Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2019

Open Access 01.12.2019 | Research

Certain integrals involving multivariate Mittag-Leffler function

verfasst von: D. L. Suthar, Hafte Amsalu, Kahsay Godifey

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2019

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The objective of this article is to present several new integral equalities involving the multivariate Mittag-Leffler functions which are associated with the Laguerre polynomials. To emphasize our main results, we also consider some important special cases. The main results of our paper are quite general in nature and yield a very large number of integral equalities involving polynomials occurring in problems of mathematical analysis and mathematical physics.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction and preliminaries

The function defined by the series representation
$$ E_{\xi } (z)=\sum_{n=0}^{\infty } \frac{z^{n} }{\varGamma (\xi n+1 )} \quad ( \xi > 0, z \in \mathbb{C}) $$
(1)
and its generalization
$$ E_{\xi,\nu } (z)=\sum_{n=0}^{\infty } \frac{z^{n} }{\varGamma (\xi n+ \nu )} \quad ( \xi > 0, \nu > 0, z \in \mathbb{C}) $$
(2)
were introduced and studied by Agarwal [1], Mittag-Leffler [2, 3], Humburt [4], Humbert and Agrawal [5], and Wiman [6, 7], where \(\mathbb{C}\) is the set of complex numbers. The main properties of these functions are given in the book by Erdélyi et al. [8, Sect. 18.1], and a more extensive and detailed account on Mittag-Leffler functions is presented in Dzherbashyan [9, Chap. 2]. In particular, the functions (1) and (2) are entire functions of order \(\rho = 1/\xi \) and type \(\sigma = 1\); see, for example, [9, p. 118]. For a detailed account of various properties, generalizations, and applications of these functions, the reader may refer to an excellent work of Dzherbashyan [9], Kilbas and Saigo [1013], Gorenflo and Mainardi [14], Gorenflo, Luchko and Rogosin [15], and Gorenflo, Kilbas and Rogosin [16].
The series representation of a generalization of (2) was introduced by Prabhaker [17] as:
$$ E_{\xi, \nu }^{\delta } (z) = \sum _{n = 0}^{\infty }\frac{(\delta )_{n} }{\varGamma (\xi n + \nu ) n !} z^{n}, $$
(3)
where \(\xi, \nu, \delta \in \mathbb{C}\ (\Re (\xi ) > 0 )\). It is entire function of order \([\Re (\xi ) ] ^{-1} \) (see [17, p. 7]) and \((\delta )_{n} \) denotes the Pochhammer symbol defined as:
$$ (\delta )_{n} =\frac{\varGamma (\delta +n )}{ \varGamma (\delta )} =\textstyle\begin{cases} 1,& n=0,\lambda \in \mathbb{C}/ \{0 \}, \\ \delta (\delta +1 )\cdots (\delta +n-1 ), & n\in \mathbb{C};\delta \in \mathbb{C}. \end{cases} $$
(4)
Srivastava and Tomoviski [18] studied and generalized the Mittag-Leffler-type function \(E_{\xi,\nu }^{\delta } (z)\) as
$$ E_{\xi;\nu }^{\delta;\kappa } (z)=\sum _{n=0}^{\infty }\frac{ (\delta ) _{\kappa n} z^{n} }{\varGamma (\xi n+\nu )n!}, $$
(5)
where \(\delta,\kappa,\xi,\nu,z\in \mathbb{C};\Re (\delta )>0, \Re (\kappa )>0,\Re (\xi )>0\).
A generalization of (5) was initiated by Salim and Faraj [19] as follows:
$$ E_{\xi,\nu,\varepsilon }^{\delta,\kappa,\rho } (z)=\sum _{n=0}^{ \infty }\frac{ (\delta )_{\rho n} }{\varGamma (\xi n+ \nu ) (\kappa )_{\varepsilon n} } \frac{z^{n} }{n!}, $$
(6)
where \(\delta,\xi,\nu,\kappa,z\in \mathbb{C};\min (\Re (\delta ),\Re (\xi ),\Re (\nu ), \Re (\kappa )>0 );\rho,\varepsilon >0,\rho \le \Re (\xi )+\varepsilon \).
Further, a multivariate generalization of Mittag-Leffler function \(E_{\xi _{i};\nu; \varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } (\cdot )\), which is a generalization of (6), was studied by Gujar et al. [20] in the following form:
$$ E_{\xi _{i};\nu; \varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } (z_{1}, \dots,z_{r} )=\sum_{m_{1},\dots,m_{r} =0} ^{\infty }\frac{ (\delta _{1} )_{\rho _{1} m_{1} } \cdots (\delta _{r} )_{\rho _{r} m_{r} } (z_{1} ) ^{m_{1} } \cdots (z_{r} )^{m_{r} } }{\varGamma (\sum_{i=1}^{r}\xi _{i} m_{i} +\nu ) (\kappa _{1} )_{ \varepsilon _{1} m_{1} } \cdots (\kappa _{r} )_{\varepsilon _{r} m_{r} } }, $$
(7)
where \(\delta _{i},\xi _{i},\nu,\kappa _{i},z_{i}\in \mathbb{C}; \mathop{\min }_{1\le i\le r} (\Re (\delta _{i} ), \Re (\xi _{i} ),\Re (\nu ),\Re (\kappa _{i} ) )>0\) and \(\rho _{i},\varepsilon _{i} >0;\rho _{i} < \Re (\xi _{i} )+\varepsilon _{i}\ (i=1,2,\dots,r)\).
For a more detailed account of various properties, generalizations, and applications in terms of fractions of this function, the reader may refer to Mishra et al. [21], Purohit et al. [22], Saxena et al. [23] and Suthar et al. [2426].
The polynomial \(L_{n}^{ (\mu,\tau )} (x )\) was defined by Prabhaker and Suman [27] as:
$$ L_{n}^{ (\mu,\tau )} (x )=\frac{\varGamma (\mu n+ \tau +1 )}{\varGamma (n+1 )} \sum_{r=0}^{n}\frac{ (-n ) _{r} x^{r} }{r! \varGamma (\mu r+\tau +1 )}, $$
(8)
where \(\mu \in \mathbb{C}^{+},\tau \in \mathbb{C}_{-1}^{+} \); \(n\in \mathbb{N}\). If \(\mu =1\), then (8) reduces to
$$ L_{n}^{ (1,\tau )} (x )=\frac{\varGamma (n+ \tau +1 )}{\varGamma (n+1 )} \sum_{r=0}^{\infty }\frac{ (-n )_{r} x^{r} }{r! \varGamma (r+\tau +1 )} =L _{n}^{\tau } (x ), $$
(9)
where \(L_{n}^{\tau } (x )\) is a well-known generalized Laguerre polynomial (see [28]).
In the sequel, the Konhauser polynomials of the second kind were defined by Srivastava [29] as:
$$ {\mathrm{Z}} _{n}^{\tau } [x;r ]= \frac{\varGamma (rn+ \tau +1 )}{\varGamma (n+1 )} \sum_{j=0}^{n} (-1 ) ^{j} \begin{pmatrix} {n} \\ {j} \end{pmatrix}\frac{x^{rj} }{r! \varGamma (rj+\tau +1 )}, $$
(10)
where \(\tau \in \mathbb{C}_{-1}^{+} \), \(n\in \mathbb{N}\) and \(r\in \mathbb{Z}\).
It can be easily verified that
$$\begin{aligned} & L_{n}^{ (r, \tau )} \bigl(x^{r} \bigr)=\mathrm{Z} _{n} ^{\tau } [x;r ], \end{aligned}$$
(11)
$$\begin{aligned} & L_{n}^{\tau } (x )=\mathrm{Z} _{n}^{\tau } [x;1 ]. \end{aligned}$$
(12)
Further, the polynomial \(\mathrm{Z} _{n}^{ (\mu,\tau )} [x;r ]\) is defined [30] as:
$$ {\mathrm{Z}} _{n}^{ (\mu,\tau )} [x;r ]= \sum _{j=0}^{n} (-1 )^{j} \frac{\varGamma (rn+\tau +1 )x ^{rj} }{j! \varGamma (rj+\tau +1 )\varGamma (\mu n- \eta j+1 )}. $$
(13)
From Eqs. (10) and (13), we obtain
$$ {\mathrm{Z}} _{n}^{\tau } [x;r ]= \mathrm{Z} _{n}^{ (1, \tau )} [x;r ]. $$
(14)
If \(\mu \in {\mathrm{\mathbb{N}}} \), then Eq. (12) can be written in the following form:
$$ {\mathrm{Z}} _{n}^{ (\mu,\tau )} [x;r ]= \frac{ \varGamma (rn+\tau +1 )}{\varGamma (\mu n+1 )} \sum_{j=0}^{n} (-1 )^{j} \frac{ (-\mu n )_{ \mu j} x^{rj} }{j! \varGamma (rj+\tau +1 ) (-1 ) ^{ (\mu -1 )j} }. $$
(15)
The set of polynomials \(L_{n}^{ (\mu,\tau )} [\vartheta;x ]\) is defined [30] as:
$$ L_{n}^{ (\mu,\tau )} [\vartheta;x ]=\sum _{j=0}^{n} (-1 )^{j} \frac{\varGamma (rn+\tau +1 )x ^{j} }{j! \varGamma (rj+\tau +1 )\varGamma (\vartheta n-\vartheta j+1 )}, $$
(16)
where \(\mu,\vartheta \in \mathbb{C}^{+},\tau \in \mathbb{C}_{-1} ^{+} \), \(n\in \mathbb{N}\).

2 Main integral equalities

Throughout this paper, we assume that \(\delta _{i},\xi _{i},v,\kappa _{i},\alpha \in \mathbb{C}; \mathop{\min }_{1\le i\le r} (\Re (\delta _{i} ),\Re (\xi _{i} ), \Re (v ), \Re (\kappa _{i} ) )>0\), \((\rho _{i},\varepsilon _{i} )>0\) and \(\rho _{i} <\Re (\xi _{i} )+\varepsilon _{i} \); \(i=1,2, \dots,r\).
