Skip to main content

2020 | OriginalPaper | Buchkapitel

Cellulose Based Bio Polymers: Synthesis, Functionalization and Applications in Heavy Metal Adsorption

verfasst von : Vijaykiran N. Narwade, Yasir Beeran Pottathara, Sumayya Begum, Rajendra S. Khairnar, Kashinath A. Bogle

Erschienen in: Biofibers and Biopolymers for Biocomposites

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Water pollution due to tremendous increase in industrialization, urbanization and population become serious concerns since the last some decade and will be the major global nightmare. Various contaminations viz; dyes, heavy metals, pesticides, pharmaceutical effluents from industries are getting discharged into water bodies. Among these contaminants, Heavy metals are the main wastewater pollutants due to their ability to cause the nuisance to living beings and to persist in the environment. Hence lot of efforts are being taken for treating waste water contained with heavy metals. Materials scientist are trying to utilise various methods and materials for solving these problems. Cellulose the natural biopolymer is one of the materials gaining attention because of its extra ordinary physio-chemical, as well as mechanical properties compared to other natural biopolymer materials. The present book chapter deals with the preparations, modifications and its heavy metal adsorption studies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Blanchard, G., Maunaye, M., & Martin, G. (1984). Removal of heavy metals from waters by means of natural zeolites. Water Research, 18(12), 1501–1507.CrossRef Blanchard, G., Maunaye, M., & Martin, G. (1984). Removal of heavy metals from waters by means of natural zeolites. Water Research, 18(12), 1501–1507.CrossRef
2.
Zurück zum Zitat Uslu, H., Yankov, D., Isewar, K. L., Azizian, S., Ullah, N., & Ahmad, W. (2015). Separation of organic and inorganic compounds for specific applications. Journal of Chemistry, 2015. Uslu, H., Yankov, D., Isewar, K. L., Azizian, S., Ullah, N., & Ahmad, W. (2015). Separation of organic and inorganic compounds for specific applications. Journal of Chemistry2015.
3.
Zurück zum Zitat Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68(1), 167–182.CrossRef Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin68(1), 167–182.CrossRef
4.
Zurück zum Zitat IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. (2006). Inorganic and organic lead compounds. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans (Vol. 87, p. 1). IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. (2006). Inorganic and organic lead compounds. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans (Vol. 87, p. 1).
5.
Zurück zum Zitat Ottenhall, A., Henschen, J., Illergård, J., & Ek, M. (2018). Cellulose-based water purification using paper filters modified with polyelectrolyte multilayers to remove bacteria from water through electrostatic interactions. Environmental Science: Water Research & Technology, 4(12), 2070–2079. Ottenhall, A., Henschen, J., Illergård, J., & Ek, M. (2018). Cellulose-based water purification using paper filters modified with polyelectrolyte multilayers to remove bacteria from water through electrostatic interactions. Environmental Science: Water Research & Technology, 4(12), 2070–2079.
6.
Zurück zum Zitat Bethke, K., Palantöken, S., Andrei, V., Roß, M., Raghuwanshi, V. S., Kettemann, F., et al. (2018). Functionalized cellulose for water purification, antimicrobial applications, and sensors. Advanced Functional Materials, 28(23), 1800409.CrossRef Bethke, K., Palantöken, S., Andrei, V., Roß, M., Raghuwanshi, V. S., Kettemann, F., et al. (2018). Functionalized cellulose for water purification, antimicrobial applications, and sensors. Advanced Functional Materials28(23), 1800409.CrossRef
7.
Zurück zum Zitat Islam, M. T., Alam, M. M., Patrucco, A., Montarsolo, A., & Zoccola, M. (2014). Preparation of nanocellulose: A review. AATCC Journal of Research, 1(5), 17–23.CrossRef Islam, M. T., Alam, M. M., Patrucco, A., Montarsolo, A., & Zoccola, M. (2014). Preparation of nanocellulose: A review. AATCC Journal of Research, 1(5), 17–23.CrossRef
8.
