Skip to main content
Erschienen in: Cellulose 4/2015

01.08.2015 | Review Paper

Cellulase biocatalysis: key influencing factors and mode of action

verfasst von: Sharifah Bee Abd Hamid, Mohammed Moinul Islam, Rasel Das

Erschienen in: Cellulose | Ausgabe 4/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Commercial interests have been escalating worldwide on cellulase enzymes, since it has enormous potentiality to process most abundant and eco-friendly celluloses and convert them into the renewable and sustainable energy, chemicals, fuels and materials. However, overcoming the cellulose recalcitrance and understanding accurate cellulase catalytic activities have been remaining as major technological challenges. Here we reviewed cellulose hierarchy as a primary focus for cellulase actions and highlighted open questions related to endo- and exo-type cellulases. Special importance has been paid to critically evaluate research efforts on enzyme–substrate interactions, processivity, synergism and mechanistic paradigm for cellulose depolymerizations. These understandings pave the way for enzyme based cellulose bioprocessing and further gains of fundamental science and improved methods for cellulase engineering. We hope the article is potentially important for the biologists, polymer specialists, industrialists and most of the scientists active in cellulose science and technology.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alekozai EM, GhattyVenkataKrishna PK, Uberbacher EC, Crowley MF, Smith JC, Cheng X (2013) Simulation analysis of the cellulase Cel7A carbohydrate binding module on the surface of the cellulose Iβ. Cellulose 21(2):951–971. doi:10.1007/s10570-013-0026-0 Alekozai EM, GhattyVenkataKrishna PK, Uberbacher EC, Crowley MF, Smith JC, Cheng X (2013) Simulation analysis of the cellulase Cel7A carbohydrate binding module on the surface of the cellulose Iβ. Cellulose 21(2):951–971. doi:10.​1007/​s10570-013-0026-0
Zurück zum Zitat Asensio JL, Arda A, Canada FJ, Jimenez-Barbero J (2013) Carbohydrate–aromatic interactions. Acc Chem Res 46(4):946–954. doi:10.1021/ar300024d Asensio JL, Arda A, Canada FJ, Jimenez-Barbero J (2013) Carbohydrate–aromatic interactions. Acc Chem Res 46(4):946–954. doi:10.​1021/​ar300024d
Zurück zum Zitat Atalla R (1999) The individual structures of native celluloses. In: Proceedings of the 10th International Symposium on Wood and Pulping Chemistry, Main Symposium, pp 608–614 Atalla R (1999) The individual structures of native celluloses. In: Proceedings of the 10th International Symposium on Wood and Pulping Chemistry, Main Symposium, pp 608–614
Zurück zum Zitat Atalla R (2011) The diversity of native celluloses. Vimeo, New York Atalla R (2011) The diversity of native celluloses. Vimeo, New York
Zurück zum Zitat Atalla R, VanderHart DL (1999) The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses. Solid State Nucl Magn Reson 15(1):1–19 Atalla R, VanderHart DL (1999) The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses. Solid State Nucl Magn Reson 15(1):1–19
Zurück zum Zitat Barnett CB, Wilkinson KA, Naidoo KJ (2011) Molecular details from computational reaction dynamics for the cellobiohydrolase I glycosylation reaction. J Am Chem Soc 133(48):19474–19482. doi:10.1021/ja206842j Barnett CB, Wilkinson KA, Naidoo KJ (2011) Molecular details from computational reaction dynamics for the cellobiohydrolase I glycosylation reaction. J Am Chem Soc 133(48):19474–19482. doi:10.​1021/​ja206842j
Zurück zum Zitat Barr BK, Hsieh YL, Ganem B, Wilson DB (1996) Identification of two functionally different classes of exocellulases. Biochemistry 35(2):586–592. doi:10.1021/Bi9520388 Barr BK, Hsieh YL, Ganem B, Wilson DB (1996) Identification of two functionally different classes of exocellulases. Biochemistry 35(2):586–592. doi:10.​1021/​Bi9520388
Zurück zum Zitat Beckham GT, Matthews JF, Bomble YJ, Bu LT, Adney WS, Himmel ME, Nimlos MR, Crowley MF (2010) Identification of amino acids responsible for processivity in a family 1 carbohydrate-binding module from a fungal cellulase. J Phys Chem B 114(3):1447–1453. doi:10.1021/Jp908810a Beckham GT, Matthews JF, Bomble YJ, Bu LT, Adney WS, Himmel ME, Nimlos MR, Crowley MF (2010) Identification of amino acids responsible for processivity in a family 1 carbohydrate-binding module from a fungal cellulase. J Phys Chem B 114(3):1447–1453. doi:10.​1021/​Jp908810a
Zurück zum Zitat Beldman G, Voragen AG, Rombouts FM, Searle-van Leeuwen MF, Pilnik W (1987) Adsorption and kinetic behavior of purified endoglucanases and exoglucanases from Trichoderma viride. Biotechnol Bioeng 30(2):251–257. doi:10.1002/bit.260300215 Beldman G, Voragen AG, Rombouts FM, Searle-van Leeuwen MF, Pilnik W (1987) Adsorption and kinetic behavior of purified endoglucanases and exoglucanases from Trichoderma viride. Biotechnol Bioeng 30(2):251–257. doi:10.​1002/​bit.​260300215
Zurück zum Zitat Beltrame PL, Carniti P, Focher B, Marzetti A, Cattaneo M (1982) Cotton cellulose: enzyme adsorption and enzymatic hydrolysis. J Appl Polym Sci 27(9):3493–3502. doi:10.1002/app.1982.070270925 Beltrame PL, Carniti P, Focher B, Marzetti A, Cattaneo M (1982) Cotton cellulose: enzyme adsorption and enzymatic hydrolysis. J Appl Polym Sci 27(9):3493–3502. doi:10.​1002/​app.​1982.​070270925
Zurück zum Zitat Berghem LE, Pettersson LG (1973) The mechanism of enzymatic cellulose degradation. Purification of a cellulolytic enzyme from Trichoderma viride active on highly ordered cellulose. Eur J Biochem 37(1):21–30 Berghem LE, Pettersson LG (1973) The mechanism of enzymatic cellulose degradation. Purification of a cellulolytic enzyme from Trichoderma viride active on highly ordered cellulose. Eur J Biochem 37(1):21–30
Zurück zum Zitat Boisset C, Chanzy H, Henrissat B, Lamed R, Shoham Y, Bayer EA (1999) Digestion of crystalline cellulose substrates by the clostridium thermocellum cellulosome: structural and morphological aspects. Biochem J 340(Pt 3):829–835 Boisset C, Chanzy H, Henrissat B, Lamed R, Shoham Y, Bayer EA (1999) Digestion of crystalline cellulose substrates by the clostridium thermocellum cellulosome: structural and morphological aspects. Biochem J 340(Pt 3):829–835
Zurück zum Zitat Boisset C, Fraschini C, Schulein M, Henrissat B, Chanzy H (2000) Imaging the enzymatic digestion of bacterial cellulose ribbons reveals the endo character of the cellobiohydrolase Cel6A from Humicola insolens and Its mode of synergy with cellobiohydrolase Cel7A. Appl Environ Microbiol 66(4):1444–1452. doi:10.1128/aem.66.4.1444-1452.2000 Boisset C, Fraschini C, Schulein M, Henrissat B, Chanzy H (2000) Imaging the enzymatic digestion of bacterial cellulose ribbons reveals the endo character of the cellobiohydrolase Cel6A from Humicola insolens and Its mode of synergy with cellobiohydrolase Cel7A. Appl Environ Microbiol 66(4):1444–1452. doi:10.​1128/​aem.​66.​4.​1444-1452.​2000
Zurück zum Zitat Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382(Pt 3):769–781. doi:10.1042/bj20040892 Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382(Pt 3):769–781. doi:10.​1042/​bj20040892
Zurück zum Zitat Bu L, Nimlos MR, Shirts MR, Stahlberg J, Himmel ME, Crowley MF, Beckham GT (2012) Product binding varies dramatically between processive and nonprocessive cellulase enzymes. J Biol Chem 287(29):24807–24813. doi:10.1074/jbc.M112.365510 Bu L, Nimlos MR, Shirts MR, Stahlberg J, Himmel ME, Crowley MF, Beckham GT (2012) Product binding varies dramatically between processive and nonprocessive cellulase enzymes. J Biol Chem 287(29):24807–24813. doi:10.​1074/​jbc.​M112.​365510
Zurück zum Zitat Carrard G, Linder M (1999) Widely different off rates of two closely related cellulose-binding domains from Trichoderma reesei. Eur J Biochem 262(3):637–643 Carrard G, Linder M (1999) Widely different off rates of two closely related cellulose-binding domains from Trichoderma reesei. Eur J Biochem 262(3):637–643
Zurück zum Zitat Chang M, Chou TC, Tsao G (1981) Structure, pretreatment and hydrolysis of cellulose. In: Fiechter A (ed) Bioenergy, vol 20. advances in biochemical engineering. Springer, Berlin Heidelberg, pp 15–42. doi:10.1007/3-540-11018-6_2 Chang M, Chou TC, Tsao G (1981) Structure, pretreatment and hydrolysis of cellulose. In: Fiechter A (ed) Bioenergy, vol 20. advances in biochemical engineering. Springer, Berlin Heidelberg, pp 15–42. doi:10.​1007/​3-540-11018-6_​2
Zurück zum Zitat Chanzy H, Henrissat B, Vuong R (1984) Colloidal gold labelling of l,4-β-D-glucan cellobiohydrolase adsorbed on cellulose substrates. FEBS Lett 172(2):193–197. doi:10.1016/0014-5793(84)81124-2 Chanzy H, Henrissat B, Vuong R (1984) Colloidal gold labelling of l,4-β-D-glucan cellobiohydrolase adsorbed on cellulose substrates. FEBS Lett 172(2):193–197. doi:10.​1016/​0014-5793(84)81124-2
