Skip to main content

2015 | OriginalPaper | Buchkapitel

3. Carbon Nanotubes

verfasst von : Ruhong Zhou

Erschienen in: Modeling of Nanotoxicity

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As mentioned in previous chapters, carbon nanotubes (CNTs) are widely used nanomaterials (NMs) nowadays in both industrial and medical applications [1]. CNTs have significantly promising biomedical applications, such as drug design [2], drug delivery [3], tumor therapy [4], tissue engineering [5], DNA recognition [6], and biosensor design.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef
2.
Zurück zum Zitat Prato M, Kostarelos K, Bianco A (2008) Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 41(1):60–68CrossRef Prato M, Kostarelos K, Bianco A (2008) Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 41(1):60–68CrossRef
3.
Zurück zum Zitat Bhirde AA, Patel V, Gavard J, Zhang G, Sousa AA et al (2009) Targeted killing of cancer cells in vivo and in vitro with egf-directed carbon nanotube-based drug delivery. ACS Nano 3(2):307–316CrossRef Bhirde AA, Patel V, Gavard J, Zhang G, Sousa AA et al (2009) Targeted killing of cancer cells in vivo and in vitro with egf-directed carbon nanotube-based drug delivery. ACS Nano 3(2):307–316CrossRef
4.
Zurück zum Zitat Thakare VS, Das M, Jain AK, Patil S, Jain S (2010) Carbon nanotubes in cancer theragnosis. Nanomedicine 5(8):1277–1301CrossRef Thakare VS, Das M, Jain AK, Patil S, Jain S (2010) Carbon nanotubes in cancer theragnosis. Nanomedicine 5(8):1277–1301CrossRef
5.
Zurück zum Zitat Zanello LP, Zhao B, Hu H, Haddon RC (2006) Bone cell proliferation on carbon nanotubes. Nano Lett 6(3):562–567CrossRef Zanello LP, Zhao B, Hu H, Haddon RC (2006) Bone cell proliferation on carbon nanotubes. Nano Lett 6(3):562–567CrossRef
6.
Zurück zum Zitat Tu X, Manohar S, Jagota A, Zheng M (2009) DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460(7252):250–253CrossRef Tu X, Manohar S, Jagota A, Zheng M (2009) DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460(7252):250–253CrossRef
7.
Zurück zum Zitat Liu N, Zhang Q, Chan-Park MB, Li C, Chen P (2009) Carbon nanotubes for electrochemical and electronic biosensing applications. Nanosci Biomed 205–246 Liu N, Zhang Q, Chan-Park MB, Li C, Chen P (2009) Carbon nanotubes for electrochemical and electronic biosensing applications. Nanosci Biomed 205–246
8.
Zurück zum Zitat Thayer AM (2007) Carbon nanotubes by the metric ton. Chem Eng News 85(46):29–35CrossRef Thayer AM (2007) Carbon nanotubes by the metric ton. Chem Eng News 85(46):29–35CrossRef
9.
Zurück zum Zitat Ryman-Rasmussen JP, Cesta MF, Brody AR, Shipley-Phillips JK, Everitt JI et al (2009) Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat Nanotechnol. 4:747–751CrossRef Ryman-Rasmussen JP, Cesta MF, Brody AR, Shipley-Phillips JK, Everitt JI et al (2009) Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat Nanotechnol. 4:747–751CrossRef
10.
Zurück zum Zitat Kolosnjaj J, Szwarc H, Moussa F (2007) Toxicity studies of carbon nanotubes. Adv Experi Med Biol 620:181–204CrossRef Kolosnjaj J, Szwarc H, Moussa F (2007) Toxicity studies of carbon nanotubes. Adv Experi Med Biol 620:181–204CrossRef
11.
Zurück zum Zitat Porter AE, Gass M, Muller K, Skepper JN, Midgley PA et al (2007) Direct imaging of single-walled carbon nanotubes in cells. Nat Nanotechnol 2:713–717CrossRef Porter AE, Gass M, Muller K, Skepper JN, Midgley PA et al (2007) Direct imaging of single-walled carbon nanotubes in cells. Nat Nanotechnol 2:713–717CrossRef
12.
Zurück zum Zitat Ma-Hock L, Treumann S, Strauss V, Brill S, Luizi F et al (2009) Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months. Toxicol Sci 112:468–481CrossRef Ma-Hock L, Treumann S, Strauss V, Brill S, Luizi F et al (2009) Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months. Toxicol Sci 112:468–481CrossRef
13.