Zurück zum Zitat Chakraborty, A., Sain, M., & Kortschot, M. (2005). Cellulose microfibrils: A novel method of preparation using high shear refining and cryocrushing. Holzforschung, 59(1), 102–107; Zhou, Y., Saito, T., Bergström, L., & Isogai, A. (2018). Acid-free preparation of cellulose nanocrystals by TEMPO oxidation and subsequent cavitation. Biomacromolecules, 19(2), 633–639. Chakraborty, A., Sain, M., & Kortschot, M. (2005). Cellulose microfibrils: A novel method of preparation using high shear refining and cryocrushing. Holzforschung59(1), 102–107; Zhou, Y., Saito, T., Bergström, L., & Isogai, A. (2018). Acid-free preparation of cellulose nanocrystals by TEMPO oxidation and subsequent cavitation. Biomacromolecules19(2), 633–639.
9.
Zurück zum Zitat Shankar, S., & Rhim, J. W. (2016). Preparation of nanocellulose from micro-crystalline cellulose: The effect on the performance and properties of agar-based composite films. Carbohydrate Polymers, 135, 18–26.CrossRef Shankar, S., & Rhim, J. W. (2016). Preparation of nanocellulose from micro-crystalline cellulose: The effect on the performance and properties of agar-based composite films. Carbohydrate Polymers, 135, 18–26.CrossRef
10.
Zurück zum Zitat Mazlita, Y., Lee, H. V., & Hamid, S. B. A. (2016). Preparation of cellulose nanocrystals bio-polymer from agro-industrial wastes: Separation and characterization. Polymers and Polymer Composites, 24(9), 719–728.CrossRef Mazlita, Y., Lee, H. V., & Hamid, S. B. A. (2016). Preparation of cellulose nanocrystals bio-polymer from agro-industrial wastes: Separation and characterization. Polymers and Polymer Composites, 24(9), 719–728.CrossRef
13.
Zurück zum Zitat Heux, L., Chauve, G., & Bonini, C. (2000). Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir, 16(21), 8210–8212.CrossRef Heux, L., Chauve, G., & Bonini, C. (2000). Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir, 16(21), 8210–8212.CrossRef
15.
19.
Zurück zum Zitat Zhao, Y., Moser, C., Lindström, M. E., Henriksson, G., & Li, J. (2017). Cellulose nanofibers from softwood, hardwood, and tunicate: Preparation–structure–film performance interrelation. ACS Applied Materials & Interfaces, 9(15), 13508–13519.CrossRef Zhao, Y., Moser, C., Lindström, M. E., Henriksson, G., & Li, J. (2017). Cellulose nanofibers from softwood, hardwood, and tunicate: Preparation–structure–film performance interrelation. ACS Applied Materials & Interfaces, 9(15), 13508–13519.CrossRef
20.
Zurück zum Zitat Adu, C., Berglund, L., Oksman, K., Eichhorn, S. J., Jolly, M., & Zhu, C. (2018). Properties of cellulose nanofibre networks prepared from never-dried and dried paper mill sludge. Journal of Cleaner Production, 197, 765–771.CrossRef Adu, C., Berglund, L., Oksman, K., Eichhorn, S. J., Jolly, M., & Zhu, C. (2018). Properties of cellulose nanofibre networks prepared from never-dried and dried paper mill sludge. Journal of Cleaner Production, 197, 765–771.CrossRef
21.
Zurück zum Zitat Isogai, A., Saito, T., & Fukuzumi, H. (2011). TEMPO-oxidized cellulose nanofibers. Nanoscale, 3(1), 71–85.CrossRef Isogai, A., Saito, T., & Fukuzumi, H. (2011). TEMPO-oxidized cellulose nanofibers. Nanoscale, 3(1), 71–85.CrossRef
22.
Zurück zum Zitat Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., et al. (2011). Nanocelluloses: A new family of nature-based materials. Angewandte Chemie International Edition, 50(24), 5438–5466.CrossRef Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., et al. (2011). Nanocelluloses: A new family of nature-based materials. Angewandte Chemie International Edition, 50(24), 5438–5466.CrossRef
23.
