Skip to main content
Erschienen in:
Buchtitelbild

2021 | OriginalPaper | Buchkapitel

Cerebral Aneurysm Detection and Analysis Challenge 2020 (CADA)

verfasst von : Matthias Ivantsits, Leonid Goubergrits, Jan-Martin Kuhnigk, Markus Huellebrand, Jan Brüning, Tabea Kossen, Boris Pfahringer, Jens Schaller, Andreas Spuler, Titus Kuehne, Anja Hennemuth

Erschienen in: Cerebral Aneurysm Detection and Analysis

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Rupture of an intracranial aneurysm often results in subarachnoid hemorrhage, a life-threatening condition with high mortality and morbidity. The Cerebral Aneurysm Detection and Analysis (CADA) competition was organized to support the development and benchmarking of algorithms for the detection, analysis, and risk assessment of cerebral aneurysms in X-ray rotational angiography (3DRA) images. 109 anonymized 3DRA datasets were provided for training, and 22 additional datasets were used to test the algorithmic solutions. Cerebral aneurysm detection was assessed using the F2 score based on recall and precision, and the fit of the delivered bounding box was assessed using the distance to the aneurysm. Segmentation quality was measured using Jaccard and a combination of different surface distance measurements. Systematic errors were analyzed using volume correlation and bias. Rupture risk assessment was evaluated using the F2 score. 158 participants from 22 countries registered for the CADAchallenge. The detection solutions presented by the community are mostly accurate (F2 score 0.92) with a small number of missed aneurysms with diameters of 3.5 mm. In addition, the delineation of these structures is very good with a Jaccard score of 0.915. The rupture risk estimation methods achieved an F2 score of 0.7. The performance of the detection and segmentation solutions is equivalent to that of human experts. In rupture risk estimation, the best results are obtained by combining different image-based, morphological and computational fluid dynamic parameters using machine learning methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Valen-Sendstad, K., et al.: Real-world variability in the prediction of intracranial aneurysm wall shear stress: the 2015 international aneurysm CFD challenge. Cardiovasc. Eng. Technol. 9, 544–564 (2018)CrossRef Valen-Sendstad, K., et al.: Real-world variability in the prediction of intracranial aneurysm wall shear stress: the 2015 international aneurysm CFD challenge. Cardiovasc. Eng. Technol. 9, 544–564 (2018)CrossRef
2.
Zurück zum Zitat Janiga, G., et al.: The computational fluid dynamics rupture challenge 2013-phase I: prediction of rupture status in intracranial aneurysms. Am. J. Neuroradiol. 36, 530–536 (2015)CrossRef Janiga, G., et al.: The computational fluid dynamics rupture challenge 2013-phase I: prediction of rupture status in intracranial aneurysms. Am. J. Neuroradiol. 36, 530–536 (2015)CrossRef
3.
Zurück zum Zitat Steinman, D.A., et al.: Variability of computational fluid dynamics solutions for pressure and flow in a giant aneurysm: the ASME 2012 summer bioengineering conference CFD challenge. J. Biomech. Eng. 135, 021016 (2013)CrossRef Steinman, D.A., et al.: Variability of computational fluid dynamics solutions for pressure and flow in a giant aneurysm: the ASME 2012 summer bioengineering conference CFD challenge. J. Biomech. Eng. 135, 021016 (2013)CrossRef
4.
Zurück zum Zitat Radaelli, A.G., et al.: Reproducibility of haemodynamical simulations in a subject-specific stented aneurysm model–a report on the virtual intracranial stenting challenge 2007. J. Biomech. 41, 2069–2081 (2008)CrossRef Radaelli, A.G., et al.: Reproducibility of haemodynamical simulations in a subject-specific stented aneurysm model–a report on the virtual intracranial stenting challenge 2007. J. Biomech. 41, 2069–2081 (2008)CrossRef
5.
Zurück zum Zitat Mokin, M., et al.: What size cerebral aneurysms rupture? A systematic review and meta-analysis of literature. Neurosurgery 66, nyz310\_664 (2019)CrossRef Mokin, M., et al.: What size cerebral aneurysms rupture? A systematic review and meta-analysis of literature. Neurosurgery 66, nyz310\_664 (2019)CrossRef
6.
Zurück zum Zitat Morita, A., et al.: The natural course of unruptured cerebral aneurysms in a Japanese cohort. N. Engl. J. Med. 366, 2474–2482 (2012) CrossRef Morita, A., et al.: The natural course of unruptured cerebral aneurysms in a Japanese cohort. N. Engl. J. Med. 366, 2474–2482 (2012) CrossRef
7.