Zurück zum Zitat Schipper ML, Nakayama-Ratchford N, Davis CR, Kam NWS, Chu P et al (2008) A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat Nanotechnol 3(4):216–221CrossRef Schipper ML, Nakayama-Ratchford N, Davis CR, Kam NWS, Chu P et al (2008) A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat Nanotechnol 3(4):216–221CrossRef
14.
Zurück zum Zitat Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ et al (2005) Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289:L698–L708CrossRef Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ et al (2005) Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289:L698–L708CrossRef
15.
Zurück zum Zitat Mitchell LA, Lauer FT, Burchiel SW, McDonald JD (2009) Mechanisms for how inhaled multiwalled carbon nanotubes suppress systemic immune function in mice. Nat Nanotechnol 4:451–456CrossRef Mitchell LA, Lauer FT, Burchiel SW, McDonald JD (2009) Mechanisms for how inhaled multiwalled carbon nanotubes suppress systemic immune function in mice. Nat Nanotechnol 4:451–456CrossRef
16.
Zurück zum Zitat Li Z, Hulderman T, Salmen R, Chapman R, Leonard SS et al (2007) Cardiovascular effects of pulmonary exposure to single-wall carbon nanotubes. Environ Health Perspect 115:377–382CrossRef Li Z, Hulderman T, Salmen R, Chapman R, Leonard SS et al (2007) Cardiovascular effects of pulmonary exposure to single-wall carbon nanotubes. Environ Health Perspect 115:377–382CrossRef
17.
Zurück zum Zitat Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH et al (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428CrossRef Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH et al (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428CrossRef
18.
Zurück zum Zitat Bai YH, Zhang Y, Zhang JP, Mu QX, Zhang WD et al (2010) Repeated administrations of carbon nanotubes in male mice cause reversible testis damage without affecting fertility. Nat Nanotechnol 5(9):683–689CrossRef Bai YH, Zhang Y, Zhang JP, Mu QX, Zhang WD et al (2010) Repeated administrations of carbon nanotubes in male mice cause reversible testis damage without affecting fertility. Nat Nanotechnol 5(9):683–689CrossRef
19.
Zurück zum Zitat Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E et al (2007) Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104:2050–2055CrossRef Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E et al (2007) Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104:2050–2055CrossRef
20.
Zurück zum Zitat Klein J (2007) Probing the interactions of proteins and nanoparticles. Proc Natl Acad Sci USA 104:2029–2030CrossRef Klein J (2007) Probing the interactions of proteins and nanoparticles. Proc Natl Acad Sci USA 104:2029–2030CrossRef
21.
Zurück zum Zitat Rocker C, Potzl M, Zhang F, Parak WJ, Nienhaus GU (2009) A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat Nanotechnol 4:577–580CrossRef Rocker C, Potzl M, Zhang F, Parak WJ, Nienhaus GU (2009) A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat Nanotechnol 4:577–580CrossRef
22.
Zurück zum Zitat Zhao XC, Liu RT (2012) Recent progress and perspectives on the toxicity of carbon nanotubes at organism, organ, cell, and biomacromolecule levels. Environ Int 40:244–255CrossRef Zhao XC, Liu RT (2012) Recent progress and perspectives on the toxicity of carbon nanotubes at organism, organ, cell, and biomacromolecule levels. Environ Int 40:244–255CrossRef
23.
Zurück zum Zitat Chen Z, Chen H, Meng H, Xing GM, Gao XY et al (2008) Bio-distribution and metabolic paths of silica coated CdSeS quantum dots. Toxicol Appl Pharm 230(3):364–371CrossRef Chen Z, Chen H, Meng H, Xing GM, Gao XY et al (2008) Bio-distribution and metabolic paths of silica coated CdSeS quantum dots. Toxicol Appl Pharm 230(3):364–371CrossRef
24.
Zurück zum Zitat Chen Z, Meng H, Xing GM, Chen CY, Zhao YL et al (2006) Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163:109–120CrossRef Chen Z, Meng H, Xing GM, Chen CY, Zhao YL et al (2006) Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163:109–120CrossRef
25.
Zurück zum Zitat Jia G, Wang HF, Yan L, Wang X, Pei RJ et al (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Tech 39(5):1378–1383CrossRef Jia G, Wang HF, Yan L, Wang X, Pei RJ et al (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Tech 39(5):1378–1383CrossRef
26.
