Skip to main content
Erschienen in: Journal of Materials Science 11/2019

06.03.2019 | Chemical routes to materials

Carbon sphere-based hierarchical architecture for electrode materials: the role of copolymer composition and pyrolysis temperature

verfasst von: Lu Jin, Hua Wu

Erschienen in: Journal of Materials Science | Ausgabe 11/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We have developed a general methodology to realize surface coating and encapsulation of electrode materials in hierarchical graphite-like carbon matrix and studied how the composition of the copolymer (as the precursor of the graphite-like carbon) and pyrolysis temperature affect the performance of the electrode material. The typical anode material, anatase TiO2, has been used as an example to have encapsulated and distributed the TiO2 nanoparticles in the poly (acrylonitrile-co-styrene) matrix to form hybrid spheres (HSs) Then, the HSs are converted to TiO2/carbon anode materials after appropriate pyrolysis. The copolymers with different ratios of acrylonitrile to styrene from 3:7 to 5:5 have been synthesized, and the pyrolysis is performed in the temperature range from 550 to 850 °C. It is found that both the composition of the copolymer and the pyrolysis temperature can strongly affect the performances of the final TiO2/C anode materials. A proper design optimization is necessary to obtain the electrode materials with the desired performance. Under the optimized conditions, the capacity of the cell with the synthesized TiO2/C as the anode and Li as the reference has reached above 200 mAh g−1 at a current density of 500 mA g−1 and stays stably around 170 mAh g−1 after 1000 cycles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Dunn B, Kamath H, Tarascon J-M (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935CrossRef Dunn B, Kamath H, Tarascon J-M (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935CrossRef
2.
Zurück zum Zitat Chen J (2013) Recent progress in advanced materials for lithium ion batteries. Materials 6:156–183CrossRef Chen J (2013) Recent progress in advanced materials for lithium ion batteries. Materials 6:156–183CrossRef
3.
Zurück zum Zitat Li H, Wang Z, Chen L, Huang X (2009) Research on advanced materials for li-ion batteries. Adv Mater 21:4593–4607CrossRef Li H, Wang Z, Chen L, Huang X (2009) Research on advanced materials for li-ion batteries. Adv Mater 21:4593–4607CrossRef
4.
Zurück zum Zitat Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Proietti Zaccaria R, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–443CrossRef Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Proietti Zaccaria R, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–443CrossRef
5.
Zurück zum Zitat Peled E, Menachem C, Bar-Tow D, Melman A (1996) Improved graphite anode for lithium-ion batteries chemically: bonded solid electrolyte interface and nanochannel formation. J Electrochem Soc 143:L4–L7CrossRef Peled E, Menachem C, Bar-Tow D, Melman A (1996) Improved graphite anode for lithium-ion batteries chemically: bonded solid electrolyte interface and nanochannel formation. J Electrochem Soc 143:L4–L7CrossRef
6.
Zurück zum Zitat Kucinskis G, Bajars G, Kleperis J (2013) Graphene in lithium ion battery cathode materials: a review. J Power Sources 240:66–79CrossRef Kucinskis G, Bajars G, Kleperis J (2013) Graphene in lithium ion battery cathode materials: a review. J Power Sources 240:66–79CrossRef
7.
Zurück zum Zitat Wu Z-S, Zhou G, Yin L-C, Ren W, Li F, Cheng H-M (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1:107–131CrossRef Wu Z-S, Zhou G, Yin L-C, Ren W, Li F, Cheng H-M (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1:107–131CrossRef
8.
Zurück zum Zitat Ren J-G, Wu Q-H, Tang H, Hong G, Zhang W, Lee S-T (2013) Germanium-graphene composite anode for high-energy lithium batteries with long cycle life. J Mater Chem A 1:1821–1826CrossRef Ren J-G, Wu Q-H, Tang H, Hong G, Zhang W, Lee S-T (2013) Germanium-graphene composite anode for high-energy lithium batteries with long cycle life. J Mater Chem A 1:1821–1826CrossRef
9.