Theorem 1
The following integral equality holds:
$$ \frac{1}{\varGamma (\alpha )} \int _{0}^{1}u^{v-1} (1-u ) ^{\alpha -1} E_{\xi _{i};v; \varepsilon _{i} }^{\delta _{i};\kappa _{i} ;\rho _{i} } \bigl(z_{1} u^{\xi _{1} },\dots,z_{r} u^{\xi _{r} } \bigr) \,du=E_{\xi _{i};v+\alpha;\varepsilon _{i} }^{\delta _{i}; \kappa _{i};\rho _{i} } (z_{1}, \dots,z_{r} ). $$
(17)
Proof
Applying Eq. (7) to the left-hand side of Eq. (17), we obtain
$$\begin{aligned} ={}&\sum_{m_{1},\dots,m_{r} =0}^{\infty }\frac{ (\delta _{1} ) _{\rho _{1} m_{1} } \cdots (\delta _{r} )_{\rho _{r} m_{r} } (z_{1} )^{m_{1} } \cdots (z_{r} )^{m_{r} } }{ \varGamma (\nu +\sum_{i=1}^{r}\xi _{i} m_{i} ) (\kappa _{1} )_{\varepsilon _{1} m_{1} } \cdots (\kappa _{r} ) _{\varepsilon _{r} m_{r} } } \\ &{}\times \frac{1}{\varGamma (\alpha )} \int _{0}^{1}u^{\nu + \sum _{i=1}^{r}m_{i} \xi _{i} -1} (1-u )^{\alpha -1} \,du \\ ={}&\sum_{m_{1},\dots,m_{r} =0}^{\infty }\frac{ (\delta _{1} ) _{\rho _{1} m_{1} } \cdots (\delta _{r} )_{\rho _{r} m_{r} } (z_{1} )^{m_{1} } \cdots (z_{r} )^{m_{r} } {\mathrm{B}} (\alpha,\nu +\sum_{i=1}^{r}\xi _{i} m_{i} )}{ \varGamma (\alpha )\varGamma (\nu +\sum_{i=1}^{r}\xi _{i} m_{i} ) (\kappa _{1} )_{\varepsilon _{1} m_{1} } \cdots (\kappa _{r} )_{\varepsilon _{r} m_{r} } } \\ ={}&\sum_{m_{1},\dots,m_{r} =0}^{\infty }\frac{ (\delta _{1} ) _{\rho _{1} m_{1} } \cdots (\delta _{r} )_{\rho _{r} m_{r} } (z_{1} )^{m_{1} } \cdots (z_{r} )^{m_{r} } }{ \varGamma (\nu +\alpha +\sum_{i=1}^{r}\xi _{i} m_{i} ) (\kappa _{1} )_{\varepsilon _{1} m_{1} } \cdots (\kappa _{r} ) _{\varepsilon _{r} m_{r} } } \\ ={}&E_{\xi _{i};\nu +\alpha;\varepsilon _{i} }^{\delta _{i};\kappa _{i}; \rho _{i} } (z_{1},\dots,z_{r} ). \end{aligned}$$
This completes the proof of Theorem 1. □
Theorem 2
The following integral equality holds:
$$\begin{aligned} &\frac{1}{\varGamma (\alpha )} \int _{t}^{x} (x-s ) ^{\alpha -1} (s-t )^{v-1} E_{\xi _{i};\nu;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} (s-t ) ^{\xi _{1} },\dots,z_{r} (s-t )^{\xi _{r} } \bigr) \,ds \\ &\quad = (x-t )^{\alpha +v-1} E_{\xi _{i};v+\alpha;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} (x-t ) ^{\xi _{1} },\dots,z_{r} (x-t )^{\xi _{r} } \bigr). \end{aligned}$$
(18)
Proof
Using Eq. (6) in the left-hand side of Eq. (18), we obtain
$$\begin{aligned} &\frac{1}{\varGamma (\alpha )} \int _{t}^{x} (x-s ) ^{\alpha -1} (s-t )^{v-1} \\ &\quad{}\times \sum_{m_{1},\dots,m_{r} =0}^{\infty } \frac{ (\delta _{1} )_{\rho _{1} m_{1} } \cdots (\delta _{r} )_{\rho _{r} m_{r} } (z_{1} (s-t )^{\xi _{1} } )^{m _{1} } \cdots (z_{r} (s-t )^{\xi _{r} } )^{m _{r} } }{\varGamma (v+\sum_{i=1}^{r}\xi _{i} m_{i} ) (\kappa _{1} )_{\varepsilon _{1} m_{1} } \cdots (\kappa _{r} ) _{\varepsilon _{r} m_{r} } } \,ds. \end{aligned}$$
Changing the variable s to \(u=\frac{s-t}{x-t} \), we obtain
$$\begin{aligned} ={}&\sum_{m_{1},\dots,m_{r} =0}^{\infty }\frac{ (\delta _{1} ) _{\rho _{1} m_{1} } \cdots (\delta _{r} )_{\rho _{r} m_{r} } (z_{1} )^{m_{1} } \cdots (z_{r} )^{m_{r} } }{ \varGamma (\nu +\sum_{i=1}^{r}\xi _{i} m_{i} ) (\kappa _{1} )_{\varepsilon _{1} m_{1} } \cdots (\kappa _{r} ) _{\varepsilon _{r} m_{r} } } \frac{1}{\varGamma (\alpha )} \\ &{}\times \int _{0}^{1} \bigl(x-t-u(x-t) \bigr)^{\alpha -1} \bigl(t+u(x-t)-t \bigr) ^{v+\sum _{i=1}^{r}\xi _{i} m_{i} -1} (x-t)\,du \\ ={}& \sum_{m_{1},\dots,m_{r} =0}^{\infty }\frac{ (\delta _{1} ) _{\rho _{1} m_{1} } \cdots (\delta _{r} )_{\rho _{r} m_{r} } (z_{1} (x-t )^{\xi _{1} } )^{m_{1} } \cdots (z_{r} (x-t )^{\xi _{r} } )^{m_{r} } }{\varGamma (\nu +\sum_{i=1}^{r}\xi _{i} m_{i} ) (\kappa _{1} ) _{\varepsilon _{1} m_{1} } \cdots (\kappa _{r} )_{ \varepsilon _{r} m_{r} } } \\ &{}\times \frac{ (x-t )^{\alpha +v-1}}{\varGamma (\alpha )} \int _{0}^{1} (1-u )^{\alpha -1} (u )^{v+\sum _{i=1}^{r}\xi _{i} m_{i} -1} \,du \\ ={}& \sum_{m_{1},\dots,m_{r} =0}^{\infty }\frac{ (\delta _{1} ) _{\rho _{1} m_{1} } \cdots (\delta _{r} )_{\rho _{r} m_{r} } (z_{1} (x-t )^{\xi _{1} } )^{m_{1} } \cdots (z_{r} (x-t )^{\xi _{r} } )^{m_{r} } }{ (x-t ) ^{-\alpha -v+1}\varGamma (v+\alpha +\sum_{i=1}^{r}\xi _{i} m_{i} ) (\kappa _{1} )_{\varepsilon _{1} m_{1} } \cdots (\kappa _{r} )_{\varepsilon _{r} m_{r} } }, \end{aligned}$$
from which, after little simplification, we easily arrive at the required Eq. (18). □
Theorem 3
If \(\omega _{i},\tau,\in \mathbb{C}; \mathop{\min }_{1\le i \le r} (\Re (\omega _{i} ),\Re (\tau ) )>0\), then the following integral equality holds:
$$\begin{aligned} &\int _{0}^{x}t^{\tau -1} (x-t )^{v-1} E_{\xi _{i};v; \varepsilon _{i} }^{\delta _{i};\kappa _{i};1} \bigl(z_{1} (x-t ) ^{\xi _{1} },\dots,z_{r} (x-t )^{\xi _{r} } \bigr) \\ &\quad{} \times E_{\xi _{i};\tau; \varepsilon _{i} }^{\omega _{i};\kappa _{i};1} \bigl(z_{1} (t )^{\xi _{1} },\dots,z_{r} (t ) ^{\xi _{r} } \bigr)\,dt =x^{\tau +v-1} E_{\xi _{i};v+\tau;\varepsilon _{i} }^{(\omega _{i} +\delta _{i} );\kappa _{i};1} \bigl(z_{1} x^{\xi _{1} },\dots,z_{r} x^{\xi _{r} } \bigr). \end{aligned}$$
(19)
Proof
Applying Eq. (7) to the left-hand side of Eq. (19), we obtain