Zurück zum Zitat Kagan VE, Konduru NV, Feng W, Allen BL, Conroy J et al (2010) Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat Nanotechnol 5:354–359CrossRef Kagan VE, Konduru NV, Feng W, Allen BL, Conroy J et al (2010) Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat Nanotechnol 5:354–359CrossRef
27.
Zurück zum Zitat Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRef Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRef
28.
Zurück zum Zitat Zuo GH, Huang Q, Wei GH, Zhou RH, Fang HP (2010) Plugging into proteins: poisoning protein function by a hydrophobic nanoparticle. ACS Nano 4(12):7508–7514CrossRef Zuo GH, Huang Q, Wei GH, Zhou RH, Fang HP (2010) Plugging into proteins: poisoning protein function by a hydrophobic nanoparticle. ACS Nano 4(12):7508–7514CrossRef
29.
Zurück zum Zitat Zuo GH, Gu W, Fang HP, Zhou RH (2011) Carbon nanotube wins the competitive binding over proline-rich motif ligand on sh3 domain. J Phys Chem C 115(25):12322–12328CrossRef Zuo GH, Gu W, Fang HP, Zhou RH (2011) Carbon nanotube wins the competitive binding over proline-rich motif ligand on sh3 domain. J Phys Chem C 115(25):12322–12328CrossRef
30.
Zurück zum Zitat Karajanagi SS, Vertegel AA, Kane RS, Dordick JS (2004) Structure and function of enzymes adsorbed onto single-walled carbon nanotubes. Langmuir 20(26):11594–11599CrossRef Karajanagi SS, Vertegel AA, Kane RS, Dordick JS (2004) Structure and function of enzymes adsorbed onto single-walled carbon nanotubes. Langmuir 20(26):11594–11599CrossRef
31.
Zurück zum Zitat Park KH, Chhowalla M, Iqbal Z, Sesti F (2003) Single-walled carbon nanotubes are a new class of ion channel blockers. J Biol Chem 278:50212–50216CrossRef Park KH, Chhowalla M, Iqbal Z, Sesti F (2003) Single-walled carbon nanotubes are a new class of ion channel blockers. J Biol Chem 278:50212–50216CrossRef
32.
Zurück zum Zitat Yi CQ, Fong CC, Zhang Q, Lee ST, Yang MS (2008) The structure and function of ribonuclease a upon interacting with carbon nanotubes. Nanotechnology 19(9):095102CrossRef Yi CQ, Fong CC, Zhang Q, Lee ST, Yang MS (2008) The structure and function of ribonuclease a upon interacting with carbon nanotubes. Nanotechnology 19(9):095102CrossRef
33.
Zurück zum Zitat Ge CC, Du JF, Zhao LN, Wang LM, Liu Y et al (2011) Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci USA 108(41):16968–16973CrossRef Ge CC, Du JF, Zhao LN, Wang LM, Liu Y et al (2011) Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci USA 108(41):16968–16973CrossRef
34.
Zurück zum Zitat Chiu CC, Maher MC, Dieckmann GR, Nielsen SO (2010) Molecular dynamics study of a carbon nanotube binding reversible cyclic peptide. ACS Nano 4(5):2539–2546CrossRef Chiu CC, Maher MC, Dieckmann GR, Nielsen SO (2010) Molecular dynamics study of a carbon nanotube binding reversible cyclic peptide. ACS Nano 4(5):2539–2546CrossRef
35.
Zurück zum Zitat Nepal D, Geckeler KE (2006) Ph-sensitive dispersion and debundling of single-walled carbon nanotubes: lysozyme as a tool. Small 2(3):406–412CrossRef Nepal D, Geckeler KE (2006) Ph-sensitive dispersion and debundling of single-walled carbon nanotubes: lysozyme as a tool. Small 2(3):406–412CrossRef
36.
Zurück zum Zitat Nepal D, Geckeler KE (2007) Proteins and carbon nanotubes: close encounter in water. Small 3(7):1259–1265CrossRef Nepal D, Geckeler KE (2007) Proteins and carbon nanotubes: close encounter in water. Small 3(7):1259–1265CrossRef
37.