Zurück zum Zitat Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47(2):107–124 Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47(2):107–124
Zurück zum Zitat Chipman DM, Sharon N (1969) Mechanism of lysozyme action. Science 165:454–465 Chipman DM, Sharon N (1969) Mechanism of lysozyme action. Science 165:454–465
Zurück zum Zitat Ciolacu D, Kovac J, Kokol V (2010) The effect of the cellulose-binding domain from Clostridium cellulovorans on the supramolecular structure of cellulose fibers. Carbohydr Res 345(5):621–630. doi:10.1016/j.carres.2009.12.023 Ciolacu D, Kovac J, Kokol V (2010) The effect of the cellulose-binding domain from Clostridium cellulovorans on the supramolecular structure of cellulose fibers. Carbohydr Res 345(5):621–630. doi:10.​1016/​j.​carres.​2009.​12.​023
Zurück zum Zitat Converse A (1993) Substrate factors limiting enzymatic hydrolysis. In: Saddler JN (ed) Bioconversion of forest and agricultural plant residues. CAB International, Walligford, pp 93–106 Converse A (1993) Substrate factors limiting enzymatic hydrolysis. In: Saddler JN (ed) Bioconversion of forest and agricultural plant residues. CAB International, Walligford, pp 93–106
Zurück zum Zitat Dagel DJ, Liu YS, Zhong L, Luo Y, Himmel ME, Xu Q, Zeng Y, Ding SY, Smith S (2011) In situ imaging of single carbohydrate-binding modules on cellulose microfibrils. J Phys Chem B 115(4):635–641. doi:10.1021/jp109798p Dagel DJ, Liu YS, Zhong L, Luo Y, Himmel ME, Xu Q, Zeng Y, Ding SY, Smith S (2011) In situ imaging of single carbohydrate-binding modules on cellulose microfibrils. J Phys Chem B 115(4):635–641. doi:10.​1021/​jp109798p
Zurück zum Zitat Dale BE, Leong CK, Pham TK, Esquivel VM, Rios I, Latimer VM (1996) Hydrolysis of lignocellulosics at low enzyme levels: application of the AFEX process. Bioresour Technol 56(1):111–116. doi:10.1016/0960-8524(95)00183-2 Dale BE, Leong CK, Pham TK, Esquivel VM, Rios I, Latimer VM (1996) Hydrolysis of lignocellulosics at low enzyme levels: application of the AFEX process. Bioresour Technol 56(1):111–116. doi:10.​1016/​0960-8524(95)00183-2
Zurück zum Zitat Davies GJ, Wilson KS, Henrissat B (1997) Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem J 321(Pt 2):557–559 Davies GJ, Wilson KS, Henrissat B (1997) Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem J 321(Pt 2):557–559
Zurück zum Zitat Ding H, Xu F (2004) Productive Cellulase Adsorption on Cellulose. In: Saha BC, Hayashi K (eds) Lignocellulose Biodegradation, vol 889. ACS Symposium Series, vol 889. American Chemical Society, pp 154–169. doi:10.1021/bk-2004-0889.ch009 Ding H, Xu F (2004) Productive Cellulase Adsorption on Cellulose. In: Saha BC, Hayashi K (eds) Lignocellulose Biodegradation, vol 889. ACS Symposium Series, vol 889. American Chemical Society, pp 154–169. doi:10.​1021/​bk-2004-0889.​ch009
Zurück zum Zitat Divne C, Stahlberg J, Reinikainen T, Ruohonen L, Pettersson G, Knowles J, Teeri TT, Jones TA (1994) The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science 265(5171):524–528 Divne C, Stahlberg J, Reinikainen T, Ruohonen L, Pettersson G, Knowles J, Teeri TT, Jones TA (1994) The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science 265(5171):524–528
Zurück zum Zitat Divne C, Stahlberg J, Teeri TT, Jones TA (1998) High-resolution crystal structures reveal how a cellulose chain is bound in the 50 Å long tunnel of cellobiohydrolase I from Trichoderma reesei. J Mol Biol 275(2):309–325. doi:10.1006/jmbi.1997.1437 Divne C, Stahlberg J, Teeri TT, Jones TA (1998) High-resolution crystal structures reveal how a cellulose chain is bound in the 50 Å long tunnel of cellobiohydrolase I from Trichoderma reesei. J Mol Biol 275(2):309–325. doi:10.​1006/​jmbi.​1997.​1437
Zurück zum Zitat Fägerstam LG, Pettersson LG (1980) The 1.4-β-glucan cellobiohydrolases of Trichoderma reesei QM 9414: a new type of cellulolytic synergism. FEBS Lett 119(1):97–100 Fägerstam LG, Pettersson LG (1980) The 1.4-β-glucan cellobiohydrolases of Trichoderma reesei QM 9414: a new type of cellulolytic synergism. FEBS Lett 119(1):97–100
Zurück zum Zitat Fan LT, Lee Y-H, Beardmore DH (1980) Mechanism of the enzymatic hydrolysis of cellulose: effects of major structural features of cellulose on enzymatic hydrolysis. Biotechnol Bioeng 22(1):177–199. doi:10.1002/bit.260220113 Fan LT, Lee Y-H, Beardmore DH (1980) Mechanism of the enzymatic hydrolysis of cellulose: effects of major structural features of cellulose on enzymatic hydrolysis. Biotechnol Bioeng 22(1):177–199. doi:10.​1002/​bit.​260220113
Zurück zum Zitat Fan LT, Lee YH, Beardmore DR (1981) The influence of major structural features of cellulose on rate of enzymatic hydrolysis. Biotechnol Bioeng 23(2):419–424. doi:10.1002/bit.260230215 Fan LT, Lee YH, Beardmore DR (1981) The influence of major structural features of cellulose on rate of enzymatic hydrolysis. Biotechnol Bioeng 23(2):419–424. doi:10.​1002/​bit.​260230215
Zurück zum Zitat Fengel DW, Wegener G (1984) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin Fengel DW, Wegener G (1984) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin
Zurück zum Zitat Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci USA 108(47):E1195–E1203. doi:10.1073/pnas.1108942108 Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci USA 108(47):E1195–E1203. doi:10.​1073/​pnas.​1108942108
Zurück zum Zitat Fierobe HP, Bayer EA, Tardif C, Czjzek M, Mechaly A, Belaich A, Lamed R, Shoham Y, Belaich JP (2002) Degradation of cellulose substrates by cellulosome chimeras. Substrate targeting versus proximity of enzyme components. J Biol Chem 277(51):49621–49630. doi:10.1074/jbc.M207672200 Fierobe HP, Bayer EA, Tardif C, Czjzek M, Mechaly A, Belaich A, Lamed R, Shoham Y, Belaich JP (2002) Degradation of cellulose substrates by cellulosome chimeras. Substrate targeting versus proximity of enzyme components. J Biol Chem 277(51):49621–49630. doi:10.​1074/​jbc.​M207672200
Zurück zum Zitat Fleming K, Gray DG, Matthews S (2001) Cellulose crystallites. Chemistry 7(9):1831–1835 Fleming K, Gray DG, Matthews S (2001) Cellulose crystallites. Chemistry 7(9):1831–1835
Zurück zum Zitat Ganner T, Bubner P, Eibinger M, Mayrhofer C, Plank H, Nidetzky B (2012) Dissecting and reconstructing synergism: in situ visualization of cooperativity among cellulases. J Biol Chem 287(52):43215–43222. doi:10.1074/jbc.M112.419952 Ganner T, Bubner P, Eibinger M, Mayrhofer C, Plank H, Nidetzky B (2012) Dissecting and reconstructing synergism: in situ visualization of cooperativity among cellulases. J Biol Chem 287(52):43215–43222. doi:10.​1074/​jbc.​M112.​419952
Zurück zum Zitat Gao D, Chundawat SP, Krishnan C, Balan V, Dale BE (2010) Mixture optimization of six core glycosyl hydrolases for maximizing saccharification of ammonia fiber expansion (AFEX) pretreated corn stover. Bioresour Technol 101(8):2770–2781. doi:10.1016/j.biortech.2009.10.056 Gao D, Chundawat SP, Krishnan C, Balan V, Dale BE (2010) Mixture optimization of six core glycosyl hydrolases for maximizing saccharification of ammonia fiber expansion (AFEX) pretreated corn stover. Bioresour Technol 101(8):2770–2781. doi:10.​1016/​j.​biortech.​2009.​10.​056
Zurück zum Zitat Gao SH, You C, Renneckar S, Bao J, Zhang YHP (2014) New insights into enzymatic hydrolysis of heterogeneous cellulose by using carbohydrate-binding module 3 containing GFP and carbohydrate-binding module 17 containing CFP. Biotechnol Biofuels. doi:10.1186/1754-6834-7-24 Gao SH, You C, Renneckar S, Bao J, Zhang YHP (2014) New insights into enzymatic hydrolysis of heterogeneous cellulose by using carbohydrate-binding module 3 containing GFP and carbohydrate-binding module 17 containing CFP. Biotechnol Biofuels. doi:10.​1186/​1754-6834-7-24
Zurück zum Zitat Gardiner ES, Sarko A (1985) Packing analysis of carbohydrates and polysaccharides. 16. The crystal structures of celluloses IVI and IVII. Can J Chem 63(1):173–180 Gardiner ES, Sarko A (1985) Packing analysis of carbohydrates and polysaccharides. 16. The crystal structures of celluloses IVI and IVII. Can J Chem 63(1):173–180
Zurück zum Zitat Ghose TK, Bisaria VS (1979) Studies on the mechanism of enzymatic hydrolysis of cellulosic substances. Biotechnol Bioeng 21(1):131–146. doi:10.1002/bit.260210110 Ghose TK, Bisaria VS (1979) Studies on the mechanism of enzymatic hydrolysis of cellulosic substances. Biotechnol Bioeng 21(1):131–146. doi:10.​1002/​bit.​260210110
Zurück zum Zitat Gilkes NR, Jervis E, Henrissat B, Tekant B, Miller RC Jr, Warren RA, Kilburn DG (1992) The adsorption of a bacterial cellulase and its two isolated domains to crystalline cellulose. J Biol Chem 267(10):6743–6749 Gilkes NR, Jervis E, Henrissat B, Tekant B, Miller RC Jr, Warren RA, Kilburn DG (1992) The adsorption of a bacterial cellulase and its two isolated domains to crystalline cellulose. J Biol Chem 267(10):6743–6749