Zurück zum Zitat Isogai, A. (2013). Wood nanocelluloses: Fundamentals and applications as new bio-based nanomaterials. Journal of Wood Science, 59(6), 449–459.CrossRef Isogai, A. (2013). Wood nanocelluloses: Fundamentals and applications as new bio-based nanomaterials. Journal of Wood Science, 59(6), 449–459.CrossRef
24.
Zurück zum Zitat Fall, A. B., Lindström, S. B., Sundman, O., Ödberg, L., & Wågberg, L. (2011). Colloidal stability of aqueous nanofibrillated cellulose dispersions. Langmuir, 27, 11332–11338.CrossRef Fall, A. B., Lindström, S. B., Sundman, O., Ödberg, L., & Wågberg, L. (2011). Colloidal stability of aqueous nanofibrillated cellulose dispersions. Langmuir, 27, 11332–11338.CrossRef
25.
Zurück zum Zitat Noguchi, Y., Homma, I., & Matsubara, Y. (2017). Complete nanofibrillation of cellulose prepared by phosphorylation. Cellulose, 24(3), 1295–1305.CrossRef Noguchi, Y., Homma, I., & Matsubara, Y. (2017). Complete nanofibrillation of cellulose prepared by phosphorylation. Cellulose, 24(3), 1295–1305.CrossRef
26.
Zurück zum Zitat Yang, H., Chen, D., & van de Ven, T. G. (2015). Preparation and characterization of sterically stabilized nanocrystalline cellulose obtained by periodate oxidation of cellulose fibers. Cellulose, 22(3), 1743–1752.CrossRef Yang, H., Chen, D., & van de Ven, T. G. (2015). Preparation and characterization of sterically stabilized nanocrystalline cellulose obtained by periodate oxidation of cellulose fibers. Cellulose, 22(3), 1743–1752.CrossRef
27.
Zurück zum Zitat Saito, T., Nishiyama, Y., Putaux, J. L., Vignon, M., & Isogai, A. (2006). Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules, 7, 1687–1691.CrossRef Saito, T., Nishiyama, Y., Putaux, J. L., Vignon, M., & Isogai, A. (2006). Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules, 7, 1687–1691.CrossRef
28.
Zurück zum Zitat Saito, T., Kimura, S., Nishiyama, Y., & Isogai, A. (2007). Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules, 8(8), 2485–2491.CrossRef Saito, T., Kimura, S., Nishiyama, Y., & Isogai, A. (2007). Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules, 8(8), 2485–2491.CrossRef
29.
Zurück zum Zitat Shinoda, R., Saito, T., Okita, Y., & Isogai, A. (2012). Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules, 13(3), 842–849.CrossRef Shinoda, R., Saito, T., Okita, Y., & Isogai, A. (2012). Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules, 13(3), 842–849.CrossRef
30.
Zurück zum Zitat Pääkkö, M., Ankerfors, M., Kosonen, H., Nykänen, A., Ahola, S., Österberg, M., et al. (2007). Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules, 8(6), 1934–1941.CrossRef Pääkkö, M., Ankerfors, M., Kosonen, H., Nykänen, A., Ahola, S., Österberg, M., et al. (2007). Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules, 8(6), 1934–1941.CrossRef
31.
Zurück zum Zitat Nyström, G., Mihranyan, A., Razaq, A., Lindström, T., Nyholm, L., & Strømme, M. (2010). A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. The Journal of Physical Chemistry B, 114(12), 4178–4182.CrossRef Nyström, G., Mihranyan, A., Razaq, A., Lindström, T., Nyholm, L., & Strømme, M. (2010). A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. The Journal of Physical Chemistry B, 114(12), 4178–4182.CrossRef
32.