Zurück zum Zitat Balavoine F, Schultz P, Richard C, Mallouh V, Ebbesen TW et al (1999) Helical crystallization of proteins on carbon nanotubes: a first step towards the development of new biosensors. Angew Chem Int Ed 38(13–14):1912–1915CrossRef Balavoine F, Schultz P, Richard C, Mallouh V, Ebbesen TW et al (1999) Helical crystallization of proteins on carbon nanotubes: a first step towards the development of new biosensors. Angew Chem Int Ed 38(13–14):1912–1915CrossRef
38.
Zurück zum Zitat Goldberg-Oppenheimer P, Regev O (2007) Exploring a nanotube dispersion mechanism with gold-labeled proteins via cryo-tem imaging. Small 3(11):1894–1899CrossRef Goldberg-Oppenheimer P, Regev O (2007) Exploring a nanotube dispersion mechanism with gold-labeled proteins via cryo-tem imaging. Small 3(11):1894–1899CrossRef
39.
Zurück zum Zitat Zhong J, Song L, Meng J, Gao B, Chu WS et al (2009) Bio-nano interaction of proteins adsorbed on single-walled carbon nanotubes. Carbon 47(4):967–973CrossRef Zhong J, Song L, Meng J, Gao B, Chu WS et al (2009) Bio-nano interaction of proteins adsorbed on single-walled carbon nanotubes. Carbon 47(4):967–973CrossRef
40.
Zurück zum Zitat Yan L, Zhao F, Li SJ, Hu ZB, Zhao YL (2011) Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Nanoscale 3(2):362–382CrossRef Yan L, Zhao F, Li SJ, Hu ZB, Zhao YL (2011) Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Nanoscale 3(2):362–382CrossRef
41.
Zurück zum Zitat Salvador-Morales C, Townsend P, Flahaut E, Venien-Bryan C, Vlandas A et al (2007) Binding of pulmonary surfactant proteins to carbon nanotubes; potential for damage to lung immune defense mechanisms. Carbon 45(3):607–617CrossRef Salvador-Morales C, Townsend P, Flahaut E, Venien-Bryan C, Vlandas A et al (2007) Binding of pulmonary surfactant proteins to carbon nanotubes; potential for damage to lung immune defense mechanisms. Carbon 45(3):607–617CrossRef
42.
Zurück zum Zitat Korfhagen TR, Bruno MD, Ross GF, Huelsman KM, Ikegami M et al (1996) Altered surfactant function and structure in sp-a gene targeted mice. Proc Natl Acad Sci USA 93(18):9594–9599CrossRef Korfhagen TR, Bruno MD, Ross GF, Huelsman KM, Ikegami M et al (1996) Altered surfactant function and structure in sp-a gene targeted mice. Proc Natl Acad Sci USA 93(18):9594–9599CrossRef
43.
Zurück zum Zitat Botas C, Poulain F, Akiyama J, Brown C, Allen L et al (1998) Altered surfactant homeostasis and alveolar type ii cell morphology in mice lacking surfactant protein d. Proc Natl Acad Sci USA 95(20):11869–11874CrossRef Botas C, Poulain F, Akiyama J, Brown C, Allen L et al (1998) Altered surfactant homeostasis and alveolar type ii cell morphology in mice lacking surfactant protein d. Proc Natl Acad Sci USA 95(20):11869–11874CrossRef
44.
Zurück zum Zitat Zuo G, Kang SG, Xiu P, Zhao Y, Zhou R (2013) Interactions between proteins and carbon-based nanoparticles: exploring the origin of nanotoxicity at the molecular level. Small 9:1546–1556CrossRef Zuo G, Kang SG, Xiu P, Zhao Y, Zhou R (2013) Interactions between proteins and carbon-based nanoparticles: exploring the origin of nanotoxicity at the molecular level. Small 9:1546–1556CrossRef
45.
Zurück zum Zitat Kagan VE, Bayir H, Shvedova AA (2005) Nanomedicine and nanotoxicology: two sides of the same coin. Nanomed Nanotechnol Biol Med 1(4):313–316CrossRef Kagan VE, Bayir H, Shvedova AA (2005) Nanomedicine and nanotoxicology: two sides of the same coin. Nanomed Nanotechnol Biol Med 1(4):313–316CrossRef
46.
