Skip to main content

2016 | OriginalPaper | Buchkapitel

7. Carbon Nanotube TFETs: Structure Optimization with Numerical Simulation

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The unique band structure makes carbon nanotube (CNT) an ideal vehicle for tunnel FET (TFET) studying. In this chapter, the structure of CNT-TFET is optimized with numerical simulation. The band structure of CNT is acquired with p z orbital tight-binding model. Quantum mechanical simulation with the non-equilibrium Green’s function is adopted describing the carrier transport. TFET is compared with conventional MOSFET with CNT as the channel material. A steeper than 60 mv/dec inverse subthreshold slope is obtained at the cost of a smaller on current and the ambipolar conduction behavior. The current modulation mechanism of TFET is discussed concerning both the occupancy probability and tunnel probability. The occupancy probability can be modulated with band alignment, and the tunnel probability can be modulated with the electric field or tunnel path. Several optimized TFET structures including doping engineering, dielectric engineering, and gate work function engineering are demonstrated for improved performances with increased on current and/or reduced ambipolar conduction.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (World Scientific Publishing Company, 1998) R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (World Scientific Publishing Company, 1998)
2.
Zurück zum Zitat L. Radushkevich, V. Lukyanovich, On the structure of carbon formed by the thermal decomposition of carbon monoxide (CO) to the contact with iron. Russ. J. Phys. Chem. 26, 88 (1952) L. Radushkevich, V. Lukyanovich, On the structure of carbon formed by the thermal decomposition of carbon monoxide (CO) to the contact with iron. Russ. J. Phys. Chem. 26, 88 (1952)
3.
Zurück zum Zitat S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)CrossRef S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)CrossRef
4.
Zurück zum Zitat A. Javey, J. Kong, Carbon Nanotube Electronics (Springer, Berlin, 2009) A. Javey, J. Kong, Carbon Nanotube Electronics (Springer, Berlin, 2009)
5.
Zurück zum Zitat H.S.P. Wong, D. Akinwande, Carbon Nanotube and Graphene Device Physics (Cambridge University Press, Cambridge, 2011) H.S.P. Wong, D. Akinwande, Carbon Nanotube and Graphene Device Physics (Cambridge University Press, Cambridge, 2011)
6.
Zurück zum Zitat J. Knoch, S. Mantl, J. Appenzeller, Impact of the dimensionality on the performance of tunneling FETs: bulk versus one-dimensional devices. Solid-State Electron. 51, 572–578 (2007)CrossRef J. Knoch, S. Mantl, J. Appenzeller, Impact of the dimensionality on the performance of tunneling FETs: bulk versus one-dimensional devices. Solid-State Electron. 51, 572–578 (2007)CrossRef
7.
Zurück zum Zitat J. Appenzeller, L. Yu-Ming, J. Knoch, C. Zhihong, P. Avouris, Comparing carbon nanotube transistors—The ideal choice: a novel tunneling device design. IEEE Trans. Electron Devices 52, 2568–2576 (2005)CrossRef J. Appenzeller, L. Yu-Ming, J. Knoch, C. Zhihong, P. Avouris, Comparing carbon nanotube transistors—The ideal choice: a novel tunneling device design. IEEE Trans. Electron Devices 52, 2568–2576 (2005)CrossRef
8.
Zurück zum Zitat J. Appenzeller, J. Knoch, M.T. Bjork, H. Riel, H. Schmid, W. Riess, Toward nanowire electronics. IEEE Trans. Electron Devices 55, 2827–2845 (2008)CrossRef J. Appenzeller, J. Knoch, M.T. Bjork, H. Riel, H. Schmid, W. Riess, Toward nanowire electronics. IEEE Trans. Electron Devices 55, 2827–2845 (2008)CrossRef
9.
Zurück zum Zitat P.A. Patel, Steep turn on/off ‘Green’ tunnel transistors. Ph.D. thesis, EECS Department, University of California, Berkeley (2010) P.A. Patel, Steep turn on/off ‘Green’ tunnel transistors. Ph.D. thesis, EECS Department, University of California, Berkeley (2010)
10.