Zurück zum Zitat Grethlein HE (1985) The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates. Nat Biotechnol 3(2):155–160 Grethlein HE (1985) The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates. Nat Biotechnol 3(2):155–160
Zurück zum Zitat Guo JC, Catchmark JM (2013) Binding specificity and thermodynamics of cellulose-binding modules from Trichoderma reesei Cel7A and Cel6A. Biomacromolecules 14(5):1268–1277. doi:10.1021/bm300810t Guo JC, Catchmark JM (2013) Binding specificity and thermodynamics of cellulose-binding modules from Trichoderma reesei Cel7A and Cel6A. Biomacromolecules 14(5):1268–1277. doi:10.​1021/​bm300810t
Zurück zum Zitat Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500 Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500
Zurück zum Zitat Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS (2011) Biological pretreatment of cellulose: enhancing enzymatic hydrolysis rate using cellulose-binding domains from cellulases. Bioresour Technol 102(3):2910–2915. doi:10.1016/j.biortech.2010.11.010 Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS (2011) Biological pretreatment of cellulose: enhancing enzymatic hydrolysis rate using cellulose-binding domains from cellulases. Bioresour Technol 102(3):2910–2915. doi:10.​1016/​j.​biortech.​2010.​11.​010
Zurück zum Zitat Han SJ, Yoo YJ, Kang HS (1995) Characterization of a bifunctional cellulase and its structural gene—the cel gene of Bacillus Sp D04 Has exoglucanase and endoglucanase activity. J Biol Chem 270(43):26012–26019 Han SJ, Yoo YJ, Kang HS (1995) Characterization of a bifunctional cellulase and its structural gene—the cel gene of Bacillus Sp D04 Has exoglucanase and endoglucanase activity. J Biol Chem 270(43):26012–26019
Zurück zum Zitat Harjunpää V, Teleman A, Koivula A, Ruohonen L, Teeri TT, Teleman O, Drakenberg T (1996) Cello-Oligosaccharide hydrolysis by cellobiohydrolase II from Trichoderma reesei. Eur J Biochem 240(3):584–591 Harjunpää V, Teleman A, Koivula A, Ruohonen L, Teeri TT, Teleman O, Drakenberg T (1996) Cello-Oligosaccharide hydrolysis by cellobiohydrolase II from Trichoderma reesei. Eur J Biochem 240(3):584–591
Zurück zum Zitat Hayashi N, Sugiyama J, Okano T, Ishihara Mitsuro (1998) Selective degradation of the cellulose I s component in Cladophora cellulose with Trichoderma viride cellulase. Carbohydr Res 305:109–116 Hayashi N, Sugiyama J, Okano T, Ishihara Mitsuro (1998) Selective degradation of the cellulose I s component in Cladophora cellulose with Trichoderma viride cellulase. Carbohydr Res 305:109–116
Zurück zum Zitat Henriksson G, Nutt A, Henriksson H, Pettersson B, Stahlberg J, Johansson G, Pettersson G (1999) Endoglucanase 28 (Cel12A), a new Phanerochaete chrysosporium cellulase. Eur J Biochem 259(1–2):88–95 Henriksson G, Nutt A, Henriksson H, Pettersson B, Stahlberg J, Johansson G, Pettersson G (1999) Endoglucanase 28 (Cel12A), a new Phanerochaete chrysosporium cellulase. Eur J Biochem 259(1–2):88–95
Zurück zum Zitat Henrissat B, Driguez H, Viet C, Schülein M (1985) Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Nat Biotechnol 3(8):722–726 Henrissat B, Driguez H, Viet C, Schülein M (1985) Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Nat Biotechnol 3(8):722–726
Zurück zum Zitat Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807. doi:10.1126/science.1137016 Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807. doi:10.​1126/​science.​1137016
Zurück zum Zitat Hoshino E, Sasaki Y, Okazaki M, Nisizawa K, Kanda T (1993) Mode of action of exo-type and endo-Type cellulases from Irpex-Lacteus in the hydrolysis of cellulose with different crystallinities. J Biochem 114(2):230–235 Hoshino E, Sasaki Y, Okazaki M, Nisizawa K, Kanda T (1993) Mode of action of exo-type and endo-Type cellulases from Irpex-Lacteus in the hydrolysis of cellulose with different crystallinities. J Biochem 114(2):230–235
Zurück zum Zitat Hoshino E, Shiroishi M, Amano Y, Nomura M, Kanda T (1997) Synergistic actions of exo-type cellulases in the hydrolysis of cellulose with different crystallinities. J Ferment Bioeng 84(4):300–306. doi:10.1016/S0922-338X(97)89248-3 Hoshino E, Shiroishi M, Amano Y, Nomura M, Kanda T (1997) Synergistic actions of exo-type cellulases in the hydrolysis of cellulose with different crystallinities. J Ferment Bioeng 84(4):300–306. doi:10.​1016/​S0922-338X(97)89248-3
Zurück zum Zitat Igarashi K, Koivula A, Wada M, Kimura S, Penttila M, Samejima M (2009) High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose. J Biol Chem 284(52):36186–36190. doi:10.1074/jbc.M109.034611 Igarashi K, Koivula A, Wada M, Kimura S, Penttila M, Samejima M (2009) High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose. J Biol Chem 284(52):36186–36190. doi:10.​1074/​jbc.​M109.​034611
Zurück zum Zitat Igarashi K, Uchihashi T, Koivula A, Wada M, Kimura S, Okamoto T, Penttilä M, Ando T, Samejima M (2011) Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 333(6047):1279–1282 Igarashi K, Uchihashi T, Koivula A, Wada M, Kimura S, Okamoto T, Penttilä M, Ando T, Samejima M (2011) Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 333(6047):1279–1282
Zurück zum Zitat Irwin DC, Spezio M, Walker LP, Wilson DB (1993) Activity studies of eight purified cellulases: specificity, synergism, and binding domain effects. Biotechnol Bioeng 42(8):1002–1013 Irwin DC, Spezio M, Walker LP, Wilson DB (1993) Activity studies of eight purified cellulases: specificity, synergism, and binding domain effects. Biotechnol Bioeng 42(8):1002–1013
Zurück zum Zitat Irwin D, Shin DH, Zhang S, Barr BK, Sakon J, Karplus PA, Wilson DB (1998) Roles of the catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis. J Bacteriol 180(7):1709–1714 Irwin D, Shin DH, Zhang S, Barr BK, Sakon J, Karplus PA, Wilson DB (1998) Roles of the catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis. J Bacteriol 180(7):1709–1714
Zurück zum Zitat Jalak J, Kurašin M, Teugjas H, Väljamäe P (2012) Endo-exo synergism in cellulose hydrolysis revisited. J Biol Chem 287(34):28802–28815 Jalak J, Kurašin M, Teugjas H, Väljamäe P (2012) Endo-exo synergism in cellulose hydrolysis revisited. J Biol Chem 287(34):28802–28815
Zurück zum Zitat Jauris S, Rucknagel KP, Schwarz WH, Kratzsch P, Bronnenmeier K, Staudenbauer WL (1990) Sequence analysis of the Clostridium stercorarium celZ gene encoding a thermoactive cellulase (Avicelase I): identification of catalytic and cellulose-binding domains. Mol Gen Genet 223(2):258–267 Jauris S, Rucknagel KP, Schwarz WH, Kratzsch P, Bronnenmeier K, Staudenbauer WL (1990) Sequence analysis of the Clostridium stercorarium celZ gene encoding a thermoactive cellulase (Avicelase I): identification of catalytic and cellulose-binding domains. Mol Gen Genet 223(2):258–267
Zurück zum Zitat Jeoh T, Wilson DB, Walker LP (2002) Cooperative and competitive binding in synergistic mixtures of Thermobifida fusca cellulases Cel5A, Cel6B, and Cel9A. Biotechnol Prog 18(4):760–769. doi:10.1021/bp0200402 Jeoh T, Wilson DB, Walker LP (2002) Cooperative and competitive binding in synergistic mixtures of Thermobifida fusca cellulases Cel5A, Cel6B, and Cel9A. Biotechnol Prog 18(4):760–769. doi:10.​1021/​bp0200402
Zurück zum Zitat Jeon SD, Yu KO, Kim SW, Han SO (2012) The processive endoglucanase EngZ is active in crystalline cellulose degradation as a cellulosomal subunit of Clostridium cellulovorans. New Biotechnol 29(3):365–371. doi:10.1016/j.nbt.2011.06.008 Jeon SD, Yu KO, Kim SW, Han SO (2012) The processive endoglucanase EngZ is active in crystalline cellulose degradation as a cellulosomal subunit of Clostridium cellulovorans. New Biotechnol 29(3):365–371. doi:10.​1016/​j.​nbt.​2011.​06.​008
Zurück zum Zitat Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stab 59(1):101–106 Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stab 59(1):101–106
Zurück zum Zitat Jongkees SA, Withers SG (2013) Unusual enzymatic glycoside cleavage mechanisms. Acc Chem Res 47(1):226–235 Jongkees SA, Withers SG (2013) Unusual enzymatic glycoside cleavage mechanisms. Acc Chem Res 47(1):226–235
Zurück zum Zitat Jung H, Wilson DB, Walker LP (2002) Binding mechanisms for Thermobifida fusca Cel5A, Cel6B, and Cel48A cellulose-binding modules on bacterial microcrystalline cellulose. Biotechnol Bioeng 80(4):380–392. doi:10.1002/bit.10375 Jung H, Wilson DB, Walker LP (2002) Binding mechanisms for Thermobifida fusca Cel5A, Cel6B, and Cel48A cellulose-binding modules on bacterial microcrystalline cellulose. Biotechnol Bioeng 80(4):380–392. doi:10.​1002/​bit.​10375