Zurück zum Zitat Maiti, S., Jayaramudu, J., Das, K., Reddy, S. M., Sadiku, R., Ray, S. S., et al. (2013). Preparation and characterization of nano-cellulose with new shape from different precursor. Carbohydrate polymers, 98(1), 562–567.CrossRef Maiti, S., Jayaramudu, J., Das, K., Reddy, S. M., Sadiku, R., Ray, S. S., et al. (2013). Preparation and characterization of nano-cellulose with new shape from different precursor. Carbohydrate polymers, 98(1), 562–567.CrossRef
33.
Zurück zum Zitat Henriksson, M., Henriksson, G., Berglund, L. A., & Lindström, T. (2007). An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. European Polymer Journal, 43(8), 3434–3441.CrossRef Henriksson, M., Henriksson, G., Berglund, L. A., & Lindström, T. (2007). An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. European Polymer Journal, 43(8), 3434–3441.CrossRef
34.
Zurück zum Zitat Chakraborty, A., Sain, M., & Kortschot, M. (2005). Cellulose microfibrils: A novel method of preparation using high shear refining and cryocrushing. Holzforschung, 59(1), 102–107.CrossRef Chakraborty, A., Sain, M., & Kortschot, M. (2005). Cellulose microfibrils: A novel method of preparation using high shear refining and cryocrushing. Holzforschung, 59(1), 102–107.CrossRef
35.
Zurück zum Zitat Goffin, A. L., Raquez, J. M., Duquesne, E., Siqueira, G., Habibi, Y., Dufresne, A., et al. (2011). From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites. Biomacromolecules, 12(7), 2456–2465.CrossRef Goffin, A. L., Raquez, J. M., Duquesne, E., Siqueira, G., Habibi, Y., Dufresne, A., et al. (2011). From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites. Biomacromolecules, 12(7), 2456–2465.CrossRef
36.
Zurück zum Zitat Souza, A. G., Rocha, D. B., & Rosa, D. S. (2017). Cellulose nanowhiskers obtained from waste recycling of paper industry. In Materials design and applications (pp. 101–111). Cham: Springer. Souza, A. G., Rocha, D. B., & Rosa, D. S. (2017). Cellulose nanowhiskers obtained from waste recycling of paper industry. In Materials design and applications (pp. 101–111). Cham: Springer.
37.
Zurück zum Zitat Rosa, M. F., Medeiros, E. S., Malmonge, J. A., Gregorski, K. S., Wood, D. F., Mattoso, L. H. C., et al. (2010). Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohydrate Polymers, 81(1), 83–92.CrossRef Rosa, M. F., Medeiros, E. S., Malmonge, J. A., Gregorski, K. S., Wood, D. F., Mattoso, L. H. C., et al. (2010). Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohydrate Polymers81(1), 83–92.CrossRef
38.
Zurück zum Zitat Satyamurthy, P., Jain, P., Balasubramanya, R. H., & Vigneshwaran, N. (2011). Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis. Carbohydrate Polymers, 83(1), 122–129.CrossRef Satyamurthy, P., Jain, P., Balasubramanya, R. H., & Vigneshwaran, N. (2011). Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis. Carbohydrate Polymers, 83(1), 122–129.CrossRef
39.
Zurück zum Zitat Hong, F., Zhu, Y. X., Yang, G., & Yang, X. X. (2011). Wheat straw acid hydrolysate as a potential cost-effective feedstock for production of bacterial cellulose. Journal of Chemical Technology & Biotechnology, 86(5), 675–680.CrossRef Hong, F., Zhu, Y. X., Yang, G., & Yang, X. X. (2011). Wheat straw acid hydrolysate as a potential cost-effective feedstock for production of bacterial cellulose. Journal of Chemical Technology & Biotechnology, 86(5), 675–680.CrossRef
40.
Zurück zum Zitat Guo, X., Chen, L., Tang, J., Jönsson, L. J., & Hong, F. F. (2016). Production of bacterial nanocellulose and enzyme from [AMIM] Cl-pretreated waste cotton fabrics: Effects of dyes on enzymatic saccharification and nanocellulose production. Journal of Chemical Technology & Biotechnology, 91(5), 1413–1421.CrossRef Guo, X., Chen, L., Tang, J., Jönsson, L. J., & Hong, F. F. (2016). Production of bacterial nanocellulose and enzyme from [AMIM] Cl-pretreated waste cotton fabrics: Effects of dyes on enzymatic saccharification and nanocellulose production. Journal of Chemical Technology & Biotechnology, 91(5), 1413–1421.CrossRef
41.