Zurück zum Zitat D.E. Nikonov, I.A. Young, Overview of beyond-CMOS devices and a uniform methodology for their benchmarking. Proc. IEEE 101, 2498–2533 (2013)CrossRef D.E. Nikonov, I.A. Young, Overview of beyond-CMOS devices and a uniform methodology for their benchmarking. Proc. IEEE 101, 2498–2533 (2013)CrossRef
11.
Zurück zum Zitat J. Appenzeller, Y.M. Lin, J. Knoch, P. Avouris, Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett. 93, 196805 (2004)CrossRef J. Appenzeller, Y.M. Lin, J. Knoch, P. Avouris, Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett. 93, 196805 (2004)CrossRef
12.
Zurück zum Zitat L. Zhang, X. Lin, J. He, M. Chan, An analytical charge model for double-gate tunnel FETs. IEEE Trans. Electron Devices 59, 3217–3223 (2012)CrossRef L. Zhang, X. Lin, J. He, M. Chan, An analytical charge model for double-gate tunnel FETs. IEEE Trans. Electron Devices 59, 3217–3223 (2012)CrossRef
13.
Zurück zum Zitat Y. Taur, J. Wu, J. Min, An analytic model for heterojunction tunnel FETs with exponential barrier. IEEE Trans. Electron Devices 62, 1399–1404 (2015)CrossRef Y. Taur, J. Wu, J. Min, An analytic model for heterojunction tunnel FETs with exponential barrier. IEEE Trans. Electron Devices 62, 1399–1404 (2015)CrossRef
14.
Zurück zum Zitat E.-H. Toh, G. H. Wang, L. Chan, G. Samudra, Y.-C. Yeo, Device physics and guiding principles for the design of double-gate tunneling field effect transistor with silicon-germanium source heterojunction. Appl. Phys. Lett. 91, 243505-3 (2007) E.-H. Toh, G. H. Wang, L. Chan, G. Samudra, Y.-C. Yeo, Device physics and guiding principles for the design of double-gate tunneling field effect transistor with silicon-germanium source heterojunction. Appl. Phys. Lett. 91, 243505-3 (2007)
15.
Zurück zum Zitat O.M. Nayfeh, C.N. Chleirigh, J. Hennessy, L. Gomez, J.L. Hoyt, D.A. Antoniadis, Design of tunneling field-effect transistors using strained-silicon/strained-germanium type-II staggered heterojunctions. IEEE Electron Device Lett. 29, 1074–1077 (2008)CrossRef O.M. Nayfeh, C.N. Chleirigh, J. Hennessy, L. Gomez, J.L. Hoyt, D.A. Antoniadis, Design of tunneling field-effect transistors using strained-silicon/strained-germanium type-II staggered heterojunctions. IEEE Electron Device Lett. 29, 1074–1077 (2008)CrossRef
16.
Zurück zum Zitat K. Ganapathi, S. Salahuddin, Heterojunction vertical band-to-band tunneling transistors for steep subthreshold swing and high on current. IEEE Electron Device Lett. 32, 689–691 (2011)CrossRef K. Ganapathi, S. Salahuddin, Heterojunction vertical band-to-band tunneling transistors for steep subthreshold swing and high on current. IEEE Electron Device Lett. 32, 689–691 (2011)CrossRef
17.
Zurück zum Zitat M. Liu, Y. Liu, H. Wang, Q. Zhang, C. Zhang, S. Hu et al., Design of GeSn-based heterojunction-enhanced N-Channel tunneling FET With improved subthreshold swing and ON-State current. IEEE Trans. Electron Devices 62, 1262–1268 (2015)CrossRef M. Liu, Y. Liu, H. Wang, Q. Zhang, C. Zhang, S. Hu et al., Design of GeSn-based heterojunction-enhanced N-Channel tunneling FET With improved subthreshold swing and ON-State current. IEEE Trans. Electron Devices 62, 1262–1268 (2015)CrossRef
18.
Zurück zum Zitat D.B. Abdi, M.J. Kumar, In-built N+ pocket p-n-p-n tunnel field-effect transistor. IEEE Electron Device Lett. 35, 1170–1172 (2014)CrossRef D.B. Abdi, M.J. Kumar, In-built N+ pocket p-n-p-n tunnel field-effect transistor. IEEE Electron Device Lett. 35, 1170–1172 (2014)CrossRef
19.