Zurück zum Zitat Kennedy CJ, Cameron GJ, Šturcová A, Apperley DC, Altaner C, Wess TJ, Jarvis MC (2007) Microfibril diameter in celery collenchyma cellulose: X-ray scattering and NMR evidence. Cellulose 14(3):235–246 Kennedy CJ, Cameron GJ, Šturcová A, Apperley DC, Altaner C, Wess TJ, Jarvis MC (2007) Microfibril diameter in celery collenchyma cellulose: X-ray scattering and NMR evidence. Cellulose 14(3):235–246
Zurück zum Zitat Kim YJ, Kim D-O, Chun OK, Shin D-H, Jung H, Lee CY, Wilson DB (2005) Phenolic extraction from apple peel by cellulases from Thermobifida fusca. J Agric Food Chem 53(24):9560–9565. doi:10.1021/jf052052j Kim YJ, Kim D-O, Chun OK, Shin D-H, Jung H, Lee CY, Wilson DB (2005) Phenolic extraction from apple peel by cellulases from Thermobifida fusca. J Agric Food Chem 53(24):9560–9565. doi:10.​1021/​jf052052j
Zurück zum Zitat Kipper K, Valjamae P, Johansson G (2005) Processive action of cellobiohydrolase Cel7A from Trichoderma reesei is revealed as ‘burst’ kinetics on fluorescent polymeric model substrates. Biochem J 385(Pt 2):527–535 Kipper K, Valjamae P, Johansson G (2005) Processive action of cellobiohydrolase Cel7A from Trichoderma reesei is revealed as ‘burst’ kinetics on fluorescent polymeric model substrates. Biochem J 385(Pt 2):527–535
Zurück zum Zitat Klein GL SW (1993) Cellulose. In: Macrae R RR, Saddler MJ (ed) Encyclopedia of food science, food technology and nutrition. Academic Press, USA, pp 758–767 Klein GL SW (1993) Cellulose. In: Macrae R RR, Saddler MJ (ed) Encyclopedia of food science, food technology and nutrition. Academic Press, USA, pp 758–767
Zurück zum Zitat Kleman-Leyer K, Agosin E, Conner AH, Kirk TK (1992) Changes in molecular size distribution of cellulose during attack by white rot and brown rot fungi. Appl Environ Microbiol 58(4):1266–1270 Kleman-Leyer K, Agosin E, Conner AH, Kirk TK (1992) Changes in molecular size distribution of cellulose during attack by white rot and brown rot fungi. Appl Environ Microbiol 58(4):1266–1270
Zurück zum Zitat Kleman-Leyer KM, Gilkes NR, Miller RC Jr, Kirk TK (1994) Changes in the molecular-size distribution of insoluble celluloses by the action of recombinant Cellulomonas fimi cellulases. Biochem J 302(Pt 2):463–469 Kleman-Leyer KM, Gilkes NR, Miller RC Jr, Kirk TK (1994) Changes in the molecular-size distribution of insoluble celluloses by the action of recombinant Cellulomonas fimi cellulases. Biochem J 302(Pt 2):463–469
Zurück zum Zitat Kleman-Leyer KM, Siika-Aho M, Teeri TT, Kirk TK (1996) The cellulases endoglucanase I and cellobiohydrolase II of Trichoderma reesei act synergistically to solubilize native cotton cellulose but not to decrease its molecular size. Appl Environ Microbiol 62(8):2883–2887 Kleman-Leyer KM, Siika-Aho M, Teeri TT, Kirk TK (1996) The cellulases endoglucanase I and cellobiohydrolase II of Trichoderma reesei act synergistically to solubilize native cotton cellulose but not to decrease its molecular size. Appl Environ Microbiol 62(8):2883–2887
Zurück zum Zitat Kleywegt GJ, Zou JY, Divne C, Davies GJ, Sinning I, Stahlberg J, Reinikainen T, Srisodsuk M, Teeri TT, Jones TA (1997) The crystal structure of the catalytic core domain of endoglucanase I from Trichoderma reesei at 3.6 Å resolution, and a comparison with related enzymes. J Mol Biol 272(3):383–397. doi:10.1006/jmbi.1997.1243 Kleywegt GJ, Zou JY, Divne C, Davies GJ, Sinning I, Stahlberg J, Reinikainen T, Srisodsuk M, Teeri TT, Jones TA (1997) The crystal structure of the catalytic core domain of endoglucanase I from Trichoderma reesei at 3.6 Å resolution, and a comparison with related enzymes. J Mol Biol 272(3):383–397. doi:10.​1006/​jmbi.​1997.​1243
Zurück zum Zitat Klyosov AA (1990) Trends in biochemistry and enzymology of cellulose degradation. Biochemistry 29(47):10577–10585 Klyosov AA (1990) Trends in biochemistry and enzymology of cellulose degradation. Biochemistry 29(47):10577–10585
Zurück zum Zitat Knott BC, Haddad Momeni M, Crowley MF, Mackenzie LF, Gotz AW, Sandgren M, Withers SG, Stahlberg J, Beckham GT (2014) The mechanism of cellulose hydrolysis by a two-step, retaining cellobiohydrolase elucidated by structural and transition path sampling studies. J Am Chem Soc 136(1):321–329. doi:10.1021/ja410291u Knott BC, Haddad Momeni M, Crowley MF, Mackenzie LF, Gotz AW, Sandgren M, Withers SG, Stahlberg J, Beckham GT (2014) The mechanism of cellulose hydrolysis by a two-step, retaining cellobiohydrolase elucidated by structural and transition path sampling studies. J Am Chem Soc 136(1):321–329. doi:10.​1021/​ja410291u
Zurück zum Zitat Koivula A, Reinikainen T, Ruohonen L, Valkeajarvr A, Claeyssens M, Teleman O, Kleyweg GJ, Szardenings M, Rouvinen J, Jones TA, Teeri TT (1996) The active site of Trichoderma reesei cellobiohydrolase II: the role of tyrosine 169. Protein Eng 9(8):691–699 Koivula A, Reinikainen T, Ruohonen L, Valkeajarvr A, Claeyssens M, Teleman O, Kleyweg GJ, Szardenings M, Rouvinen J, Jones TA, Teeri TT (1996) The active site of Trichoderma reesei cellobiohydrolase II: the role of tyrosine 169. Protein Eng 9(8):691–699
Zurück zum Zitat Koshland DE (1953) Stereochemistry and the mechanism of enzymatic reactions. Biol Rev 28(4):416–436 Koshland DE (1953) Stereochemistry and the mechanism of enzymatic reactions. Biol Rev 28(4):416–436
Zurück zum Zitat Kraulis J, Clore GM, Nilges M, Jones TA, Pettersson G, Knowles J, Gronenborn AM (1989) Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry 28(18):7241–7257 Kraulis J, Clore GM, Nilges M, Jones TA, Pettersson G, Knowles J, Gronenborn AM (1989) Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry 28(18):7241–7257
Zurück zum Zitat Kruus K, Wang WK, Ching J, Wu JH (1995) Exoglucanase activities of the recombinant Clostridium thermocellum CelS, a major cellulosome component. J Bacteriol 177(6):1641–1644 Kruus K, Wang WK, Ching J, Wu JH (1995) Exoglucanase activities of the recombinant Clostridium thermocellum CelS, a major cellulosome component. J Bacteriol 177(6):1641–1644
Zurück zum Zitat Kyriacou A, Neufeld RJ, Mackenzie CR (1989) Reversibility and competition in the adsorption of Trichoderma reesei cellulase components. Biotechnol Bioeng 33(5):631–637. doi:10.1002/bit.260330517 Kyriacou A, Neufeld RJ, Mackenzie CR (1989) Reversibility and competition in the adsorption of Trichoderma reesei cellulase components. Biotechnol Bioeng 33(5):631–637. doi:10.​1002/​bit.​260330517
Zurück zum Zitat Landín M, Martínez-Pacheco R, Gómez-Amoza JL, Souto C, Concheiro A, Rowe RC (1993) Effect of country of origin on the properties of microcrystalline cellulose. Int J Pharm 91(2–3):123–131. doi:10.1016/0378-5173(93)90331-9 Landín M, Martínez-Pacheco R, Gómez-Amoza JL, Souto C, Concheiro A, Rowe RC (1993) Effect of country of origin on the properties of microcrystalline cellulose. Int J Pharm 91(2–3):123–131. doi:10.​1016/​0378-5173(93)90331-9
Zurück zum Zitat Lee YH, Fan LT (1982) Kinetic studies of enzymatic hydrolysis of insoluble cellulose: analysis of the initial rates. Biotechnol Bioeng 24(11):2383–2406. doi:10.1002/bit.260241107 Lee YH, Fan LT (1982) Kinetic studies of enzymatic hydrolysis of insoluble cellulose: analysis of the initial rates. Biotechnol Bioeng 24(11):2383–2406. doi:10.​1002/​bit.​260241107
Zurück zum Zitat Lee SB, Shin HS, Ryu DD, Mandels M (1982) Adsorption of cellulase on cellulose: effect of physicochemical properties of cellulose on adsorption and rate of hydrolysis. Biotechnol Bioeng 24(10):2137–2153. doi:10.1002/bit.260241003 Lee SB, Shin HS, Ryu DD, Mandels M (1982) Adsorption of cellulase on cellulose: effect of physicochemical properties of cellulose on adsorption and rate of hydrolysis. Biotechnol Bioeng 24(10):2137–2153. doi:10.​1002/​bit.​260241003
Zurück zum Zitat Lee SB, Kim IH, Ryu DD, Taguchi H (1983) Structural properties of cellulose and cellulase reaction mechanism. Biotechnol Bioeng 25(1):33–51. doi:10.1002/bit.260250105 Lee SB, Kim IH, Ryu DD, Taguchi H (1983) Structural properties of cellulose and cellulase reaction mechanism. Biotechnol Bioeng 25(1):33–51. doi:10.​1002/​bit.​260250105
Zurück zum Zitat Lee NE, Lima M, Woodward J (1988) Hydrolysis of cellulose by a mixture of Trichoderma reesei cellobiohydrolase and Aspergillus niger endoglucanase. Biochim Biophys Acta 967(3):437–440 Lee NE, Lima M, Woodward J (1988) Hydrolysis of cellulose by a mixture of Trichoderma reesei cellobiohydrolase and Aspergillus niger endoglucanase. Biochim Biophys Acta 967(3):437–440
Zurück zum Zitat Lehtio J, Sugiyama J, Gustavsson M, Fransson L, Linder M, Teeri TT (2003) The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proc Natl Acad Sci USA 100(2):484–489. doi:10.1073/pnas.212651999 Lehtio J, Sugiyama J, Gustavsson M, Fransson L, Linder M, Teeri TT (2003) The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proc Natl Acad Sci USA 100(2):484–489. doi:10.​1073/​pnas.​212651999
