Skip to main content

2016 | OriginalPaper | Buchkapitel

21. Cell-Based Sensors and Cell-Based Actuators

verfasst von : Andrés Díaz Lantada

Erschienen in: Microsystems for Enhanced Control of Cell Behavior

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cells and tissues can be seen, from the perspective of Materials Science and Engineering, as “smart materials and structures”. In fact, cells and tissues are able to perceive and respond to several environmental stimuli and gradients of them, including the presence of biochemical cues and microorganisms, the mechanical and topographical properties of the extra cellular matrix and surfaces upon which they lie, the application of vibrations and the surrounding electromagnetic fields, to cite just a few, as already detailed in several chapters of the Handbook. Advances in technologies for manipulating, culturing and monitoring single cells, together with progress in the fields of modeling, simulation, prototyping and testing, have led to a better understanding of how cells respond to several types of stimuli and accurate predictions about the behavior of cells and tissues are already possible. In consequence, cells and tissues can be employed as living transducers for the development of (micro-)sensors and (micro-)actuators, as it is possible to predict and control their responses. This chapter provides and introduction to the development of cell-based sensors and actuators and to current main challenges in this novel area. Once such challenges are solved, the frontiers between biological systems, machines and synthetic engineering systems in general will start to fade away. An approach for a more rapid solution of the aforementioned challenges, towards a wide-spread use of cell-based sensors and actuators, may rely on the use of systematic libraries with CAD models of conceptual cell-based sensors and actuators, both for modeling and prototyping strategies, as proposed in a final case study included in present chapter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bainbridge WS, Roco MC (2006) Managing nano-bio-info-cogno innovations: converging technologies in society. Nat Sci Found, Springer Bainbridge WS, Roco MC (2006) Managing nano-bio-info-cogno innovations: converging technologies in society. Nat Sci Found, Springer
Zurück zum Zitat Buxboim A, Discher DE (2010) Stem cells feel the difference. Nat Methods 7(9):695CrossRef Buxboim A, Discher DE (2010) Stem cells feel the difference. Nat Methods 7(9):695CrossRef
Zurück zum Zitat Cerutti S (2008) Multivariate, multiorgan and multiscale integration of information in biomedical signal processing. In: International conference on biomedical electronics and devices biostec 2008—biodevices, keynote lecture. IEEE Engineering in Medicine and Biology Society, INSTICC Press Cerutti S (2008) Multivariate, multiorgan and multiscale integration of information in biomedical signal processing. In: International conference on biomedical electronics and devices biostec 2008—biodevices, keynote lecture. IEEE Engineering in Medicine and Biology Society, INSTICC Press
Zurück zum Zitat Chen AY, Deng Z, Billings AN, Seker UOS, Lu MY, Citorik RJ, Zakeri B, Lu TK (2014) Synthesis and patterning of tunable multiscale materials with engineered cells. Nat Mater 13:512–523 Chen AY, Deng Z, Billings AN, Seker UOS, Lu MY, Citorik RJ, Zakeri B, Lu TK (2014) Synthesis and patterning of tunable multiscale materials with engineered cells. Nat Mater 13:512–523
Zurück zum Zitat Choi M, Choi JW, Kim S, Nizamoglu S, Han SK, Sun SK (2013) Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo. Nat Photonics 7:987–994CrossRef Choi M, Choi JW, Kim S, Nizamoglu S, Han SK, Sun SK (2013) Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo. Nat Photonics 7:987–994CrossRef
Zurück zum Zitat Choi JW et al (2009) Fabrication of 3D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography. J Mater Process Technol 209:5494–5503 Choi JW et al (2009) Fabrication of 3D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography. J Mater Process Technol 209:5494–5503
Zurück zum Zitat Cvetkovic C et al (2014) Three-dimensionally printed biological machines powered by skeletal muscle. PNAS 111(28):10125–10130 Cvetkovic C et al (2014) Three-dimensionally printed biological machines powered by skeletal muscle. PNAS 111(28):10125–10130