$$\begin{aligned} ={}&\sum_{m_{1},\dots,m_{r} =0}^{\infty }\sum _{l_{1},\dots,l_{r} =0} ^{\infty }\frac{ (\delta _{1} )_{\rho _{1} m_{1} } \cdots (\delta _{r} )_{\rho _{r} m_{r} } (\omega _{1} ) _{\rho _{1} l_{1} } \cdots (\omega _{r} )_{\rho _{r} l_{r} } }{\varGamma (\nu +\sum_{i=1}^{r}\xi _{i} m_{i} )\varGamma (\tau + \sum_{i=1}^{r}\xi _{i} l_{i} ) (\kappa _{1} )_{ \varepsilon _{1} m_{1} } \cdots (\kappa _{r} )_{\varepsilon _{r} m_{r} } } \\ &{}\times \frac{ (z_{1} )^{m_{1} +l_{1} } \cdots (z _{r} )^{m_{r} +l_{r} } }{ (\kappa _{1} )_{ \varepsilon _{1} l_{1} } \cdots (\kappa _{r} )_{\varepsilon _{r} l_{r} }} \int _{0}^{x}t^{\tau +\sum _{i=1}^{r}l_{i} \xi _{i} -1} (x-t )^{v+\sum _{i=1}^{r}m_{i} \xi _{i} -1} \,dt \\ ={}& \sum_{m_{1},\dots,m_{r} =0}^{\infty }\sum _{l_{1},\dots,l_{r} =0} ^{\infty }\frac{x^{\tau +v-1} (\delta _{1} )_{\rho _{1} m _{1} } \cdots (\delta _{r} )_{\rho _{r} m_{r} } (\omega _{1} )_{\rho _{1} l_{1} } \cdots (\omega _{r} )_{ \rho _{r} l_{r} } }{\varGamma (\nu +\sum_{i=1}^{r}\xi _{i} m_{i} ) \varGamma (\tau +\sum_{i=1}^{r}\xi _{i} l_{i} ) (\kappa _{1} )_{\varepsilon _{1} m_{1} } \cdots (\kappa _{r} ) _{\varepsilon _{r} m_{r} } } \\ &{}\times \frac{ (z_{1} x^{\xi _{1} } )^{m_{1} +l_{1} } \cdots (z_{r} x^{\xi _{r} } )^{m_{r} +l_{r} } }{ (\kappa _{1} )_{\varepsilon _{1} l_{1} } \cdots (\kappa _{r} ) _{\varepsilon _{r} l_{r} }} B \Biggl(\tau +\sum_{i=1}^{r}l_{i} \xi _{i},v+ \sum_{i=1}^{r}m_{i} \xi _{i} \Biggr) \\ ={}&x^{\tau +v-1} \sum_{m_{1},\dots,m_{r} =0}^{\infty } \sum_{l_{1},\dots,l_{r} =0}^{\infty }\frac{ (\delta _{1} ) _{\rho _{1} m_{1} } \cdots (\delta _{r} )_{\rho _{r} m_{r} } (\omega _{1} )_{\rho _{1} l_{1} } \cdots (\omega _{r} )_{\rho _{r} l_{r} } }{\varGamma (\tau +v+\sum_{i=1}^{r} (m_{i} +l_{i} )\xi _{i} ) (\kappa _{1} ) _{\varepsilon _{1} m_{1} } \cdots (\kappa _{r} )_{ \varepsilon _{r} m_{r} } } \\ &{}\times \frac{ (z_{1} x^{\xi _{1} } )^{m_{1} +l_{1} } \cdots (z_{r} x^{\xi _{r} } )^{m_{r} +l_{r} }}{ (\kappa _{1} )_{\varepsilon _{1} l_{1} } \cdots (\kappa _{r} ) _{\varepsilon _{r} l_{r} }} \\ ={}&x^{\tau +v-1} \sum_{m_{1},\dots,m_{r} =0}^{\infty } \sum_{l_{1},\dots,l_{r} =0}^{\infty }\begin{pmatrix} {m_{1} } \\ {l_{1} } \end{pmatrix} \cdots \begin{pmatrix} {m_{r} } \\ {l_{r} } \end{pmatrix}\frac{ (\delta _{1} )_{(m_{1} -l_{1} )\rho _{1} } \cdots (\delta _{r} )_{(m_{r} -l_{r} )\rho _{r} } }{\varGamma (\tau +v+\sum_{i=1}^{r} (m_{i} )\xi _{i} ) } \\ &{}\times \frac{ (\omega _{1} )_{l_{1} \rho _{1} } \cdots (\omega _{r} )_{l_{r} \rho _{r} } (z_{1} x^{\xi _{1} } )^{m_{1} } \cdots (z_{r} x^{\xi _{r} } )^{m_{r} } }{ (\kappa _{1} )_{\varepsilon _{1} m_{1} } \cdots (\kappa _{r} )_{\varepsilon _{r} m_{r} } }. \end{aligned}$$
(20)
Substituting \(\rho _{1} =\cdots =\rho _{r} =1\) in Eq. (20) reduces it to
$$\begin{aligned} &\int _{0}^{x}t^{\tau -1} (x-t )^{v-1} E_{\xi _{i};v; \varepsilon _{i} }^{\delta _{i};\kappa _{i};1} \bigl(z_{1} (x-t ) ^{\xi _{1} },\dots,z_{r} (x-t )^{\xi _{r} } \bigr) \\ &\qquad \times E_{\xi _{i};\tau; \varepsilon _{i} }^{\omega _{i};\kappa _{i};1} \bigl(z_{1} (t )^{\xi _{1} },\dots,z_{r} (t ) ^{\xi _{r} } \bigr)\,du \\ &\quad=x^{\tau +v-1} \sum_{m_{1},\dots,m_{r} =0}^{\infty } \sum_{l_{1},\dots,l_{r} =0}^{\infty }\begin{pmatrix} {m_{1} } \\ {l_{1} } \end{pmatrix} \cdots \begin{pmatrix} {m_{r} } \\ {l_{r} } \end{pmatrix}\frac{ (\delta _{1} )_{(m_{1} -l_{1} )} \cdots (\delta _{r} )_{(m_{r} -l_{r} )} }{\varGamma (\tau +v+ \sum_{i=1}^{r} (m_{i} )\xi _{i} ) } \\ &\qquad{} \times \frac{ (\omega _{1} )_{l_{1} } \cdots (\omega _{r} )_{l_{r} } (z_{1} x^{\xi _{1} } )^{m_{1} } \cdots (z_{r} x^{\xi _{r} } )^{m_{r} }}{ (\kappa _{1} )_{\varepsilon _{1} m_{1} } \cdots (\kappa _{r} ) _{\varepsilon _{r} m_{r} }}. \end{aligned}$$
(21)
Now applying the formula (α+β)m=n=0(mn)(α)n(β)mn, Eq. (21) is reduced to the following form:
$$\begin{aligned} &=x^{\tau +v-1} \sum_{m_{1},\dots,m_{r} =0}^{\infty } \sum_{l_{1},\dots,l_{r} =0}^{\infty }\frac{ (\omega _{1} +\delta _{1} )_{m_{1} } \cdots (\omega _{r} +\delta _{r} ) _{m_{r} } (z_{1} x^{\xi _{1} } )^{m_{1} } \cdots (z _{r} x^{\xi _{r} } )^{m_{r} } }{\varGamma (\tau +v+\sum_{i=1} ^{r} (m_{i} )\xi _{i} ) (\kappa _{1} ) _{\varepsilon _{1} m_{1} } \cdots (\kappa _{r} )_{ \varepsilon _{r} m_{r} } } \\ &=x^{\tau +v-1} E_{\xi _{i};v+\tau;\varepsilon _{i} }^{(\omega _{i} + \delta _{i} );\kappa _{i};1} \bigl(z_{1} x^{\xi _{1} },\dots,z_{r} x ^{\xi _{r} } \bigr). \end{aligned}$$
 □
Theorem 4
The following integral equality holds:
$$ \int _{0}^{z}t^{v-1} E_{\xi _{i};\nu;\varepsilon _{i} }^{\delta _{i}; \kappa _{i};\rho _{i} } \bigl(z_{1} t^{\xi _{1} }, \dots,z_{r} t^{\xi _{r} } \bigr) \,dt=z^{v} E_{\xi _{i};\nu +1;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} z^{\xi _{1} }, \dots,z_{r} z ^{\xi _{r} } \bigr). $$
(22)
Proof
Applying Eq. (6) to the left-hand side of Eq. (22), we obtain
$$\begin{aligned} &=\sum_{m_{1},\dots,m_{r} =0}^{\infty }\frac{ (\delta _{1} ) _{\rho _{1} m_{1} } \cdots (\delta _{r} )_{\rho _{r} m_{r} } (z_{1} )^{m_{1} } \cdots (z_{r} )^{m_{r} } }{ \varGamma (v+\sum_{i=1}^{r}\xi _{i} m_{i} ) (\kappa _{1} )_{\varepsilon _{1} m_{1} } \cdots (\kappa _{r} ) _{\varepsilon _{r} m_{r} } } \int _{0}^{z}t^{v+\sum _{i=1}^{r}m_{i} \xi _{i} -1} \,dt \\ &=\sum_{m_{1},\dots,m_{r} =0}^{\infty }\frac{ (\delta _{1} ) _{\rho _{1} m_{1} } \cdots (\delta _{r} )_{\rho _{r} m_{r} } (z_{1} )^{m_{1} } \cdots (z_{r} )^{m_{r} } z ^{v+\sum _{i=1}^{r}m_{i} \xi _{i} } }{ (\nu +\sum_{i=1}^{r}m_{i} \xi _{i} ) \varGamma (v+\sum_{i=1}^{r}\xi _{i} m_{i} ) (\kappa _{1} )_{\varepsilon _{1} m_{1} } \cdots (\kappa _{r} )_{\varepsilon _{r} m_{r} } } \\ &=z^{\nu } \sum_{m_{1},\dots,m_{r} =0}^{\infty } \frac{ (\delta _{1} )_{\rho _{1} m_{1} } \cdots (\delta _{r} )_{ \rho _{r} m_{r} } (z_{1} z^{\xi _{1} } )^{m_{1} } \cdots (z_{r} z^{\xi _{r} } )^{m_{r} } }{\varGamma (v+1+\sum_{i=1}^{r}\xi _{i} m_{i} ) (\kappa _{1} )_{ \varepsilon _{1} m_{1} } \cdots (\kappa _{r} )_{\varepsilon _{r} m_{r} } } \\ &=z^{v} E_{\xi _{i};\nu +1;\varepsilon _{i} }^{\delta _{i};\kappa _{i}; \rho _{i} } \bigl(z_{1} z^{\xi _{1} },\dots,z_{r} z^{\xi _{r} } \bigr). \end{aligned}$$
This completes the proof of Theorem 4. □
Remark 2.1
Upon setting \(\kappa _{1} =\cdots =\kappa _{r} =\varepsilon _{1} =\cdots =\varepsilon _{r} =1\) and \(r=1\), Eqs. (17), (18), (19), and (22) reduce to a result given by Shukla and Prajapati [31, Eqs. (2.4.1), (2.4.2), (2.4.3), (2.4.4)].
Remark 2.2
By setting the parameters in Eqs. (17), (18), (19), and (22), we obtain the known results established by Khan [32, Eqs. (2.4.4), (2.4.5), (2.4.6), (2.4.7)].