Zurück zum Zitat Qin J, Zhang X, Zhao N et al (2015) In situ preparation of interconnected networks constructed by using flexible graphene/Sn sandwich nanosheets for high-performance lithium-ion battery anodes. J Mater Chem A 3:23170–23179CrossRef Qin J, Zhang X, Zhao N et al (2015) In situ preparation of interconnected networks constructed by using flexible graphene/Sn sandwich nanosheets for high-performance lithium-ion battery anodes. J Mater Chem A 3:23170–23179CrossRef
10.
Zurück zum Zitat Wang Y, Wei H, Lu Y, Wei S, Wujcik E, Guo Z (2015) Multifunctional carbon nanostructures for advanced energy storage applications. Nanomaterials 5:755–777CrossRef Wang Y, Wei H, Lu Y, Wei S, Wujcik E, Guo Z (2015) Multifunctional carbon nanostructures for advanced energy storage applications. Nanomaterials 5:755–777CrossRef
11.
Zurück zum Zitat Li X, Wang C (2013) Engineering nanostructured anodes via electrostatic spray deposition for high performance lithium ion battery application. J Mater Chem A 1:165–182CrossRef Li X, Wang C (2013) Engineering nanostructured anodes via electrostatic spray deposition for high performance lithium ion battery application. J Mater Chem A 1:165–182CrossRef
12.
Zurück zum Zitat Xiang H, Zhang K, Ji G et al (2011) Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability. Carbon 49:1787–1796CrossRef Xiang H, Zhang K, Ji G et al (2011) Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability. Carbon 49:1787–1796CrossRef
13.
Zurück zum Zitat Fan Z-J, Yan J, Wei T et al (2011) Nanographene-constructed carbon nanofibers grown on graphene sheets by chemical vapor deposition: high-performance anode materials for lithium ion batteries. ACS Nano 5:2787–2794CrossRef Fan Z-J, Yan J, Wei T et al (2011) Nanographene-constructed carbon nanofibers grown on graphene sheets by chemical vapor deposition: high-performance anode materials for lithium ion batteries. ACS Nano 5:2787–2794CrossRef
14.
Zurück zum Zitat Cao S, Feng X, Song Y et al (2016) In situ carbonized cellulose-based hybrid film as flexible paper anode for lithium-ion batteries. ACS Appl Mater Interfaces 8:1073–1079CrossRef Cao S, Feng X, Song Y et al (2016) In situ carbonized cellulose-based hybrid film as flexible paper anode for lithium-ion batteries. ACS Appl Mater Interfaces 8:1073–1079CrossRef
15.
Zurück zum Zitat Sun B, Chen Z, Kim H-S, Ahn H, Wang G (2011) MnO/C core–shell nanorods as high capacity anode materials for lithium-ion batteries. J Power Sources 196:3346–3349CrossRef Sun B, Chen Z, Kim H-S, Ahn H, Wang G (2011) MnO/C core–shell nanorods as high capacity anode materials for lithium-ion batteries. J Power Sources 196:3346–3349CrossRef
16.
Zurück zum Zitat Liu Z, Lu T, Song T, Yu X-Y, Lou XW, Paik U (2017) Structure-designed synthesis of FeS2@C yolk–shell nanoboxes as a high-performance anode for sodium-ion batteries. Energy Environ Sci 10:1576–1580CrossRef Liu Z, Lu T, Song T, Yu X-Y, Lou XW, Paik U (2017) Structure-designed synthesis of FeS2@C yolk–shell nanoboxes as a high-performance anode for sodium-ion batteries. Energy Environ Sci 10:1576–1580CrossRef
17.
Zurück zum Zitat Liu N, Lu Z, Zhao J et al (2014) A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat Nanotechnol 9:187–192CrossRef Liu N, Lu Z, Zhao J et al (2014) A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat Nanotechnol 9:187–192CrossRef
18.
Zurück zum Zitat Das S, Li J, Hui R (2015) Simulation of the impact of Si shell thickness on the performance of Si-coated vertically aligned carbon nanofiber as Li-ion battery anode. Nanomaterials 5:2268–2278CrossRef Das S, Li J, Hui R (2015) Simulation of the impact of Si shell thickness on the performance of Si-coated vertically aligned carbon nanofiber as Li-ion battery anode. Nanomaterials 5:2268–2278CrossRef
19.