Zurück zum Zitat Zhang B, Xing YH, Li ZW, Zhou HY, Mu QX et al (2009) Functionalized carbon nanotubes specifically bind to α-chymotrypsin’s catalytic site and regulate its enzymatic function. Nano Lett 9(6):2280–2284CrossRef Zhang B, Xing YH, Li ZW, Zhou HY, Mu QX et al (2009) Functionalized carbon nanotubes specifically bind to α-chymotrypsin’s catalytic site and regulate its enzymatic function. Nano Lett 9(6):2280–2284CrossRef
47.
Zurück zum Zitat Chen HI, Sudol M (1995) The ww domain of yes-associated protein binds a proline-rich ligand that differs from the consensus established for src homology 3-binding modules. Proc Natl Acad Sci USA 92(17):7819–7823CrossRef Chen HI, Sudol M (1995) The ww domain of yes-associated protein binds a proline-rich ligand that differs from the consensus established for src homology 3-binding modules. Proc Natl Acad Sci USA 92(17):7819–7823CrossRef
48.
Zurück zum Zitat Garrus JE, Schwedler UKV, Pornillos OW, Morham SG, Zavitz KH et al. (2001) Tsg101 and the vacuolar protein sorting pathway are essential for hiv-1 budding. Cell 107:55–65 Garrus JE, Schwedler UKV, Pornillos OW, Morham SG, Zavitz KH et al. (2001) Tsg101 and the vacuolar protein sorting pathway are essential for hiv-1 budding. Cell 107:55–65
49.
Zurück zum Zitat Lu PJ, Wulf G, Zhou XZ, Davies P, Lu KP (1999) The prolyl isomerase pin1 restores the function of alzheimer-associated phosphorylated tau protein. Nature 399(6738):784–788CrossRef Lu PJ, Wulf G, Zhou XZ, Davies P, Lu KP (1999) The prolyl isomerase pin1 restores the function of alzheimer-associated phosphorylated tau protein. Nature 399(6738):784–788CrossRef
50.
Zurück zum Zitat Sudol M, Bork P, Einbond A, Kastury K, Druck T et al (1995) Characterization of the mammalian yap (yes-associated protein) gene and its role in defining a novel protein module, the ww domain. J Biol Chem 270(24):14733–14741CrossRef Sudol M, Bork P, Einbond A, Kastury K, Druck T et al (1995) Characterization of the mammalian yap (yes-associated protein) gene and its role in defining a novel protein module, the ww domain. J Biol Chem 270(24):14733–14741CrossRef
51.
Zurück zum Zitat Zheng HW, You H, Zhou XZ, Murray SA, Uchida T et al (2002) The prolyl isomerase pin1 is a regulator of p53 in genotoxic response. Nature 419(6909):849–853CrossRef Zheng HW, You H, Zhou XZ, Murray SA, Uchida T et al (2002) The prolyl isomerase pin1 is a regulator of p53 in genotoxic response. Nature 419(6909):849–853CrossRef
52.
Zurück zum Zitat Macias MJ, Gervais V, Civera C, Oschkinat H (2000) Structural analysis of ww domains and design of a ww prototype. Nat Struct Mol Biol 7(5):375–379CrossRef Macias MJ, Gervais V, Civera C, Oschkinat H (2000) Structural analysis of ww domains and design of a ww prototype. Nat Struct Mol Biol 7(5):375–379CrossRef
53.
Zurück zum Zitat Huang X, Poy F, Zhang RG, Joachimiak A, Sudol M et al (2000) Structure of a ww domain containing fragment of dystrophin in complex with beta-dystroglycan. Nat Struct Biol 7(8):634–638CrossRef Huang X, Poy F, Zhang RG, Joachimiak A, Sudol M et al (2000) Structure of a ww domain containing fragment of dystrophin in complex with beta-dystroglycan. Nat Struct Biol 7(8):634–638CrossRef
54.
Zurück zum Zitat Sudol M (1996) Structure and function of the ww domain. Proc Biophys Mol Biol 65(1–2):113–132CrossRef Sudol M (1996) Structure and function of the ww domain. Proc Biophys Mol Biol 65(1–2):113–132CrossRef
55.
Zurück zum Zitat Procacci P (2011) Thermodynamics of stacking interactions in proteins. Annual Reports Section “C” (Phys Chem) 107 (0):242–262 Procacci P (2011) Thermodynamics of stacking interactions in proteins. Annual Reports Section “C” (Phys Chem) 107 (0):242–262
56.