Zurück zum Zitat Davis JR (2003) Handbook of materials for medical devices. ASM International, United States Davis JR (2003) Handbook of materials for medical devices. ASM International, United States
Zurück zum Zitat Deutsch A, Brusch L, Byrne H (2007) Mathematical modeling of biological systems. volume I: cellular biophysics, regulatory networks, development, biomedicine and data analysis. Series Model Simul Sci Eng Technol. Birkhäuser Deutsch A, Brusch L, Byrne H (2007) Mathematical modeling of biological systems. volume I: cellular biophysics, regulatory networks, development, biomedicine and data analysis. Series Model Simul Sci Eng Technol. Birkhäuser
Zurück zum Zitat Deutsch A, De la Parra R, De Boer RJ (2008) Mathematical modeling of biological systems. volume II: epidemiology, evolution and ecology, immunology, neural systems and the brain, and innovative mathematical methods. Series Model Simul Sci Eng Technol. Birkhäuser Deutsch A, De la Parra R, De Boer RJ (2008) Mathematical modeling of biological systems. volume II: epidemiology, evolution and ecology, immunology, neural systems and the brain, and innovative mathematical methods. Series Model Simul Sci Eng Technol. Birkhäuser
Zurück zum Zitat Díaz Lantada A (2012) Handbook on active materials for medical devices: advances and applications. PAN Stanford Publishing Díaz Lantada A (2012) Handbook on active materials for medical devices: advances and applications. PAN Stanford Publishing
Zurück zum Zitat Díaz Lantada A et al (2013) Fractals in tissue engineering: towards biomimetic cell-culture matrices, microsystems and microstructured implants. Expert Rev Med Devices 10(5):629–648CrossRef Díaz Lantada A et al (2013) Fractals in tissue engineering: towards biomimetic cell-culture matrices, microsystems and microstructured implants. Expert Rev Med Devices 10(5):629–648CrossRef
Zurück zum Zitat Díaz Lantada A, Muslija A, García-Ruíz JP (2015) Auxetic tissue engineering scaffolds with nanometric features and resonances in the megahertz range. Smart Mater Struct 24:055013CrossRef Díaz Lantada A, Muslija A, García-Ruíz JP (2015) Auxetic tissue engineering scaffolds with nanometric features and resonances in the megahertz range. Smart Mater Struct 24:055013CrossRef
Zurück zum Zitat Ferro Y, Perullini M, Jobbagy M, Bilmes SA, Durrieu C (2012) Development of a biosensor for environmental monitoring base don microalgae immobilized in silica hydrogels. Sensors 12(12): 16879–16891 Ferro Y, Perullini M, Jobbagy M, Bilmes SA, Durrieu C (2012) Development of a biosensor for environmental monitoring base don microalgae immobilized in silica hydrogels. Sensors 12(12): 16879–16891
Zurück zum Zitat Freed L, Vunjak-Novakovic G, Biron RJ, Eagles DB, Lesnoy DC, Barlow SK, Langer R (1994) Biodegradable polymer scaffolds for tissue engineering. Bio/Technology 12:689–693CrossRef Freed L, Vunjak-Novakovic G, Biron RJ, Eagles DB, Lesnoy DC, Barlow SK, Langer R (1994) Biodegradable polymer scaffolds for tissue engineering. Bio/Technology 12:689–693CrossRef
Zurück zum Zitat Gad-el-Hak (2003) The MEMS handbook. CRC Press, New York Gad-el-Hak (2003) The MEMS handbook. CRC Press, New York
Zurück zum Zitat Gasson M, Hutt B, Goodhew I, Kyberd P, Warwick K (2005) Invasive neural prosthesis for neural signal detection and nerve stimulation. Proc Int J Adapt Control Signal Process 19(5):365–375MathSciNetMATH Gasson M, Hutt B, Goodhew I, Kyberd P, Warwick K (2005) Invasive neural prosthesis for neural signal detection and nerve stimulation. Proc Int J Adapt Control Signal Process 19(5):365–375MathSciNetMATH
Zurück zum Zitat Hengsbach S, Díaz Lantada A (2014) Rapid prototyping of multi-scale biomedical microdevices by combining additive manufacturing technologies. Biomed Microdevices 16(4):617–627CrossRef Hengsbach S, Díaz Lantada A (2014) Rapid prototyping of multi-scale biomedical microdevices by combining additive manufacturing technologies. Biomed Microdevices 16(4):617–627CrossRef
Zurück zum Zitat Kubisch S, Bohrn U, Fleischer M, Stütz E (2012) Cell-Based sensor system using L6 cells for broad band continuous pollutant monitoring in aquatic environments. Sensors 12(3): 3370–3393 Kubisch S, Bohrn U, Fleischer M, Stütz E (2012) Cell-Based sensor system using L6 cells for broad band continuous pollutant monitoring in aquatic environments. Sensors 12(3): 3370–3393