Zurück zum Zitat Kuo, C. H., Lin, P. J., & Lee, C. K. (2010). Enzymatic saccharification of dissolution pretreated waste cellulosic fabrics for bacterial cellulose production by Gluconacetobacter xylinus. Journal of Chemical Technology & Biotechnology, 85(10), 1346–1352.CrossRef Kuo, C. H., Lin, P. J., & Lee, C. K. (2010). Enzymatic saccharification of dissolution pretreated waste cellulosic fabrics for bacterial cellulose production by Gluconacetobacter xylinus. Journal of Chemical Technology & Biotechnology, 85(10), 1346–1352.CrossRef
42.
Zurück zum Zitat Mautner, A., Maples, H. A., Kobkeatthawin, T., Kokol, V., Karim, Z., Li, K., et al. (2016). Phosphorylated nanocellulose papers for copper adsorption from aqueous solutions. International Journal of Environmental Science and Technology, 13(8), 1861–1872.CrossRef Mautner, A., Maples, H. A., Kobkeatthawin, T., Kokol, V., Karim, Z., Li, K., et al. (2016). Phosphorylated nanocellulose papers for copper adsorption from aqueous solutions. International Journal of Environmental Science and Technology, 13(8), 1861–1872.CrossRef
44.
Zurück zum Zitat Anirudhan, T. S., Divya, L., & Parvathy, J. (2013). Journal of Chemical Technology and Biotechnology, 88(5), 878–886.CrossRef Anirudhan, T. S., Divya, L., & Parvathy, J. (2013). Journal of Chemical Technology and Biotechnology, 88(5), 878–886.CrossRef
45.
Zurück zum Zitat Liu, P., Sehaqui, H., Tingaut, P., Wichser, A., Oksman, K., & Mathew, A. P. (2014). Cellulose, 21(1), 449–461.CrossRef Liu, P., Sehaqui, H., Tingaut, P., Wichser, A., Oksman, K., & Mathew, A. P. (2014). Cellulose, 21(1), 449–461.CrossRef
46.
Zurück zum Zitat Espino-Pérez, E., Domenek, S., Belgacem, N., Sillard, C., & Bras, J. (2014). Green process for chemical functionalization of nanocellulose with carboxylic acids. Biomacromolecules, 15(12), 4551–4560.CrossRef Espino-Pérez, E., Domenek, S., Belgacem, N., Sillard, C., & Bras, J. (2014). Green process for chemical functionalization of nanocellulose with carboxylic acids. Biomacromolecules, 15(12), 4551–4560.CrossRef
47.
Zurück zum Zitat Suopajärvi, T., Liimatainen, H., Karjalainen, M., Upola, H., & Niinimäki, J. (2015). Lead adsorption with sulfonated wheat pulp nanocelluloses. Journal of Water Process Engineering, 5, 136–142.CrossRef Suopajärvi, T., Liimatainen, H., Karjalainen, M., Upola, H., & Niinimäki, J. (2015). Lead adsorption with sulfonated wheat pulp nanocelluloses. Journal of Water Process Engineering, 5, 136–142.CrossRef
48.
Zurück zum Zitat Hokkanen, S., Repo, E., Suopajärvi, T., Liimatainen, H., Niinimaa, J., & Sillanpää, M. (2014). Adsorption of Ni(II), Cu(II) and Cd(II) from aqueous solutions by amino modified nanostructured microfibrillated cellulose. Cellulose, 21(3), 1471–1487.CrossRef Hokkanen, S., Repo, E., Suopajärvi, T., Liimatainen, H., Niinimaa, J., & Sillanpää, M. (2014). Adsorption of Ni(II), Cu(II) and Cd(II) from aqueous solutions by amino modified nanostructured microfibrillated cellulose. Cellulose, 21(3), 1471–1487.CrossRef
50.