Zurück zum Zitat Lehtiö J, Sugiyama J, Gustavsson M, Fransson L, Linder M, Teeri TT (2003) The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proc Natl Acad Sci 100(2):484–489. doi:10.1073/pnas.212651999 Lehtiö J, Sugiyama J, Gustavsson M, Fransson L, Linder M, Teeri TT (2003) The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proc Natl Acad Sci 100(2):484–489. doi:10.​1073/​pnas.​212651999
Zurück zum Zitat Lenz J, Esterbauer H, Sattler W, Schurz J, Wrentschur E (1990) Changes of structure and morphology of regenerated cellulose caused by acid and enzymatic hydrolysis. J Appl Polym Sci 41(5–6):1315–1326. doi:10.1002/app.1990.070410538 Lenz J, Esterbauer H, Sattler W, Schurz J, Wrentschur E (1990) Changes of structure and morphology of regenerated cellulose caused by acid and enzymatic hydrolysis. J Appl Polym Sci 41(5–6):1315–1326. doi:10.​1002/​app.​1990.​070410538
Zurück zum Zitat Li Y, Irwin DC, Wilson DB (2007) Processivity, substrate binding, and mechanism of cellulose hydrolysis by Thermobifida fusca Cel9A. Appl Environ Microbiol 73(10):3165–3172. doi:10.1128/aem.02960-06 Li Y, Irwin DC, Wilson DB (2007) Processivity, substrate binding, and mechanism of cellulose hydrolysis by Thermobifida fusca Cel9A. Appl Environ Microbiol 73(10):3165–3172. doi:10.​1128/​aem.​02960-06
Zurück zum Zitat Li L, Mu Q, Zhang B, Yan B (2010) Analytical strategies for detecting nanoparticle-protein interactions. Analyst 135(7):1519–1530. doi:10.1039/c0an00075b Li L, Mu Q, Zhang B, Yan B (2010) Analytical strategies for detecting nanoparticle-protein interactions. Analyst 135(7):1519–1530. doi:10.​1039/​c0an00075b
Zurück zum Zitat Linder M, Teeri TT (1996) The cellulose-binding domain of the major cellobiohydrolase of Trichoderma reesei exhibits true reversibility and a high exchange rate on crystalline cellulose. Proc Natl Acad Sci USA 93(22):12251–12255 Linder M, Teeri TT (1996) The cellulose-binding domain of the major cellobiohydrolase of Trichoderma reesei exhibits true reversibility and a high exchange rate on crystalline cellulose. Proc Natl Acad Sci USA 93(22):12251–12255
Zurück zum Zitat Linder M, Lindeberg G, Reinikainen T, Teeri TT, Pettersson G (1995a) The difference in affinity between two fungal cellulose-binding domains is dominated by a single amino acid substitution. FEBS Lett 372(1):96–98. doi:10.1016/0014-5793(95)00961-8 Linder M, Lindeberg G, Reinikainen T, Teeri TT, Pettersson G (1995a) The difference in affinity between two fungal cellulose-binding domains is dominated by a single amino acid substitution. FEBS Lett 372(1):96–98. doi:10.​1016/​0014-5793(95)00961-8
Zurück zum Zitat Linder M, Mattinen ML, Kontteli M, Lindeberg G, Stahlberg J, Drakenberg T, Reinikainen T, Pettersson G, Annila A (1995b) Identification of functionally important amino-acids in the cellulose-binding domain of Trichoderma-Reesei cellobiohydrolase-I. Protein Sci 4(6):1056–1064 Linder M, Mattinen ML, Kontteli M, Lindeberg G, Stahlberg J, Drakenberg T, Reinikainen T, Pettersson G, Annila A (1995b) Identification of functionally important amino-acids in the cellulose-binding domain of Trichoderma-Reesei cellobiohydrolase-I. Protein Sci 4(6):1056–1064
Zurück zum Zitat Liu YS, Baker JO, Zeng Y, Himmel ME, Haas T, Ding SY (2011) Cellobiohydrolase hydrolyzes crystalline cellulose on hydrophobic faces. J Biol Chem 286(13):11195–11201. doi:10.1074/jbc.M110.216556 Liu YS, Baker JO, Zeng Y, Himmel ME, Haas T, Ding SY (2011) Cellobiohydrolase hydrolyzes crystalline cellulose on hydrophobic faces. J Biol Chem 286(13):11195–11201. doi:10.​1074/​jbc.​M110.​216556
Zurück zum Zitat Lotfi G (2014) Cellulolytic microorganism. Int J Curr Res Chem Pharm Sci 1(2):52–58 Lotfi G (2014) Cellulolytic microorganism. Int J Curr Res Chem Pharm Sci 1(2):52–58
Zurück zum Zitat Lu Q, Dong X, Li L-J, Hu X (2010) Direct electrochemistry-based hydrogen peroxide biosensor formed from single-layer graphene nanoplatelet–enzyme composite film. Talanta 82(4):1344–1348 Lu Q, Dong X, Li L-J, Hu X (2010) Direct electrochemistry-based hydrogen peroxide biosensor formed from single-layer graphene nanoplatelet–enzyme composite film. Talanta 82(4):1344–1348
Zurück zum Zitat Mangan D, McCleary B, Liadova A, Ivory R, McCormack N (2014) Quantitative fluorometric assay for the measurement of endo-1, 4-β-glucanase. Carbohydr Res 395:47–51 Mangan D, McCleary B, Liadova A, Ivory R, McCormack N (2014) Quantitative fluorometric assay for the measurement of endo-1, 4-β-glucanase. Carbohydr Res 395:47–51
Zurück zum Zitat Mansfield SD, Mooney C, Saddler JN (1999) Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Prog 15(5):804–816. doi:10.1021/Bp9900864 Mansfield SD, Mooney C, Saddler JN (1999) Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Prog 15(5):804–816. doi:10.​1021/​Bp9900864
Zurück zum Zitat Maurer SA, Bedbrook CN, Radke CJ (2012) Cellulase adsorption and reactivity on a cellulose surface from flow ellipsometry. Ind Eng Chem Res 51(35):11389–11400. doi:10.1021/ie3008538 Maurer SA, Bedbrook CN, Radke CJ (2012) Cellulase adsorption and reactivity on a cellulose surface from flow ellipsometry. Ind Eng Chem Res 51(35):11389–11400. doi:10.​1021/​ie3008538
Zurück zum Zitat Mazeau K, Heux L (2003) Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose. J Phys Chem B 107(10):2394–2403. doi:10.1021/Jp0219395 Mazeau K, Heux L (2003) Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose. J Phys Chem B 107(10):2394–2403. doi:10.​1021/​Jp0219395
Zurück zum Zitat McCrae SI, Wood TM (1986) The cellulase of Penicillium pinophilum. Synergism between enzyme components in solubilizing cellulose with special reference to the involvement of two immunologically distinct cellobiohydrolases. Biochem J 234(1):93–99 McCrae SI, Wood TM (1986) The cellulase of Penicillium pinophilum. Synergism between enzyme components in solubilizing cellulose with special reference to the involvement of two immunologically distinct cellobiohydrolases. Biochem J 234(1):93–99
Zurück zum Zitat Medve J, Stahlberg J, Tjerneld F (1994) Adsorption and synergism of cellobiohydrolase I and II of Trichoderma reesei during hydrolysis of microcrystalline cellulose. Biotechnol Bioeng 44(9):1064–1073. doi:10.1002/bit.260440907 Medve J, Stahlberg J, Tjerneld F (1994) Adsorption and synergism of cellobiohydrolase I and II of Trichoderma reesei during hydrolysis of microcrystalline cellulose. Biotechnol Bioeng 44(9):1064–1073. doi:10.​1002/​bit.​260440907
Zurück zum Zitat Mertz B, Hill AD, Mulakala C, Reilly PJ (2007) Automated docking to explore subsite binding by glycoside hydrolase family 6 cellobiohydrolases and endoglucanases. Biopolymers 87(4):249–260. doi:10.1002/bip.20831 Mertz B, Hill AD, Mulakala C, Reilly PJ (2007) Automated docking to explore subsite binding by glycoside hydrolase family 6 cellobiohydrolases and endoglucanases. Biopolymers 87(4):249–260. doi:10.​1002/​bip.​20831
Zurück zum Zitat Mishra C, Rao M (1988) Mode of action and synergism of cellulases from Penicillium funiculosum. Appl Biochem Biotechnol 19(2):139–150 Mishra C, Rao M (1988) Mode of action and synergism of cellulases from Penicillium funiculosum. Appl Biochem Biotechnol 19(2):139–150
Zurück zum Zitat Moloney A, Coughlan MP (1983) Sorption of Talaromyces emersonii cellulase on cellulosic substrates. Biotechnol Bioeng 25(1):271–280. doi:10.1002/bit.260250120 Moloney A, Coughlan MP (1983) Sorption of Talaromyces emersonii cellulase on cellulosic substrates. Biotechnol Bioeng 25(1):271–280. doi:10.​1002/​bit.​260250120
Zurück zum Zitat Nidetzky B, Steiner W, Hayn M, Claeyssens M (1994) Cellulose hydrolysis by the cellulases from Trichoderma reesei: a new model for synergistic interaction. Biochem J 298(Pt 3):705–710 Nidetzky B, Steiner W, Hayn M, Claeyssens M (1994) Cellulose hydrolysis by the cellulases from Trichoderma reesei: a new model for synergistic interaction. Biochem J 298(Pt 3):705–710
Zurück zum Zitat Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55(4):241–249 Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55(4):241–249
Zurück zum Zitat Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082 Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082
Zurück zum Zitat Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306. doi:10.1021/ja037055w Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306. doi:10.​1021/​ja037055w
Zurück zum Zitat Ooshima H, Sakata M, Harano Y (1983) Adsorption of cellulase from Trichoderma viride on cellulose. Biotechnol Bioeng 25(12):3103–3114. doi:10.1002/bit.260251223 Ooshima H, Sakata M, Harano Y (1983) Adsorption of cellulase from Trichoderma viride on cellulose. Biotechnol Bioeng 25(12):3103–3114. doi:10.​1002/​bit.​260251223
Zurück zum Zitat Ooshima H, Kurakake M, Kato J, Harano Y (1991) Enzymatic activity of cellulase adsorbed on cellulose and its change during hydrolysis. Appl Biochem Biotechnol 31(3):253–266. doi:10.1007/BF02921752 Ooshima H, Kurakake M, Kato J, Harano Y (1991) Enzymatic activity of cellulase adsorbed on cellulose and its change during hydrolysis. Appl Biochem Biotechnol 31(3):253–266. doi:10.​1007/​BF02921752