Zurück zum Zitat R. Jhaveri, V. Nagavarapu, J.C.S. Woo, Effect of pocket doping and annealing schemes on the source-pocket tunnel field-effect transistor. IEEE Trans. Electron Devices 58, 80–86 (2011)CrossRef R. Jhaveri, V. Nagavarapu, J.C.S. Woo, Effect of pocket doping and annealing schemes on the source-pocket tunnel field-effect transistor. IEEE Trans. Electron Devices 58, 80–86 (2011)CrossRef
20.
Zurück zum Zitat V. Nagavarapu, R. Jhaveri, J.C.S. Woo, The tunnel source (PNPN) n-MOSFET: a novel high performance transistor. IEEE Trans. Electron Devices 55, 1013–1019 (2008)CrossRef V. Nagavarapu, R. Jhaveri, J.C.S. Woo, The tunnel source (PNPN) n-MOSFET: a novel high performance transistor. IEEE Trans. Electron Devices 55, 1013–1019 (2008)CrossRef
21.
Zurück zum Zitat S. Datta, Nanoscale device modeling: the Green’s function method. Superlattices Microstruct. 28, 253–278 (2000)CrossRef S. Datta, Nanoscale device modeling: the Green’s function method. Superlattices Microstruct. 28, 253–278 (2000)CrossRef
22.
Zurück zum Zitat S. Datta, Quantum Transport: Atom to Transistor (Cambridge University Press, Cambridge, 2005) S. Datta, Quantum Transport: Atom to Transistor (Cambridge University Press, Cambridge, 2005)
23.
Zurück zum Zitat S.O. Koswatta, N. Neophytou, D. Kienle, G. Fiori, M.S. Lundstrom, Dependence of DC characteristics of CNT MOSFETs on bandstructure models. IEEE Trans. Nanotechnol. 5, 368–372 (2006)CrossRef S.O. Koswatta, N. Neophytou, D. Kienle, G. Fiori, M.S. Lundstrom, Dependence of DC characteristics of CNT MOSFETs on bandstructure models. IEEE Trans. Nanotechnol. 5, 368–372 (2006)CrossRef
24.
Zurück zum Zitat S.O. Koswatta, M.S. Lundstrom, D.E. Nikonov, Performance comparison between p-i-n tunneling transistors and conventional MOSFETs. IEEE Trans. Electron Devices 56, 456–465 (2009)CrossRef S.O. Koswatta, M.S. Lundstrom, D.E. Nikonov, Performance comparison between p-i-n tunneling transistors and conventional MOSFETs. IEEE Trans. Electron Devices 56, 456–465 (2009)CrossRef
25.
Zurück zum Zitat S. Bruzzone, G. Iannaccone, N. Marzari, G. Fiori, An open-source multiscale framework for the simulation of nanoscale devices. IEEE Trans. Electron Devices 61, 48–53 (2014)CrossRef S. Bruzzone, G. Iannaccone, N. Marzari, G. Fiori, An open-source multiscale framework for the simulation of nanoscale devices. IEEE Trans. Electron Devices 61, 48–53 (2014)CrossRef
26.
Zurück zum Zitat D. Vasileska, S.M. Goodnick, Computational Electronics (Morgan & Claypool Publishers, 2006) D. Vasileska, S.M. Goodnick, Computational Electronics (Morgan & Claypool Publishers, 2006)
27.
Zurück zum Zitat Z. Ren, Nanoscale MOSFETs: physics, simulation and design. Ph.D. thesis, Purdue University (2006) Z. Ren, Nanoscale MOSFETs: physics, simulation and design. Ph.D. thesis, Purdue University (2006)
28.
Zurück zum Zitat R. Lake, G. Klimeck, R.C. Bowen, D. Jovanovic, Single and multiband modeling of quantum electron transport through layered semiconductor devices. J. Appl. Phys. 81, 7845–7869 (1997)CrossRef R. Lake, G. Klimeck, R.C. Bowen, D. Jovanovic, Single and multiband modeling of quantum electron transport through layered semiconductor devices. J. Appl. Phys. 81, 7845–7869 (1997)CrossRef
29.
