, G.J. Brown, eds.), 5732, 14–18 (2005).
79.
Zurück zum Zitat Appenzeller, J., Lin, Y.-M., Knoch, J., and Avouris, P. Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett. 93, (2004). Appenzeller, J., Lin, Y.-M., Knoch, J., and Avouris, P. Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett. 93, (2004).
80.
Zurück zum Zitat Appenzeller, J., Lin, Y. M., Knoch, J., Chen, Z. H., and Avouris, P. Comparing carbon nanotube transistors – the ideal choice: a novel tunneling device design. IEEE Trans. Elec. Dev. 52, 2568–2576 (2005).CrossRef Appenzeller, J., Lin, Y. M., Knoch, J., Chen, Z. H., and Avouris, P. Comparing carbon nanotube transistors – the ideal choice: a novel tunneling device design. IEEE Trans. Elec. Dev. 52, 2568–2576 (2005).CrossRef
81.
Zurück zum Zitat Zhang, G., Wang, X., Li, X., Lu, Y., Javey, A., and Dai, H. Carbon nanotubes: from growth, placement, and assembly control to 60 mV/decade and Sub-60 mV/decade tunnel transistors. IEEE IEDM Technical Digest (2006). Zhang, G., Wang, X., Li, X., Lu, Y., Javey, A., and Dai, H. Carbon nanotubes: from growth, placement, and assembly control to 60 mV/decade and Sub-60 mV/decade tunnel transistors. IEEE IEDM Technical Digest (2006).
82.
Zurück zum Zitat Koswatta, S. O. et al. Simulation of phonon-assisted band-to-band tunneling in carbon nanotube field-effect transistors. Appl. Phys. Lett. 87, 253107 (2005).CrossRef Koswatta, S. O. et al. Simulation of phonon-assisted band-to-band tunneling in carbon nanotube field-effect transistors. Appl. Phys. Lett. 87, 253107 (2005).CrossRef
Metadaten
Titel
Carbon Nanotube Field-Effect Transistors
verfasst von
Ali Javey
Copyright-Jahr
2009
Verlag
Springer US
DOI
https://doi.org/10.1007/978-0-387-69285-2_3

Neuer Inhalt