Zurück zum Zitat Palonen H, Tenkanen M, Linder M (1999) Dynamic interaction of Trichoderma reesei cellobiohydrolases Cel6A and Cel7A and cellulose at equilibrium and during hydrolysis. Appl Environ Microbiol 65(12):5229–5233 Palonen H, Tenkanen M, Linder M (1999) Dynamic interaction of Trichoderma reesei cellobiohydrolases Cel6A and Cel7A and cellulose at equilibrium and during hydrolysis. Appl Environ Microbiol 65(12):5229–5233
Zurück zum Zitat Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10. doi:10.1186/1754-6834-3-10 Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10. doi:10.​1186/​1754-6834-3-10
Zurück zum Zitat Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT (2015) Fungal Cellulases. Chem Rev 115(3):1308–1448. doi:10.1021/cr500351c Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT (2015) Fungal Cellulases. Chem Rev 115(3):1308–1448. doi:10.​1021/​cr500351c
Zurück zum Zitat Phillips DC (1967) The hen egg-white lysozyme molecule. Proc Natl Acad Sci USA 57(3):483–495 Phillips DC (1967) The hen egg-white lysozyme molecule. Proc Natl Acad Sci USA 57(3):483–495
Zurück zum Zitat Pilz I, Schwarz E, Kilburn DG, Miller RC Jr, Warren RA, Gilkes NR (1990) The tertiary structure of a bacterial cellulase determined by small-angle X-ray-scattering analysis. Biochem J 271(1):277–280 Pilz I, Schwarz E, Kilburn DG, Miller RC Jr, Warren RA, Gilkes NR (1990) The tertiary structure of a bacterial cellulase determined by small-angle X-ray-scattering analysis. Biochem J 271(1):277–280
Zurück zum Zitat Pinto R, Moreira S, Mota M, Gama M (2004) Studies on the cellulose-binding domains adsorption to cellulose. Langmuir 20(4):1409–1413 Pinto R, Moreira S, Mota M, Gama M (2004) Studies on the cellulose-binding domains adsorption to cellulose. Langmuir 20(4):1409–1413
Zurück zum Zitat Poidevin L, Feliu J, Doan A, Berrin JG, Bey M, Coutinho PM, Henrissat B, Record E, Heiss-Blanquet S (2013) Insights into exo- and endoglucanase activities of family 6 glycoside hydrolases from Podospora anserina. Appl Environ Microbiol 79(14):4220–4229. doi:10.1128/AEM.00327-13 Poidevin L, Feliu J, Doan A, Berrin JG, Bey M, Coutinho PM, Henrissat B, Record E, Heiss-Blanquet S (2013) Insights into exo- and endoglucanase activities of family 6 glycoside hydrolases from Podospora anserina. Appl Environ Microbiol 79(14):4220–4229. doi:10.​1128/​AEM.​00327-13
Zurück zum Zitat Reinikainen T, Ruohonen L, Nevanen T, Laaksonen L, Kraulis P, Jones TA, Knowles JKC, Teeri TT (1992) Investigation of the function of mutated cellulose-binding domains of Trichoderma reesei cellobiohydrolase I. Proteins Struct Funct Bioinf 14(4):475–482. doi:10.1002/prot.340140408 Reinikainen T, Ruohonen L, Nevanen T, Laaksonen L, Kraulis P, Jones TA, Knowles JKC, Teeri TT (1992) Investigation of the function of mutated cellulose-binding domains of Trichoderma reesei cellobiohydrolase I. Proteins Struct Funct Bioinf 14(4):475–482. doi:10.​1002/​prot.​340140408
Zurück zum Zitat Reinikainen T, Teleman O, Teeri TT (1995) Effects of pH and high ionic strength on the adsorption and activity of native and mutated cellobiohydrolase I from Trichoderma reesei. Proteins 22(4):392–403. doi:10.1002/prot.340220409 Reinikainen T, Teleman O, Teeri TT (1995) Effects of pH and high ionic strength on the adsorption and activity of native and mutated cellobiohydrolase I from Trichoderma reesei. Proteins 22(4):392–403. doi:10.​1002/​prot.​340220409
Zurück zum Zitat Reverbel-Leroy C, Pages S, Belaich A, Belaich JP, Tardif C (1997) The processive endocellulase CelF, a major component of the Clostridium cellulolyticum cellulosome: purification and characterization of the recombinant form. J Bacteriol 179(1):46–52 Reverbel-Leroy C, Pages S, Belaich A, Belaich JP, Tardif C (1997) The processive endocellulase CelF, a major component of the Clostridium cellulolyticum cellulosome: purification and characterization of the recombinant form. J Bacteriol 179(1):46–52
Zurück zum Zitat Rouvinen J, Bergfors T, Teeri T, Knowles JK, Jones TA (1990) Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science 249(4967):380–386 Rouvinen J, Bergfors T, Teeri T, Knowles JK, Jones TA (1990) Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science 249(4967):380–386
Zurück zum Zitat Rowe RC, McKillop AG, Bray D (1994) The effect of batch and source variation on the crystallinity of microcrystalline cellulose. Int J Pharm 101(1–2):169–172. doi:10.1016/0378-5173(94)90087-6 Rowe RC, McKillop AG, Bray D (1994) The effect of batch and source variation on the crystallinity of microcrystalline cellulose. Int J Pharm 101(1–2):169–172. doi:10.​1016/​0378-5173(94)90087-6
Zurück zum Zitat Ryu DD, Mandels M (1980) Cellulases: biosynthesis and applications. Enzyme Microb Technol 2(2):91–102 Ryu DD, Mandels M (1980) Cellulases: biosynthesis and applications. Enzyme Microb Technol 2(2):91–102
Zurück zum Zitat Ryu DD, Kim C, Mandels M (1984a) Competitive adsorption of cellulase components and its significance in a synergistic mechanism. Biotechnol Bioeng 26(5):488–496. doi:10.1002/bit.260260513 Ryu DD, Kim C, Mandels M (1984a) Competitive adsorption of cellulase components and its significance in a synergistic mechanism. Biotechnol Bioeng 26(5):488–496. doi:10.​1002/​bit.​260260513
Zurück zum Zitat Ryu DD, Kim C, Mandels M (1984b) Competitive adsorption of cellulase components and its significance in a synergistic mechanism. Biotechnol Bioeng 26(5):488–496 Ryu DD, Kim C, Mandels M (1984b) Competitive adsorption of cellulase components and its significance in a synergistic mechanism. Biotechnol Bioeng 26(5):488–496
Zurück zum Zitat Sandgren M, Shaw A, Ropp TH, Wu S, Bott R, Cameron AD, Stahlberg J, Mitchinson C, Jones TA (2001) The X-ray crystal structure of the Trichoderma reesei family 12 endoglucanase 3, Cel12A, at 1.9 A resolution. J Mol Biol 308(2):295–310. doi:10.1006/jmbi.2001.4583 Sandgren M, Shaw A, Ropp TH, Wu S, Bott R, Cameron AD, Stahlberg J, Mitchinson C, Jones TA (2001) The X-ray crystal structure of the Trichoderma reesei family 12 endoglucanase 3, Cel12A, at 1.9 A resolution. J Mol Biol 308(2):295–310. doi:10.​1006/​jmbi.​2001.​4583
Zurück zum Zitat Sattler W, Esterbauer H, Glatter O, Steiner W (1989) The effect of enzyme concentration on the rate of the hydrolysis of cellulose. Biotechnol Bioeng 33(10):1221–1234. doi:10.1002/bit.260331002 Sattler W, Esterbauer H, Glatter O, Steiner W (1989) The effect of enzyme concentration on the rate of the hydrolysis of cellulose. Biotechnol Bioeng 33(10):1221–1234. doi:10.​1002/​bit.​260331002
Zurück zum Zitat Shang BZ, Chu J-W (2014) Kinetic modeling at single-molecule resolution elucidates the mechanisms of cellulase synergy. ACS Catal. doi:10.1021/cs500126q Shang BZ, Chu J-W (2014) Kinetic modeling at single-molecule resolution elucidates the mechanisms of cellulase synergy. ACS Catal. doi:10.​1021/​cs500126q
Zurück zum Zitat Shoseyov O, Shani Z, Levy I (2006) Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev 70(2):283–295. doi:10.1128/mmbr.00028-05 Shoseyov O, Shani Z, Levy I (2006) Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev 70(2):283–295. doi:10.​1128/​mmbr.​00028-05
Zurück zum Zitat Sinitsyn AP, Gusakov AV, Vlasenko EY (1991) Effect of structural and physico-chemical features of cellulosic substrates on the efficiency of enzymatic hydrolysis. Appl Biochem Biotechnol 30(1):43–59. doi:10.1007/BF02922023 Sinitsyn AP, Gusakov AV, Vlasenko EY (1991) Effect of structural and physico-chemical features of cellulosic substrates on the efficiency of enzymatic hydrolysis. Appl Biochem Biotechnol 30(1):43–59. doi:10.​1007/​BF02922023
Zurück zum Zitat Srisodsuk M, Kleman-Leyer K, Keranen S, Kirk TK, Teeri TT (1998) Modes of action on cotton and bacterial cellulose of a homologous endoglucanase–exoglucanase pair from Trichoderma reesei. Eur J Biochem 251(3):885–892 Srisodsuk M, Kleman-Leyer K, Keranen S, Kirk TK, Teeri TT (1998) Modes of action on cotton and bacterial cellulose of a homologous endoglucanase–exoglucanase pair from Trichoderma reesei. Eur J Biochem 251(3):885–892
Zurück zum Zitat Ståhlberg J, Johansson G, Pettersson G (1991) A new model for enzymatic hydrolysis of cellulose based on the two-domain structure of cellobiohydrolase I. Nat Biotechnol 9:286–290 Ståhlberg J, Johansson G, Pettersson G (1991) A new model for enzymatic hydrolysis of cellulose based on the two-domain structure of cellobiohydrolase I. Nat Biotechnol 9:286–290