Zurück zum Zitat Wiebers, D.O., et al.: Un-ruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet 362, 103–110 (2003)CrossRef Wiebers, D.O., et al.: Un-ruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet 362, 103–110 (2003)CrossRef
8.
Zurück zum Zitat Jeong, Y.-G., et al.: Size and location of ruptured in-tracranial aneurysms. J. Korean Neurosurg. Soc. 45, 11 (2009)CrossRef Jeong, Y.-G., et al.: Size and location of ruptured in-tracranial aneurysms. J. Korean Neurosurg. Soc. 45, 11 (2009)CrossRef
10.
Zurück zum Zitat Bhidayasiri, R., et al.: Neurological Differential Diagnosis: A Prioritized Approach (2005) Bhidayasiri, R., et al.: Neurological Differential Diagnosis: A Prioritized Approach (2005)
11.
Zurück zum Zitat Teunissen, L.L., et al.: Risk factors for subarachnoid hemorrhage (1996) Teunissen, L.L., et al.: Risk factors for subarachnoid hemorrhage (1996)
13.
Zurück zum Zitat Jia, Y., et al.: Detect and identify aneurysms based on adjusted 3D attention UNet (2021) Jia, Y., et al.: Detect and identify aneurysms based on adjusted 3D attention UNet (2021)
14.
Zurück zum Zitat Shit, S., Ezhov, I., Paetzold, J.C., Menze, B.: A\(\nu \)-net: automatic detection and segmentation of aneurysm (2021) Shit, S., Ezhov, I., Paetzold, J.C., Menze, B.: A\(\nu \)-net: automatic detection and segmentation of aneurysm (2021)
15.
Zurück zum Zitat Ivantsits, M., Kuhnigk, J., Huellebrand, M., Kuehne, T., Hennemuth, A.: Deep learning-based 3D U-Net cerebral aneurysm detection (2021) Ivantsits, M., Kuhnigk, J., Huellebrand, M., Kuehne, T., Hennemuth, A.: Deep learning-based 3D U-Net cerebral aneurysm detection (2021)
16.
Zurück zum Zitat Su, Z., et al.: 3D attention U-Net: a solution to CADA-aneurysm segmentation challenge (2021) Su, Z., et al.: 3D attention U-Net: a solution to CADA-aneurysm segmentation challenge (2021)
17.
Zurück zum Zitat Ma, J., Nie, Z.: Exploring large context for cerebral aneurysm segmentation (2021) Ma, J., Nie, Z.: Exploring large context for cerebral aneurysm segmentation (2021)
18.
Zurück zum Zitat Ivantsits, M., Hüllebrand, M., Kelle, S., Kühne, T., Hennemuth, A.: Intracranial aneurysm rupture risk estimation utilizing vessel-graphs and machine learning (2021) Ivantsits, M., Hüllebrand, M., Kelle, S., Kühne, T., Hennemuth, A.: Intracranial aneurysm rupture risk estimation utilizing vessel-graphs and machine learning (2021)
19.
Zurück zum Zitat Liu, Y., et al.: Cerebral aneurysm rupture risk estimation using XGBoost and fully connected neural network (2021) Liu, Y., et al.: Cerebral aneurysm rupture risk estimation using XGBoost and fully connected neural network (2021)
20.
Zurück zum Zitat Sulayman, N., et al.: Semi-automatic detection and segmentation algorithm of saccular aneurysms in 2D cerebral DSA images. Egypt. J. Radiol. Nucl. Med. 47, 859–865 (2016)CrossRef Sulayman, N., et al.: Semi-automatic detection and segmentation algorithm of saccular aneurysms in 2D cerebral DSA images. Egypt. J. Radiol. Nucl. Med. 47, 859–865 (2016)CrossRef
21.
Zurück zum Zitat Rahmany, I., et al.: A fully automatic based deep learning approach for aneurysm detection in DSA images (2018) Rahmany, I., et al.: A fully automatic based deep learning approach for aneurysm detection in DSA images (2018)
22.
Zurück zum Zitat Duan, H., et al.: Automatic detection on intracranial aneurysm from digital subtraction angiography with cascade convolutional neural networks. Biomed. Eng. Online 18, 1–18 (2019)CrossRef Duan, H., et al.: Automatic detection on intracranial aneurysm from digital subtraction angiography with cascade convolutional neural networks. Biomed. Eng. Online 18, 1–18 (2019)CrossRef
23.
Zurück zum Zitat Jin, H., et al.: Fully automated intracranial aneurysm detection and segmentation from digital subtraction angiography series using an end-to-end spatiotemporal deep neural network. J. NeuroInterventional Surg. 12, 1023–1027 (2020)CrossRef Jin, H., et al.: Fully automated intracranial aneurysm detection and segmentation from digital subtraction angiography series using an end-to-end spatiotemporal deep neural network. J. NeuroInterventional Surg. 12, 1023–1027 (2020)CrossRef
24.