Zurück zum Zitat M.P. Anantram, M.S. Lundstrom, D.E. Nikonov, Modeling of nanoscale devices. Proc. IEEE 96, 1511–1550 (2008)CrossRef M.P. Anantram, M.S. Lundstrom, D.E. Nikonov, Modeling of nanoscale devices. Proc. IEEE 96, 1511–1550 (2008)CrossRef
30.
Zurück zum Zitat R. Venugopal, Z. Ren, S. Datta, M.S. Lundstrom, D. Jovanovic, Simulating quantum transport in nanoscale transistors: real versus mode-space approaches. J. Appl. Phys. 92, 3730–3739 (2002)CrossRef R. Venugopal, Z. Ren, S. Datta, M.S. Lundstrom, D. Jovanovic, Simulating quantum transport in nanoscale transistors: real versus mode-space approaches. J. Appl. Phys. 92, 3730–3739 (2002)CrossRef
31.
Zurück zum Zitat M. Luisier, A. Schenk, W. Fichtner, Quantum transport in two- and three-dimensional nanoscale transistors: Coupled mode effects in the nonequilibrium Green’s function formalism. J. Appl. Phys. 100, 12 (2006)CrossRef M. Luisier, A. Schenk, W. Fichtner, Quantum transport in two- and three-dimensional nanoscale transistors: Coupled mode effects in the nonequilibrium Green’s function formalism. J. Appl. Phys. 100, 12 (2006)CrossRef
32.
Zurück zum Zitat H. Wang, G. Wang, S. Chang, Q. Huang, High-order element effects of the Green’s function in quantum transport simulation of nanoscale devices. IEEE Trans. Electron Devices 56, 3106–3114 (2009)CrossRef H. Wang, G. Wang, S. Chang, Q. Huang, High-order element effects of the Green’s function in quantum transport simulation of nanoscale devices. IEEE Trans. Electron Devices 56, 3106–3114 (2009)CrossRef
33.
Zurück zum Zitat D. Mamaluy, M. Sabathil, P. Vogl, Efficient method for the calculation of ballistic quantum transport. J. Appl. Phys. 93, 4628–4633 (2003)CrossRef D. Mamaluy, M. Sabathil, P. Vogl, Efficient method for the calculation of ballistic quantum transport. J. Appl. Phys. 93, 4628–4633 (2003)CrossRef
34.
Zurück zum Zitat A. Trellakis, A.T. Galick, A. Pacelli, U. Ravaioli, Iteration scheme for the solution of the two-dimensional Schrodinger-Poisson equations in quantum structures. J. Appl. Phys. 81, 7880–7884 (1997)CrossRef A. Trellakis, A.T. Galick, A. Pacelli, U. Ravaioli, Iteration scheme for the solution of the two-dimensional Schrodinger-Poisson equations in quantum structures. J. Appl. Phys. 81, 7880–7884 (1997)CrossRef
35.
Zurück zum Zitat G. Fiori, G. Iannaccone, G. Klimeck, A three-dimensional simulation study of the performance of carbon nanotube field-effect transistors with doped reservoirs and realistic geometry. IEEE Trans. Electron Devices 53, 1782–1788 (2006)CrossRef G. Fiori, G. Iannaccone, G. Klimeck, A three-dimensional simulation study of the performance of carbon nanotube field-effect transistors with doped reservoirs and realistic geometry. IEEE Trans. Electron Devices 53, 1782–1788 (2006)CrossRef
36.
Zurück zum Zitat H. Wang, G. Wang, S. Chang, Q. Huang, Accelerated solution of Poisson-Schrodinger equations in nanoscale devices by Anderson mixing scheme. IET Micro Nano Letters 4, 122–127 (2009)CrossRef H. Wang, G. Wang, S. Chang, Q. Huang, Accelerated solution of Poisson-Schrodinger equations in nanoscale devices by Anderson mixing scheme. IET Micro Nano Letters 4, 122–127 (2009)CrossRef
40.
Zurück zum Zitat G. Fiori, G. Iannaccone, Three-dimensional simulation of one-dimensional transport in silicon nanowire transistors. IEEE Trans. Nanotechnol. 6, 524–529 (2007)CrossRef G. Fiori, G. Iannaccone, Three-dimensional simulation of one-dimensional transport in silicon nanowire transistors. IEEE Trans. Nanotechnol. 6, 524–529 (2007)CrossRef
42.