Zurück zum Zitat Dhanabalan A, Li X, Agrawal R, Chen C, Wang C (2013) Fabrication and characterization of SnO2/graphene composites as high capacity anodes for Li-ion batteries. Nanomaterials 3:606–614CrossRef Dhanabalan A, Li X, Agrawal R, Chen C, Wang C (2013) Fabrication and characterization of SnO2/graphene composites as high capacity anodes for Li-ion batteries. Nanomaterials 3:606–614CrossRef
20.
Zurück zum Zitat Eftekhari A (2017) Low voltage anode materials for lithium-ion batteries. Energy Storage Mater 7:157–180CrossRef Eftekhari A (2017) Low voltage anode materials for lithium-ion batteries. Energy Storage Mater 7:157–180CrossRef
21.
Zurück zum Zitat Jin L, Zeng G, Wu H, Niederberger M, Morbidelli M (2016) A poly-(styrene-acrylonitrile) copolymer-derived hierarchical architecture in electrode materials for lithium-ion batteries. J Mater Chem A 4:11481–11490CrossRef Jin L, Zeng G, Wu H, Niederberger M, Morbidelli M (2016) A poly-(styrene-acrylonitrile) copolymer-derived hierarchical architecture in electrode materials for lithium-ion batteries. J Mater Chem A 4:11481–11490CrossRef
22.
Zurück zum Zitat Zhang Y, Tang Y, Li W, Chen X (2016) Nanostructured TiO2-based anode materials for high-performance rechargeable lithium-ion batteries. ChemNanoMat 2:764–775CrossRef Zhang Y, Tang Y, Li W, Chen X (2016) Nanostructured TiO2-based anode materials for high-performance rechargeable lithium-ion batteries. ChemNanoMat 2:764–775CrossRef
23.
Zurück zum Zitat Su D, Dou S, Wang G (2015) Anatase TiO2: better anode material than amorphous and rutile phases of TiO2 for Na-ion batteries. Chem Mater 27:6022–6029CrossRef Su D, Dou S, Wang G (2015) Anatase TiO2: better anode material than amorphous and rutile phases of TiO2 for Na-ion batteries. Chem Mater 27:6022–6029CrossRef
24.
Zurück zum Zitat Bach S, Pereira-Ramos JP, Willman P (2010) Investigation of lithium diffusion in nano-sized rutile TiO2 by impedance spectroscopy. Electrochim Acta 55:4952–4959CrossRef Bach S, Pereira-Ramos JP, Willman P (2010) Investigation of lithium diffusion in nano-sized rutile TiO2 by impedance spectroscopy. Electrochim Acta 55:4952–4959CrossRef
25.
Zurück zum Zitat Yan D-J, Zhu X-D, Mao Y-C et al (2017) Hierarchically organized CNT@TiO2@Mn3O4 nanostructures for enhanced lithium storage performance. J Mater Chem A 5:17048–17055CrossRef Yan D-J, Zhu X-D, Mao Y-C et al (2017) Hierarchically organized CNT@TiO2@Mn3O4 nanostructures for enhanced lithium storage performance. J Mater Chem A 5:17048–17055CrossRef
26.
Zurück zum Zitat Pan L, Liu Y, Xie X, Ye X, Zhu X (2016) Multi-dimensionally ordered, multi-functionally integrated r-GO@TiO2(B)@Mn3O4 yolk–membrane–shell superstructures for ultrafast lithium storage. Nano Res 9:2057–2069CrossRef Pan L, Liu Y, Xie X, Ye X, Zhu X (2016) Multi-dimensionally ordered, multi-functionally integrated r-GO@TiO2(B)@Mn3O4 yolk–membrane–shell superstructures for ultrafast lithium storage. Nano Res 9:2057–2069CrossRef
27.