Lemma 2.1
([33, Eq. 2.13])
If \(\mu _{1},\mu _{2}, \alpha ', \beta '\in \mathbb{C}^{+} \), \(\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \) and \(n,m\in {\mathrm{ \mathbb{N}}} \), then the following formula holds:
$$\begin{aligned} &L_{n}^{ (\mu _{1},\tau _{1} )} \bigl(\beta ',x \bigr)L _{m}^{\mu _{1},\tau _{1} } \bigl(\alpha ',x \bigr) \\ &\quad =\sum _{h=0}^{n+m} \sum _{r=0}^{h}\frac{\varGamma (\mu _{1} n+\tau _{1} +1 )\varGamma (\mu _{2} m+\tau _{2} +1 ) }{\varGamma (h-r+1 ) \varGamma (\alpha ' (m-h+r )+1 ) } \\ &\qquad{} \times \frac{ (-x )^{h} }{ \varGamma (r+1 )\varGamma (\beta ' (n-r )+1 )\varGamma (\mu _{1} r+\tau _{1} +1 )\varGamma (\mu _{2} (h-r)+\tau _{2} +1 )}. \end{aligned}$$
(23)
Theorem 5
If \(\alpha ',\beta ',\eta \in \mathbb{C}^{+}, \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \) and \(n,m\in {\mathrm{ \mathbb{N}}} \), then the following integral equality holds:
$$\begin{aligned} &\frac{1}{\varGamma (\alpha )} \int _{0}^{1}u^{v-1} (1-u ) ^{\alpha -1} L_{n}^{ (\mu _{1},\tau _{1} )} \bigl(\beta ', \eta (1-u ) \bigr)L_{m}^{ (\mu _{2},\tau _{2} )} \bigl( \alpha ',\eta (1-u ) \bigr) \\ &\qquad{}\times E_{\xi _{i};v;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} u^{\xi _{1} },\dots,z_{r} u^{\xi _{r} } \bigr) \,du \\ &\quad =\sum_{h=0}^{n+m} ( \eta )^{h} \Im _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ',\beta '} E _{\xi _{i};v+h+\alpha;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } (z_{1},\dots,z_{r} ), \end{aligned}$$
(24)
where
$$\begin{aligned} \Im _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ',\beta '} ={}& \sum_{r=0}^{h} \begin{pmatrix} {h} \\ {r} \end{pmatrix}\frac{(-1)^{h} (\alpha )_{h} }{\varGamma (h+1 ) \varGamma (\alpha ' (m-h+r )+1 )\varGamma (\beta ' (n-r )+1 )} \\ &{}\times \frac{ \varGamma (\mu _{1} n+\tau _{1} +1 )\varGamma (\mu _{2} m+\tau _{2} +1 )}{\varGamma (\mu _{1} r+\tau _{1} +1 ) \varGamma (\mu _{2} (h-r)+\tau _{2} +1 )}. \end{aligned}$$
(25)
Proof
Using Eqs. (6) and (23) in the left-hand side of Eq. (24), we obtain
$$\begin{aligned} I={}&\frac{1}{\varGamma (\alpha )} \int _{0}^{1}u^{v-1} (1-u ) ^{\alpha -1} \sum_{h=0}^{n+m}\sum _{r=0}^{h}\frac{\varGamma (\mu _{1} n+\tau _{1} +1 )\varGamma (\mu _{2} m+\tau _{2} +1 ) }{\varGamma (h-r+1 )\varGamma (\alpha ' (m-h+r )+1 ) } \\ &{}\times \frac{ (-\eta (1-u ) )^{h}}{\varGamma (\mu _{1} r+\tau _{1} +1 )\varGamma (\mu _{2} (h-r)+\tau _{2} +1 )\varGamma (r+1 )\varGamma (\beta ' (n-r )+1 )} \\ &{}\times \sum_{m_{1},\dots,m_{r} =0}^{\infty } \frac{ (\delta _{1} )_{\rho _{1} m_{1} } \cdots (\delta _{r} )_{\rho _{r} m_{r} } (z_{1} u^{\xi _{1} } )^{m_{1} } \cdots (z _{r} u^{\xi _{r} } )^{m_{r} } }{\varGamma (v+\sum_{i=1}^{r} \xi _{i} m_{i} ) (\kappa _{1} )_{\varepsilon _{1} m _{1} } \cdots (\kappa _{r} )_{\varepsilon _{r} m_{r} } } \,du \\ ={}&\frac{1}{\varGamma (\alpha )} \sum_{h=0}^{n+m} \sum_{r=0} ^{h}\frac{\varGamma (\mu _{1} n+\tau _{1} +1 )\varGamma (\mu _{2} m+\tau _{2} +1 ) }{\varGamma (h-r+1 )\varGamma (\alpha ' (m-h+r )+1 ) \varGamma (r+1 )\varGamma (\beta ' (n-r )+1 )} \\ &{}\times \frac{ (-\eta )^{h}}{\varGamma (\mu _{1} r+\tau _{1} +1 )\varGamma (\mu _{2} (h-r)+\tau _{2} +1 )} \sum_{m_{1},\dots,m_{r} =0}^{\infty } \frac{ (\delta _{1} ) _{\rho _{1} m_{1} } \cdots (\delta _{r} )_{\rho _{r} m_{r} } }{\varGamma (v+\sum_{i=1}^{r}\xi _{i} m_{i} ) } \\ &{}\times \frac{ (z_{1} )^{m_{1} } \cdots (z_{r} ) ^{m_{r} } }{ (\kappa _{1} )_{\varepsilon _{1} m_{1} } \cdots (\kappa _{r} )_{\varepsilon _{r} m_{r} } } \int _{0} ^{1}u^{v+\sum _{i=1}^{r}\xi _{i} m_{i} -1} (1-u )^{\alpha +h-1} \,du \\ ={}&\frac{1}{\varGamma (\alpha )} \sum_{h=0}^{n+m} \sum_{r=0} ^{h}\frac{\varGamma (\mu _{1} n+\tau _{1} +1 )\varGamma (\mu _{2} m+\tau _{2} +1 )}{\varGamma (h-r+1 )\varGamma (\alpha (m-h+r )+1 ) \varGamma (r+1 )\varGamma (\beta ' (n-r )+1 )} \\ &{}\times \frac{ (-\eta )^{h}\varGamma (\alpha +h )}{ \varGamma (\mu _{1} r+\tau _{1} +1 )\varGamma (\mu _{2} (h-r)+ \tau _{2} +1 )} \\ &{}\times \sum_{m_{1},\dots,m_{r} =0}^{\infty } \frac{ (\delta _{1} )_{\rho _{1} m_{1} } \cdots (\delta _{r} )_{\rho _{r} m_{r} } (z_{1} )^{m_{1} } \cdots (z_{r} ) ^{m_{r} } }{\varGamma (v+\alpha +h+\sum_{i=1}^{r}\xi _{i} m_{i} ) (\kappa _{1} )_{\varepsilon _{1} m_{1} } \cdots (\kappa _{r} )_{\varepsilon _{r} m_{r} } } \\ ={}&\frac{1}{\varGamma (\alpha )} \sum_{h=0}^{n+m} \sum_{r=0} ^{h}\frac{\varGamma (\mu _{1} n+\tau _{1} +1 )\varGamma (\mu _{2} m+\tau _{2} +1 )}{\varGamma (h-r+1 )\varGamma (\alpha ' (m-h+r )+1 ) \varGamma (r+1 )\varGamma (\beta ' (n-r )+1 )} \\ &{} \times \frac{ (-\eta )^{h}\varGamma (\alpha +h )}{ \varGamma (\mu _{1} r+\tau _{1} +1 )\varGamma (\mu _{2} (h-r)+ \tau _{2} +1 )}E_{\xi _{i};v+h+\alpha;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } (z_{1},\dots,z_{r} ). \end{aligned}$$
(26)
Using the fact that (xn)=(1)nn!(x)n, where \((-x )_{n} = (-1 )^{n} (x-n+1 ) _{n} \), on the right-hand side of Eq. (26), yields
$$\begin{aligned} ={}&\sum_{h=0}^{n+m} \sum _{r=0}^{h} \begin{pmatrix} {h} \\ {r} \end{pmatrix} \frac{ \varGamma (\mu _{1} n+\tau _{1} +1 )\varGamma (\mu _{2} m+\tau _{2} +1 ) }{\varGamma (h+1 ) \varGamma (\alpha ' (m-h+r )+1 ) \varGamma (\beta ' (n-r )+1 )} \\ &{}\times \frac{ (-\eta )^{h} (\alpha )_{h}}{ \varGamma (\mu _{1} r+\tau _{1} +1 )\varGamma (\mu _{2} (h-r)+ \tau _{2} +1 )}E_{\xi _{i};v+h+\alpha;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } (z_{1},\dots,z_{r} ), \end{aligned}$$
from which, after little rearrangement, we easily arrive at the required Eq. (24). □
Theorem 6
If \(\alpha ',\beta ',\eta \in \mathbb{C}^{+}; \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \) and \(n,m\in {\mathrm{ \mathbb{N,}}} \) then the following integral equality holds:
$$\begin{aligned} &\frac{1}{\varGamma (\alpha )} \int _{t}^{x} (x-s ) ^{\alpha -1} (s-t )^{\nu -1} L_{n}^{ (\mu _{1},\tau _{1} )} \bigl(\beta ',\eta (x-s ) \bigr)L_{m} ^{ (\mu _{2},\tau _{2} )} \bigl( \alpha ',\eta (x-s ) \bigr) \\ &\quad{}\times E_{\xi _{i};v;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} (s-t )^{\xi _{1} },\dots,z_{r} (s-t ) ^{\xi _{r} } \bigr) \,ds= (x-t )^{\alpha +\nu -1} \sum_{h=0} ^{n+m} (\eta )^{h} \\ &\quad{}\times (x-t )^{h} \Im _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ',\beta '} E _{\xi _{i};v+h+\alpha;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} (x-t )^{\xi _{1} },\dots,z_{r} (x-t ) ^{\xi _{r} } \bigr), \end{aligned}$$
(27)
where \(\Im _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ', \beta '} \) is given by Eq. (25).
Theorem 7
If \(\alpha ',\beta ',\eta \in \mathbb{C}^{+}; \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \), \(\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \); \(n,m\in {\mathrm{\mathbb{N}}} \), then the following integral equality holds:
$$\begin{aligned} &\int _{0}^{x}t^{\tau -1} (x-t )^{v-1} L_{n}^{ (\mu _{1},\tau _{1} )} \bigl(\beta ',\eta t \bigr)L_{m}^{\mu _{1}, \tau _{1} } \bigl(\alpha ',\eta t \bigr) \\ &\qquad{}\times E_{\xi _{i};v; \varepsilon _{i} }^{\delta _{i};\kappa _{i};1} \bigl(z_{1} (x-t )^{\xi _{1} },\dots,z_{r} (x-t ) ^{\xi _{r} } \bigr) E_{\xi _{i};\tau; \varepsilon _{i} }^{\omega _{i} ;\kappa _{i};1} \bigl(z_{1} (t )^{\xi _{1} },\dots,z _{r} (t )^{\xi _{r} } \bigr)\,dt \\ &\quad =x^{\tau +v-1} \sum_{h=0}^{n+m} (\eta x )^{h} \Im _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ',\beta '} E _{\xi _{i};v+\tau +h;\varepsilon _{i} }^{(\omega _{i} +\delta _{i} ); \kappa _{i};1} \bigl(z_{1} x^{\xi _{1} }, \dots,z_{r} x^{\xi _{r} } \bigr), \end{aligned}$$
(28)
where \(\Im _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ', \beta '} \) is given by Eq. (25).
Theorem 8
If \(\alpha ',\beta ',\eta \in \mathbb{C}^{+}; \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \), \(\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \); \(n,m\in {\mathrm{\mathbb{N}}} \), then the following integral equality holds:
$$\begin{aligned} &\int _{0}^{z}t^{v-1} L_{n}^{ (\mu _{1},\tau _{1} )} \bigl(\beta ', \eta t \bigr)L_{m}^{\mu _{1},\tau _{1} } \bigl(\alpha ',\eta t \bigr) E_{\xi _{i};\nu;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} t^{\xi _{1} },\dots,z_{r} t^{\xi _{r} } \bigr) \,dt \\ &\quad =z^{v-1} \sum_{h=0}^{n+m} (\eta z )^{h} \Im _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ',\beta '} E _{\xi _{i};\nu +h+1;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} z^{\xi _{1} }, \dots,z_{r} z^{\xi _{r} } \bigr), \end{aligned}$$
(29)
where \(\Im _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ', \beta '} \) is given by Eq. (25).