Zurück zum Zitat Zeng, Y., et al.: Automatic diagnosis based on spatial information fusion feature for intracranial aneurysm. IEEE Trans. Med. Imaging 39, 1448–1458 (2020)CrossRef Zeng, Y., et al.: Automatic diagnosis based on spatial information fusion feature for intracranial aneurysm. IEEE Trans. Med. Imaging 39, 1448–1458 (2020)CrossRef
25.
Zurück zum Zitat Dakua, S.P., Abinahed, J., Al-Ansari, A., et al.: A PCA-based approach for brain aneurysm segmentation. Multidimens. Syst. Signal Process. 29, 257–277 (2018)MathSciNetCrossRef Dakua, S.P., Abinahed, J., Al-Ansari, A., et al.: A PCA-based approach for brain aneurysm segmentation. Multidimens. Syst. Signal Process. 29, 257–277 (2018)MathSciNetCrossRef
26.
Zurück zum Zitat Patel, T., et al.: Multi-resolution CNN for brain vessel segmentation from cerebrovascular images of intracranial aneurysm: a comparison of U-Net and DeepMedic (2020) Patel, T., et al.: Multi-resolution CNN for brain vessel segmentation from cerebrovascular images of intracranial aneurysm: a comparison of U-Net and DeepMedic (2020)
27.
Zurück zum Zitat Beck, J., Rhode, S., Berkefeld, J., et al.: Size and location of ruptured and unruptured intracranial aneurysms measured by 3-dimensional rotational angiography. Surg. Neurol. 65, 18–25 (2006)CrossRef Beck, J., Rhode, S., Berkefeld, J., et al.: Size and location of ruptured and unruptured intracranial aneurysms measured by 3-dimensional rotational angiography. Surg. Neurol. 65, 18–25 (2006)CrossRef
28.
Zurück zum Zitat Xiang, J., et al.: Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke 42, 144–152 (2011)CrossRef Xiang, J., et al.: Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke 42, 144–152 (2011)CrossRef
29.
Zurück zum Zitat Kleinloog, R., De Mul, N., Verweij, B.H., Post, J.A., Rinkel, G.J.E., Ruigrok, Y.M.: Risk factors for intracranial aneurysm rupture: a systematic review. Neurosurgery 82, 431–440 (2018)CrossRef Kleinloog, R., De Mul, N., Verweij, B.H., Post, J.A., Rinkel, G.J.E., Ruigrok, Y.M.: Risk factors for intracranial aneurysm rupture: a systematic review. Neurosurgery 82, 431–440 (2018)CrossRef
30.
Zurück zum Zitat Cebral, J.R., et al.: Analysis of hemodynamics and wall mechanics at sites of cerebral aneurysm rupture. J. NeuroInterventional Surg. 7, 530–536 (2015)CrossRef Cebral, J.R., et al.: Analysis of hemodynamics and wall mechanics at sites of cerebral aneurysm rupture. J. NeuroInterventional Surg. 7, 530–536 (2015)CrossRef
31.
Zurück zum Zitat Detmer, F.J.: Associations of hemodynamics, morphology, and patient characteristics with aneurysm rupture stratified by aneurysm location. Neuroradiology 61, 275–284 (2019)CrossRef Detmer, F.J.: Associations of hemodynamics, morphology, and patient characteristics with aneurysm rupture stratified by aneurysm location. Neuroradiology 61, 275–284 (2019)CrossRef
32.
Zurück zum Zitat Detmer, F.J., et al.: Extending statistical learning for aneurysm rupture assessment to Finnish and Japanese populations using morphology, hemodynamics, and patient characteristics. Neurosurg. Focus 47(1), E16 (2019)CrossRef Detmer, F.J., et al.: Extending statistical learning for aneurysm rupture assessment to Finnish and Japanese populations using morphology, hemodynamics, and patient characteristics. Neurosurg. Focus 47(1), E16 (2019)CrossRef
33.
Zurück zum Zitat Lindgren, A.E., et al.: Irregular shape of intracranial aneurysm indicates rupture risk irrespective of size in a population-based cohort. Stroke 47, 1219–1226 (2016)CrossRef Lindgren, A.E., et al.: Irregular shape of intracranial aneurysm indicates rupture risk irrespective of size in a population-based cohort. Stroke 47, 1219–1226 (2016)CrossRef
34.