Zurück zum Zitat J. Guo, S. Datta, M. Lundstrom, A numerical study of scaling issues for Schottky-barrier carbon nanotube transistors. IEEE Trans. Electron Devices 51, 172–177 (2004)CrossRef J. Guo, S. Datta, M. Lundstrom, A numerical study of scaling issues for Schottky-barrier carbon nanotube transistors. IEEE Trans. Electron Devices 51, 172–177 (2004)CrossRef
43.
Zurück zum Zitat I. Hassaninia, M.H. Sheikhi, Z. Kordrostami, Simulation of carbon nanotube FETs with linear doping profile near the source and drain contacts. Solid-State Electron. 52, 980–985 (2008) I. Hassaninia, M.H. Sheikhi, Z. Kordrostami, Simulation of carbon nanotube FETs with linear doping profile near the source and drain contacts. Solid-State Electron. 52, 980–985 (2008)
44.
Zurück zum Zitat H. Zhou, M. Zhang, Y. Hao, Performance Optimization of MOS-Like carbon nanotube FETs with realistic contacts. IEEE Trans. Electron Devices 57, 3153–3162 (2010)CrossRef H. Zhou, M. Zhang, Y. Hao, Performance Optimization of MOS-Like carbon nanotube FETs with realistic contacts. IEEE Trans. Electron Devices 57, 3153–3162 (2010)CrossRef
45.
Zurück zum Zitat L. De Michielis, L. Lattanzio, K.E. Moselund, H. Riel, A.M. Ionescu, Tunneling and occupancy probabilities: how do they affect tunnel-FET behavior? IEEE Electron Device Lett. 34, 726–728 (2013)CrossRef L. De Michielis, L. Lattanzio, K.E. Moselund, H. Riel, A.M. Ionescu, Tunneling and occupancy probabilities: how do they affect tunnel-FET behavior? IEEE Electron Device Lett. 34, 726–728 (2013)CrossRef
46.
Zurück zum Zitat L. De Michielis, L. Lattanzio, A.M. Ionescu, Understanding the superlinear onset of tunnel-FET output characteristic. IEEE Electron Device Lett. 33, 1523–1525 (2012)CrossRef L. De Michielis, L. Lattanzio, A.M. Ionescu, Understanding the superlinear onset of tunnel-FET output characteristic. IEEE Electron Device Lett. 33, 1523–1525 (2012)CrossRef
47.
Zurück zum Zitat M.A. Khayer, R.K. Lake, Drive currents and leakage currents in InSb and InAs nanowire and carbon nanotube band-to-band tunneling FETs. IEEE Electron Device Lett. 30, 1257–1259 (2009)CrossRef M.A. Khayer, R.K. Lake, Drive currents and leakage currents in InSb and InAs nanowire and carbon nanotube band-to-band tunneling FETs. IEEE Electron Device Lett. 30, 1257–1259 (2009)CrossRef
48.
Zurück zum Zitat A.S. Verhulst, W.G. Vandenberghe, K. Maex, S. De Gendt, M.M. Heyns, G. Groeseneken, Complementary silicon-based heterostructure tunnel-FETs with high tunnel rates. IEEE Electron Device Lett. 29, 1398–1401 (2008)CrossRef A.S. Verhulst, W.G. Vandenberghe, K. Maex, S. De Gendt, M.M. Heyns, G. Groeseneken, Complementary silicon-based heterostructure tunnel-FETs with high tunnel rates. IEEE Electron Device Lett. 29, 1398–1401 (2008)CrossRef
49.
Zurück zum Zitat C. Wei, C.J. Yao, G.F. Jiao, H. Darning, H.Y. Yu, L. Ming-Fu, Improvement in reliability of tunneling field-effect transistor with p-n-i-n structure. IEEE Trans. Electron Devices 58, 2122–2126 (2011)CrossRef C. Wei, C.J. Yao, G.F. Jiao, H. Darning, H.Y. Yu, L. Ming-Fu, Improvement in reliability of tunneling field-effect transistor with p-n-i-n structure. IEEE Trans. Electron Devices 58, 2122–2126 (2011)CrossRef
50.