Zurück zum Zitat Castro, G. R. d., Alcantara, I. L. d., Roldan, P. d. S., Bozano, D. d. F., Padilha, P. d. M., Florentino, A. d. O. et al. (2004). Journal of Materials Research 7(2), 329–334.CrossRef Castro, G. R. d., Alcantara, I. L. d., Roldan, P. d. S., Bozano, D. d. F., Padilha, P. d. M., Florentino, A. d. O. et al. (2004). Journal of Materials Research 7(2), 329–334.CrossRef
51.
Zurück zum Zitat Zhang, C., Su, J., Zhu, H., Xiong, J., Liu, X., Li, D., et al. (2017). The removal of heavy metal ions from aqueous solutions by amine functionalized cellulose pretreated with microwave-H2O2. RSC Advances, 7(54), 34182–34191.CrossRef Zhang, C., Su, J., Zhu, H., Xiong, J., Liu, X., Li, D., et al. (2017). The removal of heavy metal ions from aqueous solutions by amine functionalized cellulose pretreated with microwave-H2O2. RSC Advances, 7(54), 34182–34191.CrossRef
52.
Zurück zum Zitat Madivoli, E.S., Kareru, P.G., Gachanja, A.N., Mugo, S., Murigi, M.K., Kairigo, P.K., Kipyegon, C., Mutembei, J.K. and Njonge, F.K., 2016. Adsorption of selected heavy metals on modified nano cellulose. International Research Journal of Pure and Applied Chemistry, pp.1–9.CrossRef Madivoli, E.S., Kareru, P.G., Gachanja, A.N., Mugo, S., Murigi, M.K., Kairigo, P.K., Kipyegon, C., Mutembei, J.K. and Njonge, F.K., 2016. Adsorption of selected heavy metals on modified nano cellulose. International Research Journal of Pure and Applied Chemistry, pp.1–9.CrossRef
54.
Zurück zum Zitat Yu, X., Tong, S., Ge, M., Wu, L., Zuo, J., Cao, C., et al. (2013). Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals. Journal of Environmental Sciences, 25(5), 933–943.CrossRef Yu, X., Tong, S., Ge, M., Wu, L., Zuo, J., Cao, C., et al. (2013). Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals. Journal of Environmental Sciences, 25(5), 933–943.CrossRef
55.
Zurück zum Zitat Zhou, D., Zhang, L., Zhou, J., & Guo, S. (2004). Cellulose/chitin beads for adsorption of heavy metals in aqueous solution. Water Research, 38(11), 2643–2650.CrossRef Zhou, D., Zhang, L., Zhou, J., & Guo, S. (2004). Cellulose/chitin beads for adsorption of heavy metals in aqueous solution. Water Research, 38(11), 2643–2650.CrossRef
56.
Zurück zum Zitat Hokkanen, S., Repo, E., & Sillanpää, M. (2013). Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose. Chemical Engineering Journal, 223, 40–47.CrossRef Hokkanen, S., Repo, E., & Sillanpää, M. (2013). Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose. Chemical Engineering Journal, 223, 40–47.CrossRef
57.
Zurück zum Zitat Karim, Z., Hakalahti, M., Tammelin, T., & Mathew, A. P. (2017). In situ TEMPO surface functionalization of nanocellulose membranes for enhanced adsorption of metal ions from aqueous medium. RSC Advances, 7(9), 5232–5241.CrossRef Karim, Z., Hakalahti, M., Tammelin, T., & Mathew, A. P. (2017). In situ TEMPO surface functionalization of nanocellulose membranes for enhanced adsorption of metal ions from aqueous medium. RSC Advances, 7(9), 5232–5241.CrossRef
58.
Zurück zum Zitat Gurnani, V., Singh, A. K., & Venkataramani, B. (2003). Cellulose functionalized with 8-hydroxyquinoline: New method of synthesis and applications as a solid phase extractant in the determination of metal ions by flame atomic absorption spectrometry. Analytica Chimica Acta, 485(2), 221–232. Gurnani, V., Singh, A. K., & Venkataramani, B. (2003). Cellulose functionalized with 8-hydroxyquinoline: New method of synthesis and applications as a solid phase extractant in the determination of metal ions by flame atomic absorption spectrometry. Analytica Chimica Acta485(2), 221–232.