Zurück zum Zitat Zuo GH, Fang HP, Zhou RH (2011) Nanotoxicity: exploring the interactions between carbon nanotubes and proteins. In Carbon nanotubes, Marulanda JM ed. InTech Publisher pp 539–564 Zuo GH, Fang HP, Zhou RH (2011) Nanotoxicity: exploring the interactions between carbon nanotubes and proteins. In Carbon nanotubes, Marulanda JM ed. InTech Publisher pp 539–564
57.
Zurück zum Zitat Zuo GH, Hu J, Fang HP (2007) Protein folding under mediation of ordering water: An off-lattice go-like model study. Chin Phys Lett 24(8):2426–2429CrossRef Zuo GH, Hu J, Fang HP (2007) Protein folding under mediation of ordering water: An off-lattice go-like model study. Chin Phys Lett 24(8):2426–2429CrossRef
58.
Zurück zum Zitat Zuo GH, Xiu P, Zhou X, Zhou RH, Fang HP (2012) Conformational changes of the protein domains upon binding with carbon nanotubes studied by molecular dynamics simulations. Curr. Phys. Chem. 2:12–22CrossRef Zuo GH, Xiu P, Zhou X, Zhou RH, Fang HP (2012) Conformational changes of the protein domains upon binding with carbon nanotubes studied by molecular dynamics simulations. Curr. Phys. Chem. 2:12–22CrossRef
59.
Zurück zum Zitat Fan WJ, Zeng J, Zhang RQ (2009) Quantum mechanical quantification of weakly interacting complexes of peptides with single-walled carbon nanotubes. J Chem Theory Comput 5(10):2879–2885CrossRef Fan WJ, Zeng J, Zhang RQ (2009) Quantum mechanical quantification of weakly interacting complexes of peptides with single-walled carbon nanotubes. J Chem Theory Comput 5(10):2879–2885CrossRef
60.
Zurück zum Zitat Li XJ, Chen W, Zhan QW, Dai LM, Sowards L et al (2006) Direct measurements of interactions between polypeptides and carbon nanotubes. J Phys Chem B 110(25):12621–12625CrossRef Li XJ, Chen W, Zhan QW, Dai LM, Sowards L et al (2006) Direct measurements of interactions between polypeptides and carbon nanotubes. J Phys Chem B 110(25):12621–12625CrossRef
61.
Zurück zum Zitat Noon WH, Kong Y, Ma J (2002) Molecular dynamics analysis of a buckyball-antibody complex. Proc Natl Acad Sci USA 99(Suppl 2):6466–6470CrossRef Noon WH, Kong Y, Ma J (2002) Molecular dynamics analysis of a buckyball-antibody complex. Proc Natl Acad Sci USA 99(Suppl 2):6466–6470CrossRef
62.
Zurück zum Zitat Salzmann CG, Ward MAH, Jacobs RMJ, Tobias G, Green MLH (2007) Interaction of tyrosine-, tryptophan-, and lysine-containing polypeptides with single-wall carbon nanotubes and its relevance for the rational design of dispersing agents. J Phys Chem C 111(50):18520–18524CrossRef Salzmann CG, Ward MAH, Jacobs RMJ, Tobias G, Green MLH (2007) Interaction of tyrosine-, tryptophan-, and lysine-containing polypeptides with single-wall carbon nanotubes and its relevance for the rational design of dispersing agents. J Phys Chem C 111(50):18520–18524CrossRef
63.
Zurück zum Zitat Su Z, Mui K, Daub E, Leung T, Honek J (2007) Single-walled carbon nanotube binding peptides: probing tryptophan’s importance by unnatural amino acid substitution. J Phys Chem B 111(51):14411–14417CrossRef Su Z, Mui K, Daub E, Leung T, Honek J (2007) Single-walled carbon nanotube binding peptides: probing tryptophan’s importance by unnatural amino acid substitution. J Phys Chem B 111(51):14411–14417CrossRef
64.
Zurück zum Zitat Su ZD, Leung T, Honek JF (2006) Conformational selectivity of peptides for single-walled carbon nanotubes. J Phys Chem B 110(47):23623–23627CrossRef Su ZD, Leung T, Honek JF (2006) Conformational selectivity of peptides for single-walled carbon nanotubes. J Phys Chem B 110(47):23623–23627CrossRef
65.