Proof
The proofs of Eqs. (27), (28), and (29) are the same as those of Eq. (25), which can be obtained from Eqs. (18), (19), and (22). □
Theorem 9
If \(\alpha ',\beta ',\eta \in \mathbb{C}^{+}, \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \) and \(n,m\in {\mathrm{ \mathbb{N}}} \), then the following integral equality holds:
$$\begin{aligned} &\frac{1}{\varGamma (\alpha )} \int _{0}^{1}u^{v-1} (1-u ) ^{\alpha -1} L_{n}^{ (\mu _{1},\tau _{1} )} \bigl(\beta ', \eta (1-u ) \bigr)L_{m}^{ (\mu _{2},\tau _{2} )} \bigl( \alpha ',\eta (1-u ) \bigr) \\ &\qquad{}\times E_{\xi _{i};v;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} u^{\xi _{1} },\dots,z_{r} u^{\xi _{r} } \bigr) \,du \\ &\quad =\sum_{h=0}^{n+m} ( \eta )^{h} \wp _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ',\beta '} E _{\xi _{i};v+h+\alpha;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } (z_{1},\dots,z_{r} ), \end{aligned}$$
(30)
where
$$\begin{aligned} \wp _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ',\beta '} ={}&\frac{ \varGamma (\mu _{1} n+\tau _{1} +1 )\varGamma (\mu _{2} m+ \tau _{2} +1 )}{\varGamma (\alpha 'm+1 )\varGamma (\beta 'n+1 )} \\ &{}\times \sum_{r=0}^{h} \begin{pmatrix} {h} \\ {r} \end{pmatrix}\frac{ (-1 )^{h-\alpha '(h-r)-\beta 'r} (\alpha )_{h} (-\alpha 'm)_{\alpha '(h-r)} (-\beta 'n)_{\beta 'r} }{\varGamma (h+1 ) \varGamma (\mu _{1} r+\tau _{1} +1 )\varGamma (\mu _{2} (h-r)+ \tau _{2} +1 )}. \end{aligned}$$
(31)
Proof
Using \((-x )_{n} = (-1 )^{n} (x-n+1 ) _{n} \), Eq. (26) is reduced to
$$\begin{aligned} ={}&\frac{\varGamma (\mu _{1} n+\tau _{1} +1 )\varGamma (\mu _{2} m+\tau _{2} +1 )}{\varGamma (\alpha 'm+1 )\varGamma (\beta 'n+1 )}\sum_{h=0}^{n+m} (\eta )^{h} \sum_{r=0}^{h} \begin{pmatrix} {h} \\ {r} \end{pmatrix} \\ &{}\times \frac{ (-1 )^{h-\alpha '(h-r)-\beta 'r} (\alpha )_{h} (-\alpha 'm)_{\alpha '(h-r)} (-\beta 'n)_{\beta 'r} }{\varGamma (h+1 ) \varGamma (\mu _{1} r+\tau _{1} +1 )\varGamma (\mu _{2} (h-r)+ \tau _{2} +1 )} E_{\xi _{i};v+h+\alpha;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } (z_{1},\dots,z_{r} ) \\ ={}&\sum_{h=0}^{n+m} (\eta )^{h} \wp _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ',\beta '} E _{\xi _{i};v+h+\alpha;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } (z_{1},\ldots,z_{r} ), \end{aligned}$$
where \(\wp _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ', \beta '} \) is given by Eq. (31). □
Theorem 10
If \(\alpha ',\beta ',\eta \in \mathbb{C}^{+}, \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \) and \(n,m\in {\mathrm{ \mathbb{N}}} \), then the following integral equality holds:
$$\begin{aligned} &\frac{1}{\varGamma (\alpha )} \int _{t}^{x} (x-s ) ^{\alpha -1} (s-t )^{\nu -1} L_{n}^{ (\mu _{1},\tau _{1} )} \bigl(\beta ',\eta (x-s ) \bigr)L_{m} ^{ (\mu _{2},\tau _{2} )} \bigl( \alpha ',\eta (x-s ) \bigr) \\ &\quad{} \times E_{\xi _{i};v;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} (s-t )^{\xi _{1} },\dots,z_{r} (s-t ) ^{\xi _{r} } \bigr) \,ds= (x-t )^{\alpha +\nu -1} \sum_{h=0} ^{n+m} (\eta )^{h} \\ &\quad{} \times (x-t )^{h} \wp _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ',\beta '} E _{\xi _{i};v+h+\alpha;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} (x-t )^{\xi _{1} },\dots,z_{r} (x-t ) ^{\xi _{r} } \bigr), \end{aligned}$$
(32)
where \(\wp _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ', \beta '} \) is given by Eq. (31).
Theorem 11
If \(\alpha ',\beta ',\eta \in \mathbb{C}^{+}, \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \), \(\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \); \(n,m\in {\mathrm{\mathbb{N}}} \), then the following integral equality holds:
$$\begin{aligned} &\int _{0}^{x}t^{\tau -1} (x-t )^{v-1} L_{n}^{ (\mu _{1},\tau _{1} )} \bigl(\beta ',\eta t \bigr)L_{m}^{\mu _{1}, \tau _{1} } \bigl(\alpha ',\eta t \bigr) \\ &\qquad{}\times E_{\xi _{i};v; \varepsilon _{i} }^{\delta _{i};\kappa _{i};1} \bigl(z_{1} (x-t )^{\xi _{1} },\dots,z_{r} (x-t ) ^{\xi _{r} } \bigr) E_{\xi _{i};\tau; \varepsilon _{i} }^{\omega _{i} ;\kappa _{i};1} \bigl(z_{1} (t )^{\xi _{1} },\dots,z _{r} (t )^{\xi _{r} } \bigr)\,dt \\ &\quad =x^{\tau +v-1} \sum_{h=0}^{n+m} (\eta x )^{h} \wp _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ',\beta '} E _{\xi _{i};v+\tau +h;\varepsilon _{i} }^{(\omega _{i} +\delta _{i} ); \kappa _{i};1} \bigl(z_{1} x^{\xi _{1} }, \dots,z_{r} x^{\xi _{r} } \bigr), \end{aligned}$$
(33)
where \(\wp _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ', \beta '} \) is given by Eq. (31).
Theorem 12
If \(\alpha ',\beta ',\eta \in \mathbb{C}^{+}, \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \), \(\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \); \(n,m\in {\mathrm{\mathbb{N}}} \), then the following integral equality holds:
$$\begin{aligned} &\int _{0}^{z}t^{v-1} L_{n}^{ (\mu _{1},\tau _{1} )} \bigl(\beta ', \eta t \bigr)L_{m}^{\mu _{1},\tau _{1} } \bigl(\alpha ',\eta t \bigr) E_{\xi _{i};\nu;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} t^{\xi _{1} },\dots,z_{r} t^{\xi _{r} } \bigr) \,dt \\ &\quad =z^{v-1} \sum_{h=0}^{n+m} (\eta z )^{h} \wp _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ',\beta '} E _{\xi _{i};\nu +h+1;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} z^{\xi _{1} }, \dots,z_{r} z^{\xi _{r} } \bigr), \end{aligned}$$
(34)
where \(\wp _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ', \beta '} \) is given by Eq. (31).
Proof
The proofs of Eqs. (32), (33), and (34) are the same as that of Eq. (30). □
Remark 2.3
Upon setting \(\kappa _{1} =\cdots =\kappa _{r} =\varepsilon _{1} =\cdots \varepsilon _{r} =1\), Eqs. (17), (18), (19), (22), (24), (27), (28), (29), (30), (32), (33), and (34) are reduced to Eqs. (2.1), (2.3), (2.5), (2.10), (2.20), (2.27), (2.28), (2.29), (2.31), (2.35), (2.36), and (2.37) established by Agarwal et al. [33].

3 Special cases

In this section, we emphasize special cases by selecting particular values of parameters.
(i) Putting \(\alpha '=\beta '=1\), the results in Eqs. (30), (32), (33), and (34) are reduced to the following form:
Corollary 1
If \(\eta \in \mathbb{C}^{+}, \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \) and \(n,m\in {\mathrm{\mathbb{N}}} \), then
$$\begin{aligned} &\frac{1}{\varGamma (\alpha )} \int _{0}^{1}u^{v-1} (1-u ) ^{\alpha -1} L_{n}^{ (\mu _{1},\tau _{1} )} \bigl(\eta (1-u ) \bigr)L_{m}^{ (\mu _{2},\tau _{2} )} \bigl(\eta (1-u ) \bigr) \\ &\qquad{}\times E_{\xi _{i};v;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} u^{\xi _{1} },\dots,z_{r} u^{\xi _{r} } \bigr) \,du \\ &\quad =\sum_{h=0}^{n+m} (\eta )^{h} \frac{\varGamma (\mu _{1} n+\tau _{1} +1 )\varGamma (\mu _{2} m+\tau _{2} +1 )}{ \varGamma (m+1 )\varGamma (n+1 )}\sum_{r=0}^{h} \begin{pmatrix} {h} \\ {r} \end{pmatrix} \\ &\qquad{} \times \frac{(\alpha )_{h} (-m)_{(h-r)} (-n)_{r} }{\varGamma (h+1 ) \varGamma (\mu _{1} r+\tau _{1} +1 )\varGamma (\mu _{2} (h-r)+ \tau _{2} +1 )} E_{\xi _{i};v+h+\alpha;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } (z_{1},\dots,z_{r} ). \end{aligned}$$
(35)
Corollary 2
If \(\eta \in \mathbb{C}^{+}, \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \) and \(n,m\in {\mathrm{\mathbb{N}}} \), then
$$\begin{aligned} &\frac{1}{\varGamma (\alpha )} \int _{t}^{x} (x-s ) ^{\alpha -1} (s-t )^{\nu -1} L_{n}^{ (\mu _{1},\tau _{1} )} \bigl(\eta (x-s ) \bigr)L_{m}^{ (\mu _{2},\tau _{2} )} \bigl(\eta (x-s ) \bigr) \\ &\qquad{}\times E_{\xi _{i};v;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} (s-t )^{\xi _{1} },\dots,z_{r} (s-t ) ^{\xi _{r} } \bigr) \,ds \\ &\quad = (x-t )^{\alpha +\nu -1} \sum_{h=0}^{n+m} (\eta ) ^{h} (x-t )^{h} \frac{\varGamma (\mu _{1} n+\tau _{1} +1 ) \varGamma (\mu _{2} m+\tau _{2} +1 )}{\varGamma (m+1 ) \varGamma (n+1 )} \\ &\qquad{}\times \sum_{r=0}^{h} \begin{pmatrix} {h} \\ {r} \end{pmatrix}\frac{(\alpha )_{h} (-m)_{(h-r)} (-n)_{r} }{\varGamma (h+1 ) \varGamma (\mu _{1} r+\tau _{1} +1 )\varGamma (\mu _{2} (h-r)+ \tau _{2} +1 )} \\ &\qquad{} \times E_{\xi _{i};v+h+\alpha;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} (x-t )^{\xi _{1} },\dots,z _{r} (x-t )^{\xi _{r} } \bigr). \end{aligned}$$
(36)
Corollary 3
If \(\eta \in \mathbb{C}^{+}, \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \),; \(n,m\in {\mathrm{\mathbb{N}}} \), then