Zurück zum Zitat Yan D-J, Zhu X-D, Wang K-X et al (2016) Facile and elegant self-organization of Ag nanoparticles and TiO2 nanorods on V2O5 nanosheets as a superior cathode material for lithium-ion batteries. J Mater Chem A 4:4900–4907CrossRef Yan D-J, Zhu X-D, Wang K-X et al (2016) Facile and elegant self-organization of Ag nanoparticles and TiO2 nanorods on V2O5 nanosheets as a superior cathode material for lithium-ion batteries. J Mater Chem A 4:4900–4907CrossRef
28.
Zurück zum Zitat Xu H, Zhu X-D, Sun K-N, Liu Y-T, Xie X-M (2015) Elaborately designed hierarchical heterostructures consisting of carbon-coated TiO2(B) nanosheets decorated with Fe3O4 nanoparticles for remarkable synergy in high-rate lithium storage. Adv Mater Interfaces 2:1500239CrossRef Xu H, Zhu X-D, Sun K-N, Liu Y-T, Xie X-M (2015) Elaborately designed hierarchical heterostructures consisting of carbon-coated TiO2(B) nanosheets decorated with Fe3O4 nanoparticles for remarkable synergy in high-rate lithium storage. Adv Mater Interfaces 2:1500239CrossRef
29.
Zurück zum Zitat Pan L, Zhu X-D, Xie X-M, Liu Y-T (2015) Smart hybridization of TiO2 nanorods and Fe3O4 nanoparticles with pristine graphene nanosheets: hierarchically nanoengineered ternary heterostructures for high-rate lithium storage. Adv Funct Mater 25:3341–3350CrossRef Pan L, Zhu X-D, Xie X-M, Liu Y-T (2015) Smart hybridization of TiO2 nanorods and Fe3O4 nanoparticles with pristine graphene nanosheets: hierarchically nanoengineered ternary heterostructures for high-rate lithium storage. Adv Funct Mater 25:3341–3350CrossRef
30.
Zurück zum Zitat Jin L, Wu H, Morbidelli M (2015) Synthesis of water-based dispersions of polymer/TiO2 hybrid nanospheres. Nanomaterials 5:1454–1468CrossRef Jin L, Wu H, Morbidelli M (2015) Synthesis of water-based dispersions of polymer/TiO2 hybrid nanospheres. Nanomaterials 5:1454–1468CrossRef
31.
Zurück zum Zitat Suresh C, Biju V, Mukundan P, Warrier KGK (1998) Anatase to rutile transformation in sol–gel titania by modification of precursor. Polyhedron 17:3131–3135CrossRef Suresh C, Biju V, Mukundan P, Warrier KGK (1998) Anatase to rutile transformation in sol–gel titania by modification of precursor. Polyhedron 17:3131–3135CrossRef
32.
Zurück zum Zitat Li ZQ, Lu CJ, Xia ZP, Zhou Y, Luo Z (2007) X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 45:1686–1695CrossRef Li ZQ, Lu CJ, Xia ZP, Zhou Y, Luo Z (2007) X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 45:1686–1695CrossRef
33.
Zurück zum Zitat Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43:1731–1742CrossRef Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43:1731–1742CrossRef
34.
Zurück zum Zitat Zdravkov BD, Čermák JJ, Šefara M, Janků J (2007) Pore classification in the characterization of porous materials: a perspective. Cent Eur J Chem 5:385–395 Zdravkov BD, Čermák JJ, Šefara M, Janků J (2007) Pore classification in the characterization of porous materials: a perspective. Cent Eur J Chem 5:385–395
35.
Zurück zum Zitat Beltzung A, Klaue A, Colombo C, Wu H, Storti G, Morbidelli M (2018) Polyacrylonitrile nanoparticle-derived hierarchical structure for CO2 capture. Energy Technol 6:1–11CrossRef Beltzung A, Klaue A, Colombo C, Wu H, Storti G, Morbidelli M (2018) Polyacrylonitrile nanoparticle-derived hierarchical structure for CO2 capture. Energy Technol 6:1–11CrossRef
Metadaten
Titel
Carbon sphere-based hierarchical architecture for electrode materials: the role of copolymer composition and pyrolysis temperature
verfasst von
Lu Jin
Hua Wu
Publikationsdatum
06.03.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 11/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03501-z

Weitere Artikel der Ausgabe 11/2019

Journal of Materials Science 11/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.