Zurück zum Zitat Ståhlberg J, Johansson G, Pettersson G (1993) Trichoderma reesei has no true exo-cellulase: all intact and truncated cellulases produce new reducing end groups on cellulose. Biochim Biophys Acta (BBA) General Subjects 1157(1):107–113 Ståhlberg J, Johansson G, Pettersson G (1993) Trichoderma reesei has no true exo-cellulase: all intact and truncated cellulases produce new reducing end groups on cellulose. Biochim Biophys Acta (BBA) General Subjects 1157(1):107–113
Zurück zum Zitat Steiner W, Sattler W, Esterbauer H (1988) Adsorption of Trichoderma reesei cellulase on cellulose: experimental data and their analysis by different equations. Biotechnol Bioeng 32(7):853–865. doi:10.1002/bit.260320703 Steiner W, Sattler W, Esterbauer H (1988) Adsorption of Trichoderma reesei cellulase on cellulose: experimental data and their analysis by different equations. Biotechnol Bioeng 32(7):853–865. doi:10.​1002/​bit.​260320703
Zurück zum Zitat Streamer M, Eriksson KE, Pettersson B (1975) Extracellular enzyme system utilized by the fungus Sporotrichum pulverulentum (Chrysosporium lignorum) for the breakdown of cullulose. Functional characterization of five endo-1,4-beta-glucanases and one exo-1,4-beta-glucanase. Eur J Biochem 59(2):607–613 Streamer M, Eriksson KE, Pettersson B (1975) Extracellular enzyme system utilized by the fungus Sporotrichum pulverulentum (Chrysosporium lignorum) for the breakdown of cullulose. Functional characterization of five endo-1,4-beta-glucanases and one exo-1,4-beta-glucanase. Eur J Biochem 59(2):607–613
Zurück zum Zitat Sugiyama J, Okano T, Yamamoto H, Horii F (1990) Transformation of Valonia cellulose crystals by an alkaline hydrothermal treatment. Macromolecules 23(12):3196–3198 Sugiyama J, Okano T, Yamamoto H, Horii F (1990) Transformation of Valonia cellulose crystals by an alkaline hydrothermal treatment. Macromolecules 23(12):3196–3198
Zurück zum Zitat Sugiyama J, Persson J, Chanzy H (1991a) Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 24(9):2461–2466. doi:10.1021/ma00009a050 Sugiyama J, Persson J, Chanzy H (1991a) Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 24(9):2461–2466. doi:10.​1021/​ma00009a050
Zurück zum Zitat Sugiyama J, Vuong R, Chanzy H (1991b) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24(14):4168–4175 Sugiyama J, Vuong R, Chanzy H (1991b) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24(14):4168–4175
Zurück zum Zitat Sulzenbacher G, Driguez H, Henrissat B, Schulein M, Davies GJ (1996) Structure of the Fusarium oxysporum endoglucanase I with a nonhydrolyzable substrate analogue: substrate distortion gives rise to the preferred axial orientation for the leaving group. Biochemistry 35(48):15280–15287. doi:10.1021/bi961946h Sulzenbacher G, Driguez H, Henrissat B, Schulein M, Davies GJ (1996) Structure of the Fusarium oxysporum endoglucanase I with a nonhydrolyzable substrate analogue: substrate distortion gives rise to the preferred axial orientation for the leaving group. Biochemistry 35(48):15280–15287. doi:10.​1021/​bi961946h
Zurück zum Zitat Sulzenbacher G, Schulein M, Davies GJ (1997) Structure of the endoglucanase I from Fusarium oxysporum: native, cellobiose, and 3,4-epoxybutyl beta-D-cellobioside-inhibited forms, at 2.3 A resolution. Biochemistry 36(19):5902–5911. doi:10.1021/bi962963+ Sulzenbacher G, Schulein M, Davies GJ (1997) Structure of the endoglucanase I from Fusarium oxysporum: native, cellobiose, and 3,4-epoxybutyl beta-D-cellobioside-inhibited forms, at 2.3 A resolution. Biochemistry 36(19):5902–5911. doi:10.​1021/​bi962963+
Zurück zum Zitat Taylor CB, Payne CM, Himmel ME, Crowley MF, McCabe C, Beckham GT (2013) Binding site dynamics and aromatic-carbohydrate interactions in processive and non-processive family 7 glycoside hydrolases. J Phys Chem B 117(17):4924–4933. doi:10.1021/jp401410h Taylor CB, Payne CM, Himmel ME, Crowley MF, McCabe C, Beckham GT (2013) Binding site dynamics and aromatic-carbohydrate interactions in processive and non-processive family 7 glycoside hydrolases. J Phys Chem B 117(17):4924–4933. doi:10.​1021/​jp401410h
Zurück zum Zitat Tingaut P, Eyholzer C, Zimmermann T (2011) Functional polymer nanocomposite materials from microfibrillated cellulose. INTECH Open Access Publisher, Croatia Tingaut P, Eyholzer C, Zimmermann T (2011) Functional polymer nanocomposite materials from microfibrillated cellulose. INTECH Open Access Publisher, Croatia
Zurück zum Zitat Tomme P, Van Tilbeurgh H, Pettersson G, Van Damme J, Vandekerckhove J, Knowles J, Teeri T, Claeyssens M (1988) Studies of the cellulolytic system of Trichoderma reesei QM 9414. Eur J Biochem 170(3):575–581. doi:10.1111/j.1432-1033.1988.tb13736.x Tomme P, Van Tilbeurgh H, Pettersson G, Van Damme J, Vandekerckhove J, Knowles J, Teeri T, Claeyssens M (1988) Studies of the cellulolytic system of Trichoderma reesei QM 9414. Eur J Biochem 170(3):575–581. doi:10.​1111/​j.​1432-1033.​1988.​tb13736.​x
Zurück zum Zitat Tomme P, Warren RA, Gilkes NR (1995) Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol 37:1–81 Tomme P, Warren RA, Gilkes NR (1995) Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol 37:1–81
Zurück zum Zitat Tomme P, Kwan E, Gilkes NR, Kilburn DG, Warren RA (1996) Characterization of CenC, an enzyme from Cellulomonas fimi with both endo- and exoglucanase activities. J Bacteriol 178(14):4216–4223 Tomme P, Kwan E, Gilkes NR, Kilburn DG, Warren RA (1996) Characterization of CenC, an enzyme from Cellulomonas fimi with both endo- and exoglucanase activities. J Bacteriol 178(14):4216–4223
Zurück zum Zitat Tormo J, Lamed R, Chirino AJ, Morag E, Bayer EA, Shoham Y, Steitz TA (1996) Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO J 15(21):5739–5751 Tormo J, Lamed R, Chirino AJ, Morag E, Bayer EA, Shoham Y, Steitz TA (1996) Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO J 15(21):5739–5751
Zurück zum Zitat Väljamäe P, Sild V, Nutt A, Pettersson G, Johansson G (1999) Acid hydrolysis of bacterial cellulose reveals different modes of synergistic action between cellobiohydrolase I and endoglucanase I. Eur J Biochem 266(2):327–334 Väljamäe P, Sild V, Nutt A, Pettersson G, Johansson G (1999) Acid hydrolysis of bacterial cellulose reveals different modes of synergistic action between cellobiohydrolase I and endoglucanase I. Eur J Biochem 266(2):327–334
Zurück zum Zitat Várnai A, Siika-aho M, Viikari L (2013) Carbohydrate-binding modules (CBMs) revisited: reduced amount of water counterbalances the need for CBMs. Biotechnology for Biofuels 2013, 6:30 Várnai A, Siika-aho M, Viikari L (2013) Carbohydrate-binding modules (CBMs) revisited: reduced amount of water counterbalances the need for CBMs. Biotechnology for Biofuels 2013, 6:30
Zurück zum Zitat Várnai A, Mäkelä MR, Djajadi DT, Rahikainen J, Hatakka A, Viikari L (2014) Chapter four—carbohydrate-binding modules of fungal cellulases: occurrence in nature, function, and relevance in industrial biomass conversion. In: Sima S, Geoffrey Michael G (eds) Advances in applied microbiology. Academic Press, Waltham, pp 103–165. doi: 10.1016/B978-0-12-800260-5.00004-8 Várnai A, Mäkelä MR, Djajadi DT, Rahikainen J, Hatakka A, Viikari L (2014) Chapter four—carbohydrate-binding modules of fungal cellulases: occurrence in nature, function, and relevance in industrial biomass conversion. In: Sima S, Geoffrey Michael G (eds) Advances in applied microbiology. Academic Press, Waltham, pp 103–165. doi: 10.​1016/​B978-0-12-800260-5.​00004-8
Zurück zum Zitat Velleste R, Teugjas H, Väljamäe P (2010) Reducing end-specific fluorescence labeled celluloses for cellulase mode of action. Cellulose 17(1):125–138. doi:10.1007/s10570-009-9356-3 Velleste R, Teugjas H, Väljamäe P (2010) Reducing end-specific fluorescence labeled celluloses for cellulase mode of action. Cellulose 17(1):125–138. doi:10.​1007/​s10570-009-9356-3
Zurück zum Zitat Vocadlo DJ, Davies GJ (2008) Mechanistic insights into glycosidase chemistry. Curr Opin Chem Biol 12(5):539–555 Vocadlo DJ, Davies GJ (2008) Mechanistic insights into glycosidase chemistry. Curr Opin Chem Biol 12(5):539–555
Zurück zum Zitat Vocadlo DJ, Davies GJ, Laine R, Withers SG (2001) Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature 412(6849):835–838 Vocadlo DJ, Davies GJ, Laine R, Withers SG (2001) Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature 412(6849):835–838
Zurück zum Zitat Vuong TV, Wilson DB (2009) Processivity, synergism, and substrate specificity of Thermobifida fusca Cel6B. Appl Environ Microbiol 75(21):6655–6661. doi:10.1128/AEM.01260-09 Vuong TV, Wilson DB (2009) Processivity, synergism, and substrate specificity of Thermobifida fusca Cel6B. Appl Environ Microbiol 75(21):6655–6661. doi:10.​1128/​AEM.​01260-09
Zurück zum Zitat Wada M, Chanzy H, Nishiyama Y, Langan P (2004a) Cellulose IIII crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffraction. Macromolecules 37(23):8548–8555. doi:10.1021/ma0485585 Wada M, Chanzy H, Nishiyama Y, Langan P (2004a) Cellulose IIII crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffraction. Macromolecules 37(23):8548–8555. doi:10.​1021/​ma0485585