$$\begin{aligned} &\int _{0}^{x}t^{\tau -1} (x-t )^{v-1} L_{n}^{ (\mu _{1},\tau _{1} )} (\eta t )L_{m}^{\mu _{1},\tau _{1} } (\eta t ) \\ &\qquad{}\times E_{\xi _{i};v; \varepsilon _{i} }^{\delta _{i};\kappa _{i};1} \bigl(z_{1} (x-t )^{\xi _{1} },\dots,z_{r} (x-t ) ^{\xi _{r} } \bigr) E_{\xi _{i};\tau; \varepsilon _{i} }^{\omega _{i} ;\kappa _{i};1} \bigl(z_{1} (t )^{\xi _{1} },\dots,z _{r} (t )^{\xi _{r} } \bigr)\,dt \\ &\quad =x^{\tau +v-1} \sum_{h=0}^{n+m} ( \eta x )^{h} \frac{\varGamma (\mu _{1} n+\tau _{1} +1 )\varGamma (\mu _{2} m+\tau _{2} +1 )}{ \varGamma (m+1 )\varGamma (n+1 )} \sum_{r=0}^{h} \begin{pmatrix} {h} \\ {r} \end{pmatrix} \\ &\qquad{}\times \frac{(\alpha )_{h} (-m)_{(h-r)} (-n)_{r} }{\varGamma (h+1 ) \varGamma (\mu _{1} r+\tau _{1} +1 )\varGamma (\mu _{2} (h-r)+ \tau _{2} +1 )} E_{\xi _{i};v+\tau +h;\varepsilon _{i} }^{(\omega _{i} +\delta _{i} );\kappa _{i};1} \bigl(z_{1} x^{\xi _{1} },\dots,z _{r} x^{\xi _{r} } \bigr). \end{aligned}$$
(37)
Corollary 4
If \(\eta \in \mathbb{C}^{+}, \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \), \(n,m\in {\mathrm{\mathbb{N}}} \), then
$$\begin{aligned} &\int _{0}^{z}t^{v-1} L_{n}^{ (\mu _{1},\tau _{1} )} (\eta t )L _{m}^{\mu _{1},\tau _{1} } (\eta t ) E_{\xi _{i};\nu; \varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} t ^{\xi _{1} },\dots,z_{r} t^{\xi _{r} } \bigr) \,dt \\ &\quad{}=z^{v-1} \sum_{h=0}^{n+m} ( \eta z )^{h} \frac{\varGamma (\mu _{1} n+\tau _{1} +1 )\varGamma (\mu _{2} m+\tau _{2} +1 )}{ \varGamma (m+1 )\varGamma (n+1 )} \sum_{r=0}^{h} \begin{pmatrix} {h} \\ {r} \end{pmatrix} \\ &\qquad{}\times \frac{(\alpha )_{h} (-m)_{(h-r)} (-n)_{r} }{\varGamma (h+1 ) \varGamma (\mu _{1} r+\tau _{1} +1 )\varGamma (\mu _{2} (h-r)+ \tau _{2} +1 )} E_{\xi _{i};\nu +h+1;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} z^{\xi _{1} },\dots,z_{r} z ^{\xi _{r} } \bigr). \end{aligned}$$
(38)
(ii) Putting \(\mu _{1} =\mu _{2} =\alpha '=\beta '=1\) and using Eq. (12), the results in Eqs. (30), (32), (33), and (34) reduced to the following form:
Corollary 5
If \(\eta \in \mathbb{C}^{+}, \tau _{1},\tau _{2} \in \mathbb{C}_{-1} ^{+} \) and \(n,m\in {\mathrm{\mathbb{N}}} \), then
$$\begin{aligned} &\frac{1}{\varGamma (\alpha )} \int _{0}^{1}u^{v-1} (1-u ) ^{\alpha -1} L_{n}^{ (1,\tau _{1} )} \bigl(\eta (1-u ); 1 \bigr)L_{m}^{ (1,\tau _{2} )} \bigl(\eta (1-u ); 1 \bigr) \\ &\qquad{}\times E_{\xi _{i};v;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} u^{\xi _{1} },\dots,z_{r} u^{\xi _{r} } \bigr) \,du \\ &\quad =\sum_{h=0}^{n+m} (\eta )^{h} \frac{\varGamma (n+\tau _{1} +1 )\varGamma (m+\tau _{2} +1 )}{\varGamma (m+1 ) \varGamma (n+1 )} \\ &\qquad{}\times \sum_{r=0}^{h} \begin{pmatrix} {h} \\ {r} \end{pmatrix}\frac{(\alpha )_{h} (-m)_{(h-r)} (-n)_{r} }{\varGamma (h+1 ) \varGamma (r+\tau _{1} +1 )\varGamma ((h-r)+\tau _{2} +1 )} E_{\xi _{i};v+h+\alpha;\varepsilon _{i} }^{\delta _{i}; \kappa _{i};\rho _{i} } (z_{1},\dots,z_{r} ). \end{aligned}$$
(39)
Corollary 6
If \(\eta \in \mathbb{C}^{+}, \tau _{1},\tau _{2} \in \mathbb{C}_{-1} ^{+} \) and \(n,m\in {\mathrm{\mathbb{N}}} \), then
$$\begin{aligned} &\frac{1}{\varGamma (\alpha )} \int _{t}^{x} (x-s ) ^{\alpha -1} (s-t )^{\nu -1} L_{n}^{ (1,\tau _{1} )} \bigl(\eta (x-s );1 \bigr)L_{m}^{ (1,\tau _{2} )} \bigl(\eta (x-s );1 \bigr) \\ &\qquad{}\times E_{\xi _{i};v;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} (s-t )^{\xi _{1} },\dots,z_{r} (s-t ) ^{\xi _{r} } \bigr) \,ds \\ &\quad= (x-t )^{\alpha +\nu -1} \sum_{h=0}^{n+m} (\eta ) ^{h} (x-t )^{h} \frac{\varGamma (n+\tau _{1} +1 ) \varGamma (m+\tau _{2} +1 )}{\varGamma (m+1 )\varGamma (n+1 )} \\ &\qquad{}\times \sum_{r=0}^{h} \begin{pmatrix} {h} \\ {r} \end{pmatrix}\frac{(\alpha )_{h} (-m)_{(h-r)} (-n)_{r} }{\varGamma (h+1 ) \varGamma (r+\tau _{1} +1 )\varGamma ((h-r)+\tau _{2} +1 )} \\ &\qquad {}\times E_{\xi _{i};v+h+\alpha;\varepsilon _{i} }^{\delta _{i};\kappa _{i}; \rho _{i} } \bigl(z_{1} (x-t )^{\xi _{1} },\dots,z_{r} (x-t )^{\xi _{r} } \bigr). \end{aligned}$$
(40)
Corollary 7
If \(\eta \in \mathbb{C}^{+}, \tau _{1},\tau _{2} \in \mathbb{C}_{-1} ^{+} \), \(n,m\in {\mathrm{\mathbb{N}}} \), then
$$\begin{aligned} &\int _{0}^{x}t^{\tau -1} (x-t )^{v-1} L_{n}^{ (\mu _{1},\tau _{1} )} (\eta t;1 )L_{m}^{\mu _{1},\tau _{1} } (\eta t;1 ) \\ &\qquad{}\times E_{\xi _{i};v; \varepsilon _{i} }^{\delta _{i};\kappa _{i};1} \bigl(z_{1} (x-t )^{\xi _{1} },\dots,z_{r} (x-t ) ^{\xi _{r} } \bigr) E_{\xi _{i};\tau; \varepsilon _{i} }^{\omega _{i} ;\kappa _{i};1} \bigl(z_{1} (t )^{\xi _{1} },\dots,z _{r} (t )^{\xi _{r} } \bigr) \,dt \\ &\quad =x^{\tau +v-1} \sum_{h=0}^{n+m} ( \eta x )^{h} \frac{\varGamma (n+\tau _{1} +1 )\varGamma (m+\tau _{2} +1 )}{ \varGamma (m+1 )\varGamma (n+1 )} \sum_{r=0}^{h} \begin{pmatrix} {h} \\ {r} \end{pmatrix} \\ &\qquad{} \times \frac{(\alpha )_{h} (-m)_{(h-r)} (-n)_{r} }{\varGamma (h+1 ) \varGamma (r+\tau _{1} +1 )\varGamma ((h-r)+\tau _{2} +1 )} E_{\xi _{i};v+\tau +h;\varepsilon _{i} }^{(\omega _{i} + \delta _{i} );\kappa _{i};1} \bigl(z_{1} x^{\xi _{1} },\dots,z_{r} x ^{\xi _{r} } \bigr). \end{aligned}$$
(41)
Corollary 8
If \(\eta \in \mathbb{C}^{+}, \tau _{1},\tau _{2} \in \mathbb{C}_{-1} ^{+} \), \(n,m\in {\mathrm{\mathbb{N}}} \), then
$$\begin{aligned} &\int _{0}^{z}t^{v-1} L_{n}^{ (\mu _{1},\tau _{1} )} (\eta t;1 )L _{m}^{\mu _{1},\tau _{1} } (\eta t;1 ) E_{\xi _{i};\nu; \varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} t ^{\xi _{1} },\dots,z_{r} t^{\xi _{r} } \bigr) \,dt \\ &\quad =z^{v-1} \sum_{h=0}^{n+m} ( \eta z )^{h} \frac{\varGamma (n+ \tau _{1} +1 )\varGamma (m+\tau _{2} +1 )}{\varGamma (m+1 ) \varGamma (n+1 )} \sum_{r=0}^{h} \begin{pmatrix} {h} \\ {r} \end{pmatrix} \\ &\qquad{} \times \frac{(\alpha )_{h} (-m)_{(h-r)} (-n)_{r} }{\varGamma (h+1 ) \varGamma (r+\tau _{1} +1 )\varGamma ((h-r)+\tau _{2} +1 )} E_{\xi _{i};\nu +h+1;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} z^{\xi _{1} },\dots,z_{r} z^{\xi _{r} } \bigr). \end{aligned}$$
(42)
(iii) Putting \(\mu _{1} =\mu _{1} =0, \alpha '=\beta '=1\), the results in Eqs. (30), (32), (33), and (34) are reduced to the following form:
Corollary 9
If \(\eta \in \mathbb{C}^{+}, \tau _{1},\tau _{2} \in \mathbb{C}_{-1} ^{+} \) and \(n,m\in {\mathrm{\mathbb{N}}} \), then
$$\begin{aligned} &\frac{1}{\varGamma (\alpha )} \int _{0}^{1}u^{v-1} (1-u ) ^{\alpha -1} \bigl(1-\eta (1-u ) \bigr)^{m} E_{\xi _{i};v; \varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} u ^{\xi _{1} },\dots,z_{r} u^{\xi _{r} } \bigr) \,du \\ &\quad =\sum_{h=0}^{m} ( \eta )^{h} (-m )_{h} (\alpha )_{h} E_{\xi _{i};v+h+\alpha;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } (z_{1},\dots,z_{r} ). \end{aligned}$$
(43)
Corollary 10
If \(\eta \in \mathbb{C}^{+}, \tau _{1},\tau _{2} \in \mathbb{C}_{-1} ^{+} \) and \(n,m\in {\mathrm{\mathbb{N}}} \), then
$$\begin{aligned} &\frac{1}{\varGamma (\alpha )} \int _{t}^{x} (x-s ) ^{\alpha -1} (s-t )^{\nu -1} \bigl(1-\eta (x-s ) \bigr) ^{m} \\ &\quad{}\times E_{\xi _{i};v;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} (s-t )^{\xi _{1} },\dots,z_{r} (s-t ) ^{\xi _{r} } \bigr) \,ds= (x-t )^{\alpha +\nu -1} \sum_{h=0} ^{m} \bigl(\eta (x-t ) \bigr)^{h} \\ &\quad{}\times (-m )_{h} (\alpha )_{h} E_{\xi _{i};v+h+\alpha; \varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} (x-t )^{\xi _{1} },\dots,z_{r} (x-t )^{\xi _{r} } \bigr). \end{aligned}$$
(44)
Corollary 11
If \(\eta \in \mathbb{C}^{+}, \tau _{1},\tau _{2} \in \mathbb{C}_{-1} ^{+} \) and \(n,m\in {\mathrm{\mathbb{N}}} \), then
$$\begin{aligned} &\int _{0}^{x}t^{\tau -1} (x-t )^{v-1} (1-\eta t ) ^{m} E_{\xi _{i};v; \varepsilon _{i} }^{\delta _{i};\kappa _{i};1} \bigl(z_{1} (x-t )^{\xi _{1} },\dots,z_{r} (x-t ) ^{\xi _{r} } \bigr) \\ &\qquad{}\times E_{\xi _{i};\tau; \varepsilon _{i} }^{\omega _{i};\kappa _{i};1} \bigl(z_{1} (t )^{\xi _{1} },\dots,z_{r} (t ) ^{\xi _{r} } \bigr)\,dt \\ &\quad =x^{\tau +v-1} \sum_{h=0}^{m} (\eta x )^{h} (-m ) _{h} (\alpha )_{h} E_{\xi _{i};v+\tau +h;\varepsilon _{i} }^{(\omega _{i} +\delta _{i} );\kappa _{i};1} \bigl(z_{1} x^{\xi _{1} }, \dots,z _{r} x^{\xi _{r} } \bigr). \end{aligned}$$
(45)
Corollary 12
If \(\eta \in \mathbb{C}^{+}, \tau _{1},\tau _{2} \in \mathbb{C}_{-1} ^{+} \) and \(n,m\in {\mathrm{\mathbb{N}}} \), then
$$\begin{aligned} &\int _{0}^{z}t^{v-1} (1-\eta t )^{m} E_{\xi _{i};\nu; \varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} t ^{\xi _{1} },\dots,z_{r} t^{\xi _{r} } \bigr) \,dt \\ &\quad =z^{v-1} \sum_{h=0}^{m} (\eta z )^{h} (-m ) _{h} (\alpha )_{h} E_{\xi _{i};\nu +h+1;\varepsilon _{i} }^{\delta _{i} ;\kappa _{i};\rho _{i} } \bigl(z_{1} z^{\xi _{1} }, \dots,z_{r} z^{\xi _{r} } \bigr). \end{aligned}$$
(46)
Remark 3.1
If we put \(\kappa _{1} =\cdots =\kappa _{r} =\varepsilon _{1} =\cdots = \varepsilon _{r} =1\), then Eqs. (35)–(46) are reduced to Eqs. (3.1), (3.2), (3.3), (3.4), (3.6), (3.7), (3.8), (3.9), (3.11), (3.16), (3.17), (3.18) established in Agarwal et al. [33].