59.
Zurück zum Zitat Zhang, N., Zang, G. L., Shi, C., Yu, H. Q., & Sheng, G. P. (2016). A novel adsorbent TEMPO-mediated oxidized cellulose nanofibrils modified with PEI: Preparation, characterization, and application for Cu(II) removal. Journal of Hazardous Materials, 316, 11–18.CrossRef Zhang, N., Zang, G. L., Shi, C., Yu, H. Q., & Sheng, G. P. (2016). A novel adsorbent TEMPO-mediated oxidized cellulose nanofibrils modified with PEI: Preparation, characterization, and application for Cu(II) removal. Journal of Hazardous Materials, 316, 11–18.CrossRef
60.
Zurück zum Zitat Sehaqui, H., de Larraya, U. P., Liu, P., Pfenninger, N., Mathew, A. P., Zimmermann, T., & Tingaut, P. (2014). Enhancing adsorption of heavy metal ions onto biobased nanofibers from waste pulp residues for application in wastewater treatment. Cellulose, 21(4), 2831–2844. Sehaqui, H., de Larraya, U. P., Liu, P., Pfenninger, N., Mathew, A. P., Zimmermann, T., & Tingaut, P. (2014). Enhancing adsorption of heavy metal ions onto biobased nanofibers from waste pulp residues for application in wastewater treatment. Cellulose21(4), 2831–2844.
61.
Zurück zum Zitat Setyono, D., & Valiyaveettil, S. (2016). Functionalized paper—A readily accessible adsorbent for removal of dissolved heavy metal salts and nanoparticles from water. Journal of Hazardous Materials, 302, 120–128.CrossRef Setyono, D., & Valiyaveettil, S. (2016). Functionalized paper—A readily accessible adsorbent for removal of dissolved heavy metal salts and nanoparticles from water. Journal of Hazardous Materials, 302, 120–128.CrossRef
62.
Zurück zum Zitat Saliba, R., Gauthier, H., & Gauthier, R. (2005). Adsorption of heavy metal ions on virgin and chemically-modified lignocellulosic materials. Adsorption Science & Technology, 23(4), 313–322.CrossRef Saliba, R., Gauthier, H., & Gauthier, R. (2005). Adsorption of heavy metal ions on virgin and chemically-modified lignocellulosic materials. Adsorption Science & Technology, 23(4), 313–322.CrossRef
63.
Zurück zum Zitat Gurgel, L. V. A., & Gil, L. F. (2009). Adsorption of Cu(II), Cd(II) and Pb(II) from aqueous single metal solutions by succinylated twice-mercerized sugarcane bagasse functionalized with triethylenetetramine. Water Research, 43(18), 4479–4488.CrossRef Gurgel, L. V. A., & Gil, L. F. (2009). Adsorption of Cu(II), Cd(II) and Pb(II) from aqueous single metal solutions by succinylated twice-mercerized sugarcane bagasse functionalized with triethylenetetramine. Water Research, 43(18), 4479–4488.CrossRef
64.
Zurück zum Zitat Low, K. S., Lee, C. K., & Mak, S. M. (2004). Sorption of copper and lead by citric acid modified wood. Wood Science and Technology, 38(8), 629–640.CrossRef Low, K. S., Lee, C. K., & Mak, S. M. (2004). Sorption of copper and lead by citric acid modified wood. Wood Science and Technology, 38(8), 629–640.CrossRef
Metadaten
Titel
Cellulose Based Bio Polymers: Synthesis, Functionalization and Applications in Heavy Metal Adsorption
verfasst von
Vijaykiran N. Narwade
Yasir Beeran Pottathara
Sumayya Begum
Rajendra S. Khairnar
Kashinath A. Bogle
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-40301-0_12

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.