Zurück zum Zitat Tanioka, S., et al.: Machine learning classification of cerebral aneurysm rupture status with morphologic variables and hemodynamic parameters. Radiol.: Artif. Intell. 2, e190077 (2020) Tanioka, S., et al.: Machine learning classification of cerebral aneurysm rupture status with morphologic variables and hemodynamic parameters. Radiol.: Artif. Intell. 2, e190077 (2020)
35.
Zurück zum Zitat Paliwal, N., et al.: Outcome prediction of intracranial aneurysm treatment by flow diverters using machine learning. Neurosurg. Focus 45(5), E7 (2018)CrossRef Paliwal, N., et al.: Outcome prediction of intracranial aneurysm treatment by flow diverters using machine learning. Neurosurg. Focus 45(5), E7 (2018)CrossRef
36.
Zurück zum Zitat Suzuki, M., et al.: Classification model for cerebral aneurysm rupture prediction using medical and blood-flow-simulation data (2019) Suzuki, M., et al.: Classification model for cerebral aneurysm rupture prediction using medical and blood-flow-simulation data (2019)
37.
Zurück zum Zitat Chen, G., et al.: Development and validation of machine learning prediction model based on computed tomography angiography-derived hemodynamics for rupture status of intracranial aneurysms: a Chinese multicenter study. Eur. Radiol. 30, 5170–5182 (2020)CrossRef Chen, G., et al.: Development and validation of machine learning prediction model based on computed tomography angiography-derived hemodynamics for rupture status of intracranial aneurysms: a Chinese multicenter study. Eur. Radiol. 30, 5170–5182 (2020)CrossRef
38.
Zurück zum Zitat Kim, H.C., et al.: Machine learning application for rupture risk assessment in small-sized intracranial aneurysm. J. Clin. Med. 8, 683 (2019)CrossRef Kim, H.C., et al.: Machine learning application for rupture risk assessment in small-sized intracranial aneurysm. J. Clin. Med. 8, 683 (2019)CrossRef
39.
Zurück zum Zitat Chandra, A.R., et al.: Initial study of the radiomics of intracranial aneurysms using Angiographic Parametric Imaging (API) to evaluate contrast flow changes (2019) Chandra, A.R., et al.: Initial study of the radiomics of intracranial aneurysms using Angiographic Parametric Imaging (API) to evaluate contrast flow changes (2019)
40.
Zurück zum Zitat Silva, M.: Machine learning models can detect aneurysm rupture and identify clinical features associated with rupture. World Neurosurg. 131, e46–e51 (2019)CrossRef Silva, M.: Machine learning models can detect aneurysm rupture and identify clinical features associated with rupture. World Neurosurg. 131, e46–e51 (2019)CrossRef
41.
Zurück zum Zitat Tachibana, Y.: A neural network model that learns differences in diagnosis strategies among radiologists has an improved area under the curve for aneurysm status classification in magnetic resonance angiography image series (2020) Tachibana, Y.: A neural network model that learns differences in diagnosis strategies among radiologists has an improved area under the curve for aneurysm status classification in magnetic resonance angiography image series (2020)
42.
Zurück zum Zitat Detmer, F.J.: Comparison of statistical learning approaches for cerebral aneurysm rupture assessment. Int. J. Comput. Assist. Radiol. Surg. 15, 141–150 (2020)CrossRef Detmer, F.J.: Comparison of statistical learning approaches for cerebral aneurysm rupture assessment. Int. J. Comput. Assist. Radiol. Surg. 15, 141–150 (2020)CrossRef
43.
Zurück zum Zitat Can, A., et al.: Association of intracranial aneurysm rupture with smoking duration, intensity, and cessation. Neurology 89, 1408–1415 (2017)CrossRef Can, A., et al.: Association of intracranial aneurysm rupture with smoking duration, intensity, and cessation. Neurology 89, 1408–1415 (2017)CrossRef
44.
Zurück zum Zitat Chabert, S., et al.: Applying machine learning and image feature extraction techniques to the problem of cerebral aneurysm rupture. Res. Ideas Outcomes 3, e11731 (2017)MathSciNetCrossRef Chabert, S., et al.: Applying machine learning and image feature extraction techniques to the problem of cerebral aneurysm rupture. Res. Ideas Outcomes 3, e11731 (2017)MathSciNetCrossRef
Metadaten
Titel
Cerebral Aneurysm Detection and Analysis Challenge 2020 (CADA)
verfasst von
Matthias Ivantsits
Leonid Goubergrits
Jan-Martin Kuhnigk
Markus Huellebrand
Jan Brüning
Tabea Kossen
Boris Pfahringer
Jens Schaller
Andreas Spuler
Titus Kuehne
Anja Hennemuth
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-72862-5_1

Premium Partner