(iv) Setting \(\rho _{i} =\kappa _{i} =\varepsilon _{i} =1, \xi _{1} =\cdots =\xi _{r} =1\), the multivariate Mittag-Leffler function reduces to the confluent hypergeometric series, and we have the following results, which are obtained from the main results in (17), (18), (19), (22), (24), (27), (28), (29), (30), (32), (33), and (34).
Corollary 13
The following integral equality holds:
$$\begin{aligned} &\frac{1}{\varGamma (\alpha )} \int _{0}^{1}u^{v-1} (1-u ) ^{\alpha -1} \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r}; v; z_{1} u^{\xi _{1} },\dots,z_{r} u^{\xi _{r} } \bigr] \,du \\ &\quad =\varphi _{2}^{(r)} [\delta _{1},\dots,\delta _{r}; v+\alpha; z _{1}, \dots,z_{r} ]. \end{aligned}$$
(47)
Corollary 14
Then following integral equality holds:
$$\begin{aligned} &\frac{1}{\varGamma (\alpha )} \int _{t}^{x} (x-s ) ^{\alpha -1} (s-t )^{v-1} \\ &\qquad{}\times\varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r}; v; z_{1} (s-t )^{\xi _{1} }, \dots,z_{r} (s-t )^{\xi _{r} } \bigr] \,ds \\ &\quad = (x-t )^{\alpha +v-1} \varphi _{2}^{(r)} \bigl[\delta _{1} ,\dots,\delta _{r}; v+\alpha; z_{1} (s-t )^{\xi _{1} }, \dots,z_{r} (s-t )^{\xi _{r} } \bigr]. \end{aligned}$$
(48)
Corollary 15
Then following integral equality holds:
$$\begin{aligned} &\int _{0}^{x}t^{\tau -1} (x-t )^{v-1} \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r}; v; z_{1} (x-t ) ^{\xi _{1} },\dots,z_{r} (x-t )^{\xi _{r} } \bigr] \\ &\qquad{}\times \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r}; v; z _{1} t^{\xi _{1} },\dots,z_{r} t^{\xi _{r} } \bigr]\,dt \\ &\quad =x^{\tau +v-1} \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r} ; v+\tau; z_{1} t^{\xi _{1} },\dots,z_{r} t^{\xi _{r} } \bigr]. \end{aligned}$$
(49)
Corollary 16
Then following integral equality holds:
$$\begin{aligned} &\int _{0}^{z}t^{v-1} \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r}; v; z_{1} t^{\xi _{1} },\dots,z_{r} t^{\xi _{r} } \bigr] \,dt \\ &\quad =z^{v-1} \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r}; v+1; z_{1} z^{\xi _{1} },\dots,z_{r} z^{\xi _{r} } \bigr]. \end{aligned}$$
(50)
Corollary 17
If \(\alpha ',\beta ',\eta \in \mathbb{C}^{+}, \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \) and \(n,m\in {\mathrm{ \mathbb{N}}} \), then the following integral equality holds:
$$\begin{aligned} &\frac{1}{\varGamma (\alpha )} \int _{t}^{x} (x-s ) ^{\alpha -1} (s-t )^{\nu -1} L_{n}^{ (\mu _{1},\tau _{1} )} \bigl(\beta ',\eta (x-s ) \bigr)L_{m} ^{ (\mu _{2},\tau _{2} )} \bigl( \alpha ',\eta (x-s ) \bigr) \\ &\qquad{}\times \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r}; v; _{1} (s-t )^{\xi _{1} },\dots,z_{r} (s-t ) ^{\xi _{r} } \bigr] \,ds \\ &\quad= (x-t )^{\alpha +\nu -1} \sum_{h=0}^{n+m} \bigl(\eta (x-t ) \bigr)^{h} \Im _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ',\beta '} \\ &\qquad{} \times \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r};v+h+ \alpha; z_{1} (x-t )^{\xi _{1} },\dots,z_{r} (x-t ) ^{\xi _{r} } \bigr], \end{aligned}$$
(51)
where \(\Im _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ', \beta '} \) is given by Eq. (25).
Corollary 18
If \(\alpha ',\beta ',\eta \in \mathbb{C}^{+}, \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \) and \(n,m\in {\mathrm{ \mathbb{N}}} \), then the following integral equality holds:
$$\begin{aligned} &\frac{1}{\varGamma (\alpha )} \int _{0}^{1}u^{v-1} (1-u ) ^{\alpha -1} L_{n}^{ (\mu _{1},\tau _{1} )} \bigl(\beta ', \eta (1-u ) \bigr)L_{m}^{ (\mu _{2},\tau _{2} )} \bigl( \alpha ',\eta (1-u ) \bigr) \\ &\qquad{}\times \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r}; v; z _{1} u^{\xi _{1} },\dots,z_{r} u^{\xi _{r} } \bigr] \,du \\ &\quad =\sum_{h=0}^{n+m} ( \eta )^{h} \Im _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ',\beta '} \varphi _{2}^{(r)} [\delta _{1},\dots,\delta _{r}; v+\alpha; z _{1},\dots,z_{r} ], \end{aligned}$$
(52)
where \(\Im _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ', \beta '} \) is given by Eq. (25).
Corollary 19
If \(\alpha ',\beta ',\eta \in \mathbb{C}^{+}, \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \), \(\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \); \(n,m\in {\mathrm{\mathbb{N}}} \), then the following integral equality holds:
$$\begin{aligned} &\int _{0}^{x}t^{\tau -1} (x-t )^{v-1} L_{n}^{ (\mu _{1},\tau _{1} )} \bigl(\beta ',\eta t \bigr)L_{m}^{\mu _{1}, \tau _{1} } \bigl(\alpha ',\eta t \bigr) \\ &\qquad{}\times \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r}; v; z _{1} (x-t )^{\xi _{1} },\dots,z_{r} (x-t ) ^{\xi _{r} } \bigr] \\ &\qquad{}\times \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r}; v; z _{1} (t )^{\xi _{1} },\dots,z_{r} (t )^{\xi _{r} } \bigr]\,dt \\ &\quad =x^{\tau +v-1} \sum_{h=0}^{n+m} (\eta x )^{h} \Im _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ',\beta '} \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r};v+\tau +h; z _{1} x^{\xi _{1} }, \dots,z_{r} x^{\xi _{r} } \bigr], \end{aligned}$$
(53)
where \(\Im _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ', \beta '} \) is given by Eq. (25).
Corollary 20
If \(\alpha ',\beta ',\eta \in \mathbb{C}^{+}, \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \), \(\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \); \(n,m\in {\mathrm{\mathbb{N}}} \), then the following integral equality holds:
$$\begin{aligned} &\int _{0}^{z}t^{v-1} L_{n}^{ (\mu _{1},\tau _{1} )} \bigl(\beta ', \eta t \bigr)L_{m}^{\mu _{1},\tau _{1} } \bigl(\alpha ',\eta t \bigr) \varphi _{2}^{(r)} \bigl[\delta _{1}, \dots,\delta _{r}; v; z_{1} t ^{\xi _{1} }, \dots,z_{r} t^{\xi _{r} } \bigr] \,dt \\ &\quad =z^{v-1} \sum_{h=0}^{n+m} (\eta z )^{h} \Im _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ',\beta '} \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r}; \nu +h+1; z _{1} t^{\xi _{1} }, \dots,z_{r} t^{\xi _{r} } \bigr], \end{aligned}$$
(54)
where \(\Im _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ', \beta '} \) is given by Eq. (25).
Corollary 21
If \(\alpha ',\beta ',\eta \in \mathbb{C}^{+}, \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \) and \(n,m\in {\mathrm{ \mathbb{N}}} \), then the following integral equality holds:
$$\begin{aligned} &\frac{1}{\varGamma (\alpha )} \int _{0}^{1}u^{v-1} (1-u ) ^{\alpha -1} L_{n}^{ (\mu _{1},\tau _{1} )} \bigl(\beta ', \eta (1-u ) \bigr)L_{m}^{ (\mu _{2},\tau _{2} )} \bigl( \alpha ',\eta (1-u ) \bigr) \\ &\qquad{}\times \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r}; v; z _{1} u^{\xi _{1} },\dots,z_{r} u^{\xi _{r} } \bigr] \,du \\ &\quad =\sum_{h=0}^{n+m} ( \eta )^{h} \wp _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ',\beta '} \varphi _{2}^{(r)} [\delta _{1},\dots,\delta _{r}; v+h+\alpha; z_{1},\dots,z_{r} ], \end{aligned}$$
(55)
where \(\wp _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ', \beta '} \) is given by Eq. (31).