Zurück zum Zitat Wang S, Humphreys ES, Chung SY, Delduco DF, Lustig SR et al (2003) Peptides with selective affinity for carbon nanotubes. Nat Mater 2:196–200CrossRef Wang S, Humphreys ES, Chung SY, Delduco DF, Lustig SR et al (2003) Peptides with selective affinity for carbon nanotubes. Nat Mater 2:196–200CrossRef
66.
Zurück zum Zitat Xie H, Becraft EJ, Baughman RH, Dalton AB, Dieckmann GR (2008) Ranking the affinity of aromatic residues for carbon nanotubes by using designed surfactant peptides. J Pept Sci 14(2):139–151CrossRef Xie H, Becraft EJ, Baughman RH, Dalton AB, Dieckmann GR (2008) Ranking the affinity of aromatic residues for carbon nanotubes by using designed surfactant peptides. J Pept Sci 14(2):139–151CrossRef
67.
Zurück zum Zitat Zheng LF, Jain D, Burke P (2009) Nanotube-peptide interactions on a silicon chip. J Phys Chem C 113:3978–3985CrossRef Zheng LF, Jain D, Burke P (2009) Nanotube-peptide interactions on a silicon chip. J Phys Chem C 113:3978–3985CrossRef
68.
Zurück zum Zitat Zorbas V, Smith AL, Xie H, Ortiz-Acevedo A, Dalton AB et al (2005) Importance of aromatic content for peptide/single-walled carbon nanotube interactions. J Am Chem Soc 127(35):12323–12328CrossRef Zorbas V, Smith AL, Xie H, Ortiz-Acevedo A, Dalton AB et al (2005) Importance of aromatic content for peptide/single-walled carbon nanotube interactions. J Am Chem Soc 127(35):12323–12328CrossRef
69.
Zurück zum Zitat Yang ZX, Wang ZG, Tian XL, Xiu P, Zhou RH (2012) Amino acid analogues bind to carbon nanotube via pi-pi interactions: Comparison of molecular mechanical and quantum mechanical calculations. J Chem Phys 136(2):025103CrossRef Yang ZX, Wang ZG, Tian XL, Xiu P, Zhou RH (2012) Amino acid analogues bind to carbon nanotube via pi-pi interactions: Comparison of molecular mechanical and quantum mechanical calculations. J Chem Phys 136(2):025103CrossRef
70.
Zurück zum Zitat Fan W, Zeng J, Zhang R (2009) Quantum mechanical quantification of weakly interacting complexes of peptides with single-walled carbon nanotubes. J Chem Theory Comput 5(10):2879–2885CrossRef Fan W, Zeng J, Zhang R (2009) Quantum mechanical quantification of weakly interacting complexes of peptides with single-walled carbon nanotubes. J Chem Theory Comput 5(10):2879–2885CrossRef
71.
Zurück zum Zitat Wang C, Li S, Zhang R, Lin Z (2012) Adsorption and properties of aromatic amino acids on single-walled carbon nanotubes. Nanoscale 4(4):1146–1153CrossRef Wang C, Li S, Zhang R, Lin Z (2012) Adsorption and properties of aromatic amino acids on single-walled carbon nanotubes. Nanoscale 4(4):1146–1153CrossRef
72.
Zurück zum Zitat Gianese G, Rosato V, Cleri F, Celino M, Morales P (2009) Atomic-scale modeling of the interaction between short polypeptides and carbon surfaces. J Phys Chem B 113(35):12105–12112CrossRef Gianese G, Rosato V, Cleri F, Celino M, Morales P (2009) Atomic-scale modeling of the interaction between short polypeptides and carbon surfaces. J Phys Chem B 113(35):12105–12112CrossRef
73.
Zurück zum Zitat Chiu CC, Dieckmann GR, Nielsen SO (2008) Molecular dynamics study of a nanotube-binding amphiphilic helical peptide at different water/hydrophobic interfaces. J Phys Chem B 112(51):16326–16333CrossRef Chiu CC, Dieckmann GR, Nielsen SO (2008) Molecular dynamics study of a nanotube-binding amphiphilic helical peptide at different water/hydrophobic interfaces. J Phys Chem B 112(51):16326–16333CrossRef
74.
Zurück zum Zitat Sansom MSP, Wallace EJ, D’Rozario RSG, Sanchez BM (2010) A multiscale simulation study of carbon nanotube interactions with designed amphiphilic peptide helices. Nanoscale 2(6):967–975CrossRef Sansom MSP, Wallace EJ, D’Rozario RSG, Sanchez BM (2010) A multiscale simulation study of carbon nanotube interactions with designed amphiphilic peptide helices. Nanoscale 2(6):967–975CrossRef
75.