Zurück zum Zitat Kuklick TR (2006) The medical device R&D handbook. CRC Press, Taylor and Francis Group, Florida Kuklick TR (2006) The medical device R&D handbook. CRC Press, Taylor and Francis Group, Florida
Zurück zum Zitat Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296(5573):1673–1676CrossRef Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296(5573):1673–1676CrossRef
Zurück zum Zitat Lipson H (2012) Frontiers in additive manufacturing, the shape of things to come. Bridge 42(1):5–12 Lipson H (2012) Frontiers in additive manufacturing, the shape of things to come. Bridge 42(1):5–12
Zurück zum Zitat Longoni S, Sartori M (2010) Fractal geometry of nature (bone) may inspire medical devices shape. Nature Proceedings, (available online) Longoni S, Sartori M (2010) Fractal geometry of nature (bone) may inspire medical devices shape. Nature Proceedings, (available online)
Zurück zum Zitat Muslija A, Díaz Lantada A (2014) Deep-reactive ion etching of auxetic structures. Smart Mater Struct 23:087001CrossRef Muslija A, Díaz Lantada A (2014) Deep-reactive ion etching of auxetic structures. Smart Mater Struct 23:087001CrossRef
Zurück zum Zitat Naik VM et al (2009) Super functional materials: creation and control of wettability, adhesion and optical effects by meso-texturing of surfaces. Curr Trends Sci Platin Jubilee Spec 129–148 Naik VM et al (2009) Super functional materials: creation and control of wettability, adhesion and optical effects by meso-texturing of surfaces. Curr Trends Sci Platin Jubilee Spec 129–148
Zurück zum Zitat Park M, Tsai SL, Chen W (2013) Microbial biosensors: engineered micro-organisms as the sensing machinery. Sensors 13(5): 5777–5795 Park M, Tsai SL, Chen W (2013) Microbial biosensors: engineered micro-organisms as the sensing machinery. Sensors 13(5): 5777–5795
Zurück zum Zitat Peterson D, Bronzino J (2008) Biomechanics. principles and applications. CRC Press, Taylor and Francis Group, Florida Peterson D, Bronzino J (2008) Biomechanics. principles and applications. CRC Press, Taylor and Francis Group, Florida
Zurück zum Zitat Pulsifier DP, Lakhtakia A (2011) Background and survey of bioreplication techniques. Bioinspiration Biomimetics 6(3):031001CrossRef Pulsifier DP, Lakhtakia A (2011) Background and survey of bioreplication techniques. Bioinspiration Biomimetics 6(3):031001CrossRef
Zurück zum Zitat Ricotti L, Menciassi A (2014) Bio-hybrid muscle cell-based actuators. Biomed Microdevices 14:987–998CrossRef Ricotti L, Menciassi A (2014) Bio-hybrid muscle cell-based actuators. Biomed Microdevices 14:987–998CrossRef
Zurück zum Zitat Schwartz M (2006) New materials, processes and methods technology. CRC Press, Taylor and Francis Group, Florida Schwartz M (2006) New materials, processes and methods technology. CRC Press, Taylor and Francis Group, Florida
Zurück zum Zitat Taniguchi A (2012) Live cell-based sensors. Special Issue, Sensors 12(12) Taniguchi A (2012) Live cell-based sensors. Special Issue, Sensors 12(12)
Zurück zum Zitat Thomas WE, Discher DE, Shastri VP (2010) Mechanical regulation of cells by materials and tissues. MRS Bull 35:578CrossRef Thomas WE, Discher DE, Shastri VP (2010) Mechanical regulation of cells by materials and tissues. MRS Bull 35:578CrossRef
Zurück zum Zitat Warwick K (2008) Outthinking and enhancing biological brains. In: International conference on biomedical electronics and devices biostec 2008—biodevices, keynote lecture. IEEE Engineering in Medicine and Biology Society, INSTICC Press Warwick K (2008) Outthinking and enhancing biological brains. In: International conference on biomedical electronics and devices biostec 2008—biodevices, keynote lecture. IEEE Engineering in Medicine and Biology Society, INSTICC Press
Zurück zum Zitat Wong J, Bronzino J (2007) Biomaterials. CRC Press, Taylor and Francis Group, Florida Wong J, Bronzino J (2007) Biomaterials. CRC Press, Taylor and Francis Group, Florida
Metadaten
Titel
Cell-Based Sensors and Cell-Based Actuators
verfasst von
Andrés Díaz Lantada
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-29328-8_21

Neuer Inhalt