Zurück zum Zitat A.S. Verhulst, W.G. Vandenberghe, K. Maex, G. Groeseneken, Tunnel field-effect transistor without gate-drain overlap. Appl. Phys. Lett. 91, 053102–053103 (2007)CrossRef A.S. Verhulst, W.G. Vandenberghe, K. Maex, G. Groeseneken, Tunnel field-effect transistor without gate-drain overlap. Appl. Phys. Lett. 91, 053102–053103 (2007)CrossRef
51.
Zurück zum Zitat D.B. Abdi, M.J. Kumar, Controlling Ambipolar current in tunneling FETs using overlapping gate-on-drain. IEEE J. Electron Devices Soc. 1–1 (2014) D.B. Abdi, M.J. Kumar, Controlling Ambipolar current in tunneling FETs using overlapping gate-on-drain. IEEE J. Electron Devices Soc. 1–1 (2014)
52.
Zurück zum Zitat C. Anghel, P. Chilagani, A. Amara, A. Vladimirescu, Tunnel field effect transistor with increased ON current, low-k spacer and high-k dielectric. Appl. Phys. Lett. 96 (2010) C. Anghel, P. Chilagani, A. Amara, A. Vladimirescu, Tunnel field effect transistor with increased ON current, low-k spacer and high-k dielectric. Appl. Phys. Lett. 96 (2010)
53.
Zurück zum Zitat M. Schlosser, K.K. Bhuwalka, M. Sauter, T. Zilbauer, T. Sulima, I. Eisele, Fringing-induced drain current improvement in the tunnel field-effect transistor with high-k gate dielectrics. IEEE Trans. Electron Devices 56, 100–108 (2009)CrossRef M. Schlosser, K.K. Bhuwalka, M. Sauter, T. Zilbauer, T. Sulima, I. Eisele, Fringing-induced drain current improvement in the tunnel field-effect transistor with high-k gate dielectrics. IEEE Trans. Electron Devices 56, 100–108 (2009)CrossRef
54.
Zurück zum Zitat C. Woo Young, L. Woojun, Hetero-gate-dielectric tunneling field-effect transistors. IEEE Trans. Electron Devices 57, 2317–2319 (2010) C. Woo Young, L. Woojun, Hetero-gate-dielectric tunneling field-effect transistors. IEEE Trans. Electron Devices 57, 2317–2319 (2010)
55.
Zurück zum Zitat H. Wang, S. Chang, Y. Hu, H. He, J. He, Q. Huang, F. He, G. Wang, A novel barrier controlled tunnel FET. IEEE Electron Device Lett. 35, 798–800 (2014)CrossRef H. Wang, S. Chang, Y. Hu, H. He, J. He, Q. Huang, F. He, G. Wang, A novel barrier controlled tunnel FET. IEEE Electron Device Lett. 35, 798–800 (2014)CrossRef
56.
Zurück zum Zitat S.J. Wind, J. Appenzeller, P. Avouris, Lateral scaling in carbon-nanotube field-effect transistors. Phys. Rev. Lett. 91, 058301 (2003) S.J. Wind, J. Appenzeller, P. Avouris, Lateral scaling in carbon-nanotube field-effect transistors. Phys. Rev. Lett. 91, 058301 (2003)
57.
Zurück zum Zitat S. Saurabh, M.J. Kumar, Novel attributes of a dual material gate nanoscale tunnel field-effect transistor. IEEE Trans. Electron Devices 58, 404–410 (2011)CrossRef S. Saurabh, M.J. Kumar, Novel attributes of a dual material gate nanoscale tunnel field-effect transistor. IEEE Trans. Electron Devices 58, 404–410 (2011)CrossRef
58.
Zurück zum Zitat H. Wang, S. Chang, J. He, Q. Huang, A Novel PNIN Barrier controlled tunnel FET. Adv. Mater. Res. 1096, 497–502 (2015)CrossRef H. Wang, S. Chang, J. He, Q. Huang, A Novel PNIN Barrier controlled tunnel FET. Adv. Mater. Res. 1096, 497–502 (2015)CrossRef
Metadaten
Titel
Carbon Nanotube TFETs: Structure Optimization with Numerical Simulation
verfasst von
Hao Wang
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-31653-6_7

Neuer Inhalt