Zurück zum Zitat Tomasio SD, Walsh TR (2007) Atomistic modelling of the interaction between peptides and carbon nanotubes. Mol Phys 105(2–3):221–229CrossRef Tomasio SD, Walsh TR (2007) Atomistic modelling of the interaction between peptides and carbon nanotubes. Mol Phys 105(2–3):221–229CrossRef
76.
Zurück zum Zitat Tomasio SM, Walsh TR (2009) Modeling the binding affinity of peptides for graphitic surfaces. Influences of aromatic content and interfacial shape. J Phys Chem C 113(20):8778–8785CrossRef Tomasio SM, Walsh TR (2009) Modeling the binding affinity of peptides for graphitic surfaces. Influences of aromatic content and interfacial shape. J Phys Chem C 113(20):8778–8785CrossRef
77.
Zurück zum Zitat McNaught AD, Wilkinson A (1997) Compendium of chemical terminology. Blackwell Scientific Publications, Oxford McNaught AD, Wilkinson A (1997) Compendium of chemical terminology. Blackwell Scientific Publications, Oxford
78.
Zurück zum Zitat Berne BJ, Weeks JD, Zhou RH (2009) Dewetting and hydrophobic interaction in physical and biological systems. Annu Rev Phys Chem 60:85–103CrossRef Berne BJ, Weeks JD, Zhou RH (2009) Dewetting and hydrophobic interaction in physical and biological systems. Annu Rev Phys Chem 60:85–103CrossRef
79.
Zurück zum Zitat Matsuura K, Saito T, Okazaki T, Ohshima S, Yumura M et al (2006) Selectivity of water-soluble proteins in single-walled carbon nanotube dispersions. Chem Phys Lett 429(4–6):497–502CrossRef Matsuura K, Saito T, Okazaki T, Ohshima S, Yumura M et al (2006) Selectivity of water-soluble proteins in single-walled carbon nanotube dispersions. Chem Phys Lett 429(4–6):497–502CrossRef
80.
Zurück zum Zitat Bertoncini P, Chauvet O (2010) Conformational structural changes of bacteriorhodopsin adsorbed onto single-walled carbon nanotubes. J Phys Chem B 114(12):4345–4350CrossRef Bertoncini P, Chauvet O (2010) Conformational structural changes of bacteriorhodopsin adsorbed onto single-walled carbon nanotubes. J Phys Chem B 114(12):4345–4350CrossRef
81.
Zurück zum Zitat Zhao XC, Liu RT, Chi ZX, Teng Y, Qin PF (2010) New insights into the behavior of bovine serum albumin adsorbed onto carbon nanotubes: comprehensive spectroscopic studies. J Phys Chem B 114(16):5625–5631CrossRef Zhao XC, Liu RT, Chi ZX, Teng Y, Qin PF (2010) New insights into the behavior of bovine serum albumin adsorbed onto carbon nanotubes: comprehensive spectroscopic studies. J Phys Chem B 114(16):5625–5631CrossRef
82.
Zurück zum Zitat Wijaya IPM, Gandhi S, Nie TJ, Wangoo N, Rodriguez I et al. (2009) Protein/carbon nanotubes interaction: the effect of carboxylic groups on conformational and conductance changes. Appl Phys Lett 95 (7) Wijaya IPM, Gandhi S, Nie TJ, Wangoo N, Rodriguez I et al. (2009) Protein/carbon nanotubes interaction: the effect of carboxylic groups on conformational and conductance changes. Appl Phys Lett 95 (7)
83.
Zurück zum Zitat Zuo GH, Zhou X, Huang Q, Fang HP, Zhou RH (2011) Adsorption of villin headpiece onto graphene, carbon nanotube, and c60: effect of contacting surface curvatures on binding affinity. J Phys Chem C 115(47):23323–23328CrossRef Zuo GH, Zhou X, Huang Q, Fang HP, Zhou RH (2011) Adsorption of villin headpiece onto graphene, carbon nanotube, and c60: effect of contacting surface curvatures on binding affinity. J Phys Chem C 115(47):23323–23328CrossRef
Metadaten
Titel
Carbon Nanotubes
verfasst von
Ruhong Zhou
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-15382-7_3

Neuer Inhalt