Zurück zum Zitat Wada M, Heux L, Sugiyama J (2004b) Polymorphism of cellulose I family: reinvestigation of cellulose IVI. Biomacromolecules 5(4):1385–1391. doi:10.1021/bm0345357 Wada M, Heux L, Sugiyama J (2004b) Polymorphism of cellulose I family: reinvestigation of cellulose IVI. Biomacromolecules 5(4):1385–1391. doi:10.​1021/​bm0345357
Zurück zum Zitat Wada M, Nishiyama Y, Langan P (2006) X-ray structure of ammonia–cellulose I: new insights into the conversion of cellulose I to cellulose IIII. Macromolecules 39(8):2947–2952. doi:10.1021/ma060228s Wada M, Nishiyama Y, Langan P (2006) X-ray structure of ammonia–cellulose I: new insights into the conversion of cellulose I to cellulose IIII. Macromolecules 39(8):2947–2952. doi:10.​1021/​ma060228s
Zurück zum Zitat Wang J, Quirk A, Lipkowski J, Dutcher JR, Hill C, Mark A, Clarke AJ (2012) Real-time observation of the swelling and hydrolysis of a single crystalline cellulose fiber catalyzed by cellulase 7B from Trichoderma reesei. Langmuir 28(25):9664–9672 Wang J, Quirk A, Lipkowski J, Dutcher JR, Hill C, Mark A, Clarke AJ (2012) Real-time observation of the swelling and hydrolysis of a single crystalline cellulose fiber catalyzed by cellulase 7B from Trichoderma reesei. Langmuir 28(25):9664–9672
Zurück zum Zitat Weimer PJ, Hackney JM, French AD (1995) Effects of chemical treatments and heating on the crystallinity of celluloses and their implications for evaluating the effect of crystallinity on cellulose biodegradation. Biotechnol Bioeng 48(2):169–178. doi:10.1002/bit.260480211 Weimer PJ, Hackney JM, French AD (1995) Effects of chemical treatments and heating on the crystallinity of celluloses and their implications for evaluating the effect of crystallinity on cellulose biodegradation. Biotechnol Bioeng 48(2):169–178. doi:10.​1002/​bit.​260480211
Zurück zum Zitat White AR, Brown RM (1981) Enzymatic hydrolysis of cellulose: visual characterization of the process. Proc Natl Acad Sci 78(2):1047–1051 White AR, Brown RM (1981) Enzymatic hydrolysis of cellulose: visual characterization of the process. Proc Natl Acad Sci 78(2):1047–1051
Zurück zum Zitat Wolfenden R, Snider MJ (2001) The depth of chemical time and the power of enzymes as catalysts. Acc Chem Res 34(12):938–945 Wolfenden R, Snider MJ (2001) The depth of chemical time and the power of enzymes as catalysts. Acc Chem Res 34(12):938–945
Zurück zum Zitat Wood TM (1975) Properties and mode of action of cellulases. Biotechnol Bioeng Symp 5:111–133 Wood TM (1975) Properties and mode of action of cellulases. Biotechnol Bioeng Symp 5:111–133
Zurück zum Zitat Wood TM (1985) Properties of cellulolytic enzyme systems. Biochem Soc Trans 13(2):407–410 Wood TM (1985) Properties of cellulolytic enzyme systems. Biochem Soc Trans 13(2):407–410
Zurück zum Zitat Wood TM (1988a) Preparation of crystalline, amorphous, and dyed cellulase substrates. Methods Enzymol 160:19–25 Wood TM (1988a) Preparation of crystalline, amorphous, and dyed cellulase substrates. Methods Enzymol 160:19–25
Zurück zum Zitat Wood TM (1988b) Preparation of crystalline, amorphous, and dyed cellulase substrates. Methods Enzymol 160C:19–25 Wood TM (1988b) Preparation of crystalline, amorphous, and dyed cellulase substrates. Methods Enzymol 160C:19–25
Zurück zum Zitat Wood TM, Bhat KM (1988) Methods for measuring cellulase activities. Methods Enzymol 160:87–112 Wood TM, Bhat KM (1988) Methods for measuring cellulase activities. Methods Enzymol 160:87–112
Zurück zum Zitat Wood T, McCrae SI (1972) The purification and properties of the C 1 component of Trichoderma koningii cellulase. Biochem J 128:1183–1192 Wood T, McCrae SI (1972) The purification and properties of the C 1 component of Trichoderma koningii cellulase. Biochem J 128:1183–1192
Zurück zum Zitat Wood TM, McCrae SI, Bhat KM (1989) The mechanism of fungal cellulase action. Synergism between enzyme components of Penicillium pinophilum cellulase in solubilizing hydrogen bond-ordered cellulose. Biochem J 260(1):37–43 Wood TM, McCrae SI, Bhat KM (1989) The mechanism of fungal cellulase action. Synergism between enzyme components of Penicillium pinophilum cellulase in solubilizing hydrogen bond-ordered cellulose. Biochem J 260(1):37–43
Zurück zum Zitat Xu F, Ding H (2007) A new kinetic model for heterogeneous (or spatially confined) enzymatic catalysis: contributions from the fractal and jamming (overcrowding) effects. Appl Catal A 317(1):70–81. doi:10.1016/j.apcata.2006.10.014 Xu F, Ding H (2007) A new kinetic model for heterogeneous (or spatially confined) enzymatic catalysis: contributions from the fractal and jamming (overcrowding) effects. Appl Catal A 317(1):70–81. doi:10.​1016/​j.​apcata.​2006.​10.​014
Zurück zum Zitat Yan S, Li T, Yao L (2011) Mutational effects on the catalytic mechanism of cellobiohydrolase I from Trichoderma reesei. J Phys Chem B 115(17):4982–4989. doi:10.1021/jp200384m Yan S, Li T, Yao L (2011) Mutational effects on the catalytic mechanism of cellobiohydrolase I from Trichoderma reesei. J Phys Chem B 115(17):4982–4989. doi:10.​1021/​jp200384m
Zurück zum Zitat Yang B, Willies DM, Wyman CE (2006) Changes in the enzymatic hydrolysis rate of Avicel cellulose with conversion. Biotechnol Bioeng 94(6):1122–1128. doi:10.1002/bit.20942 Yang B, Willies DM, Wyman CE (2006) Changes in the enzymatic hydrolysis rate of Avicel cellulose with conversion. Biotechnol Bioeng 94(6):1122–1128. doi:10.​1002/​bit.​20942
Zurück zum Zitat Zhang YH, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88(7):797–824. doi:10.1002/bit.20282 Zhang YH, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88(7):797–824. doi:10.​1002/​bit.​20282
Zurück zum Zitat Zhang J, Rong J, Li W, Lin Z, Zhang X (2011) Preparation and characterization of bacterial cellulose/polyacrylamide hydrogel. Acta Polym Sin 6:602–607 Zhang J, Rong J, Li W, Lin Z, Zhang X (2011) Preparation and characterization of bacterial cellulose/polyacrylamide hydrogel. Acta Polym Sin 6:602–607
Zurück zum Zitat Zhang Y, Lu X-B, Gao C, Lv W-J, Yao J-M (2012) Preparation and characterization of nano crystalline cellulose from bamboo fibers by controlled cellulase hydrolysis. J Fiber Bioeng Inform 5(3):263–271. doi:10.3993/jfbi09201204 Zhang Y, Lu X-B, Gao C, Lv W-J, Yao J-M (2012) Preparation and characterization of nano crystalline cellulose from bamboo fibers by controlled cellulase hydrolysis. J Fiber Bioeng Inform 5(3):263–271. doi:10.​3993/​jfbi09201204
Zurück zum Zitat Zhang Y, Yan S, Yao L (2013) A mechanistic study of Trichoderma reesei Cel7B catalyzed glycosidic bond cleavage. J Phys Chem B 117(29):8714–8722. doi:10.1021/jp403999s Zhang Y, Yan S, Yao L (2013) A mechanistic study of Trichoderma reesei Cel7B catalyzed glycosidic bond cleavage. J Phys Chem B 117(29):8714–8722. doi:10.​1021/​jp403999s
Zurück zum Zitat Zheng F, Ding SJ (2013) Processivity and enzymatic mode of a glycoside hydrolase family 5 endoglucanase from Volvariella volvacea. Appl Environ Microbiol 79(3):989–996. doi:10.1128/Aem.02725-12 Zheng F, Ding SJ (2013) Processivity and enzymatic mode of a glycoside hydrolase family 5 endoglucanase from Volvariella volvacea. Appl Environ Microbiol 79(3):989–996. doi:10.​1128/​Aem.​02725-12
Zurück zum Zitat Zhou WL, Irwin DC, Escovar-Kousen J, Wilson DB (2004) Kinetic studies of Thermobifida fusca Cel9A active site mutant enzymes. Biochemistry 43(30):9655–9663. doi:10.1021/Bi049394n Zhou WL, Irwin DC, Escovar-Kousen J, Wilson DB (2004) Kinetic studies of Thermobifida fusca Cel9A active site mutant enzymes. Biochemistry 43(30):9655–9663. doi:10.​1021/​Bi049394n
Zurück zum Zitat Zou J-Y, Kleywegt GJ, Ståhlberg J, Driguez H, Nerinckx W, Claeyssens M, Koivula A, Teeri TT, Jones TA (1999) Crystallographic evidence for substrate ring distortion and protein conformational changes during catalysis in cellobiohydrolase Ce16A from Trichoderma reesei. Structure 7(9):1035–1045. doi:10.1016/S0969-2126(99)80171-3 Zou J-Y, Kleywegt GJ, Ståhlberg J, Driguez H, Nerinckx W, Claeyssens M, Koivula A, Teeri TT, Jones TA (1999) Crystallographic evidence for substrate ring distortion and protein conformational changes during catalysis in cellobiohydrolase Ce16A from Trichoderma reesei. Structure 7(9):1035–1045. doi:10.​1016/​S0969-2126(99)80171-3
Metadaten
Titel
Cellulase biocatalysis: key influencing factors and mode of action
verfasst von
Sharifah Bee Abd Hamid
Mohammed Moinul Islam
Rasel Das
Publikationsdatum
01.08.2015
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 4/2015
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-015-0672-5

Weitere Artikel der Ausgabe 4/2015

Cellulose 4/2015 Zur Ausgabe