Corollary 22
If \(\alpha ',\beta ',\eta \in \mathbb{C}^{+}, \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \) and \(n,m\in {\mathrm{ \mathbb{N}}} \), then the following integral equality holds:
$$\begin{aligned} &\frac{1}{\varGamma (\alpha )} \int _{t}^{x} (x-s ) ^{\alpha -1} (s-t )^{\nu -1} L_{n}^{ (\mu _{1},\tau _{1} )} \bigl(\beta ',\eta (x-s ) \bigr)L_{m} ^{ (\mu _{2},\tau _{2} )} \bigl( \alpha ',\eta (x-s ) \bigr) \\ &\qquad{}\times \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r}; v; z _{1} (s-t )^{\xi _{1} },\dots,z_{r} (s-t ) ^{\xi _{r} } \bigr] \,ds \\ &\quad = (x-t )^{\alpha +\nu -1} \sum_{h=0}^{n+m} \bigl(\eta (x-t ) \bigr)^{h} \wp _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ',\beta '} \\ &\qquad{} \times \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r}; v+h+ \alpha; z_{1} (x-t )^{\xi _{1} },\dots,z_{r} (x-t ) ^{\xi _{r} } \bigr], \end{aligned}$$
(56)
where \(\wp _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ', \beta '} \) is given by Eq. (31).
Corollary 23
If \(\alpha ',\beta ',\eta \in \mathbb{C}^{+}, \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \), \(\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \); \(n,m\in {\mathrm{\mathbb{N}}} \), then the following integral equality holds:
$$\begin{aligned} &\int _{0}^{x}t^{\tau -1} (x-t )^{v-1} L_{n}^{ (\mu _{1},\tau _{1} )} \bigl(\beta ',\eta t \bigr)L_{m}^{\mu _{1}, \tau _{1} } \bigl(\alpha ',\eta t \bigr) \\ &\qquad{}\times \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r}; v; z _{1} (x-t )^{\xi _{1} },\dots,z_{r} (x-t ) ^{\xi _{r} } \bigr] \\ &\qquad{}\times \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r}; v; z _{1} (t )^{\xi _{1} },\dots,z_{r} (t )^{\xi _{r} } \bigr]\,dt \\ &\quad =x^{\tau +v-1} \sum_{h=0}^{n+m} (\eta x )^{h} \wp _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ',\beta '} \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r}; v+\tau +h; z _{1} x^{\xi _{1} }, \dots,z_{r} x^{\xi _{r} } \bigr], \end{aligned}$$
(57)
where \(\wp _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ', \beta '} \) is given by Eq. (31).
Corollary 24
If \(\alpha ',\beta ',\eta \in \mathbb{C}^{+}, \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \), \(\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \); \(n,m\in {\mathrm{\mathbb{N}}} \), then the following integral equality holds:
$$\begin{aligned} &\int _{0}^{z}t^{v-1} L_{n}^{ (\mu _{1},\tau _{1} )} \bigl(\beta ', \eta t \bigr)L_{m}^{\mu _{1},\tau _{1} } \bigl(\alpha ',\eta t \bigr) \varphi _{2}^{(r)} \bigl[\delta _{1}, \dots,\delta _{r}; v; z_{1} t ^{\xi _{1} }, \dots,z_{r} t^{\xi _{r} } \bigr] \,dt \\ &\quad =z^{v-1} \sum_{h=0}^{n+m} (\eta z )^{h} \wp _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ',\beta '} \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r}; \nu +h+1; z _{1} z^{\xi _{1} }, \dots,z_{r} z^{\xi _{r} } \bigr], \end{aligned}$$
(58)
where \(\wp _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ', \beta '} \) is given by Eq. (31).
(v) Setting \(\rho _{i} =\kappa _{i} =\varepsilon _{i} =\delta _{i} =\xi _{i} =v=r=1\), the multivariate Mittag-Leffler function is reduced to the exponential function \(E_{1;1; 1}^{1;1;1} (z )=E_{1,1} (z )=\exp (z)\); and we can find a similar line of results associated with exponential function from Eqs. (47)–(58).

Acknowledgements

The authors are thankful to the referee for his/her valuable remarks and comments for the improvement of the paper.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Agarwal, R.P.: A propos d’une note de M. Pierre Humbert (French). C. R. Acad. Sci. 236, 2031–2032 (1953) MathSciNetMATH Agarwal, R.P.: A propos d’une note de M. Pierre Humbert (French). C. R. Acad. Sci. 236, 2031–2032 (1953) MathSciNetMATH
2.
Zurück zum Zitat Mittag-Leffler, G.M.: Sur la nouvelle fonction \(E_{\alpha } (x)\). C. R. Math. Acad. Sci. Paris 137, 554–558 (1903) MATH Mittag-Leffler, G.M.: Sur la nouvelle fonction \(E_{\alpha } (x)\). C. R. Math. Acad. Sci. Paris 137, 554–558 (1903) MATH
3.
Zurück zum Zitat Mittag-Leffler, G.M.: Sur la representation analytiqie d’une fonction monogene (cinquieme note). Acta Math. 29, 101–181 (1905) MathSciNetCrossRef Mittag-Leffler, G.M.: Sur la representation analytiqie d’une fonction monogene (cinquieme note). Acta Math. 29, 101–181 (1905) MathSciNetCrossRef
4.
Zurück zum Zitat Humbert, P.: Quelques resultants d’le function de Mittag-Leffler. C.R. Acad. Sci. Paris 236, 1467–1468 (1953) MathSciNetMATH Humbert, P.: Quelques resultants d’le function de Mittag-Leffler. C.R. Acad. Sci. Paris 236, 1467–1468 (1953) MathSciNetMATH
5.
Zurück zum Zitat Humbert, P., Agarwal, R.P.: Sur la fonction de Mittag-Leffler et quelques unes de ses generalizations. Bull. Sci. Math. 77(2), 180–185 (1953) MathSciNetMATH Humbert, P., Agarwal, R.P.: Sur la fonction de Mittag-Leffler et quelques unes de ses generalizations. Bull. Sci. Math. 77(2), 180–185 (1953) MathSciNetMATH
6.
Zurück zum Zitat Wiman, A.: Über den Fundamental satz in der Theorie der Functionen \(E_{\alpha } (x)\). Acta Math. 29, 191–201 (1905) MathSciNetCrossRef Wiman, A.: Über den Fundamental satz in der Theorie der Functionen \(E_{\alpha } (x)\). Acta Math. 29, 191–201 (1905) MathSciNetCrossRef
7.
8.
Zurück zum Zitat Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, Vol. III. McGraw-Hill, New York (1955) MATH Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, Vol. III. McGraw-Hill, New York (1955) MATH
9.
Zurück zum Zitat Dzherbashyan, M.M.: Integral Transforms and Representations of Function in Computer Domain (Russian). Nauka, Moscow (1966) Dzherbashyan, M.M.: Integral Transforms and Representations of Function in Computer Domain (Russian). Nauka, Moscow (1966)
10.
Zurück zum Zitat Kilbas, A.A., Saigo, M.: On solution of integral equations of Abel–Volterra type. Differ. Integral Equ. 8, 993–1011 (1995) MathSciNetMATH Kilbas, A.A., Saigo, M.: On solution of integral equations of Abel–Volterra type. Differ. Integral Equ. 8, 993–1011 (1995) MathSciNetMATH
11.
Zurück zum Zitat Kilbas, A.A., Saigo, M.: Fractional integrals and derivatives of Mittag-Leffler type function (Russian). Dokl. Akad. Nauk Belarusi 39(4), 22–26 (1995) MathSciNet Kilbas, A.A., Saigo, M.: Fractional integrals and derivatives of Mittag-Leffler type function (Russian). Dokl. Akad. Nauk Belarusi 39(4), 22–26 (1995) MathSciNet
12.
Zurück zum Zitat Kilbas, A.A., Saigo, M.: On Mittag-Leffler type function, fractional calculus operators and solutions of integral equations. Integral Transforms Spec. Funct. 4, 355–370 (1996) MathSciNetCrossRef Kilbas, A.A., Saigo, M.: On Mittag-Leffler type function, fractional calculus operators and solutions of integral equations. Integral Transforms Spec. Funct. 4, 355–370 (1996) MathSciNetCrossRef
13.
Zurück zum Zitat Kilbas, A.A., Saigo, M.: Solution in closed form of a class of linear differential equations of fractional order. Differ. Equ. 33, 194–204 (1997) MathSciNetMATH Kilbas, A.A., Saigo, M.: Solution in closed form of a class of linear differential equations of fractional order. Differ. Equ. 33, 194–204 (1997) MathSciNetMATH
14.
Zurück zum Zitat Gorenflo, R., Mainardi, F.: The Mittag-Leffler type functions in the Riemann–Liouville fractional calculus. In: Boundary Value Problems. Special Functions and Fractional Calculus (Proc. Int. Conf. Minsk 1996), Belarusian State Univ., Minsk, pp. 215–225 (1996) Gorenflo, R., Mainardi, F.: The Mittag-Leffler type functions in the Riemann–Liouville fractional calculus. In: Boundary Value Problems. Special Functions and Fractional Calculus (Proc. Int. Conf. Minsk 1996), Belarusian State Univ., Minsk, pp. 215–225 (1996)
15.
Zurück zum Zitat Gorenflo, R., Luchko, Y., Rogosin, S.V.: Mittag-Leffer type function, notes on growth properties and distribution of zeros. Preprint No. A04-97, Freie Universität Berlin, Serie A Mathematik, Berlin (1997) Gorenflo, R., Luchko, Y., Rogosin, S.V.: Mittag-Leffer type function, notes on growth properties and distribution of zeros. Preprint No. A04-97, Freie Universität Berlin, Serie A Mathematik, Berlin (1997)
16.
Zurück zum Zitat Gorenflo, R., Kilbas, A.A., Rogosin, S.V.: On the generalized Mittag-Leffler type function. Integral Transforms Spec. Funct. 7, 215–224 (1998) MathSciNetCrossRef Gorenflo, R., Kilbas, A.A., Rogosin, S.V.: On the generalized Mittag-Leffler type function. Integral Transforms Spec. Funct. 7, 215–224 (1998) MathSciNetCrossRef
17.
Zurück zum Zitat Prabhakar, T.R.: A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7–15 (1971) MathSciNetMATH Prabhakar, T.R.: A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7–15 (1971) MathSciNetMATH
18.
Zurück zum Zitat Srivastava, H.M., Tomovski, Z.: Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel. Appl. Math. Comput. 211(1), 198–210 (2009) MathSciNetMATH Srivastava, H.M., Tomovski, Z.: Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel. Appl. Math. Comput. 211(1), 198–210 (2009) MathSciNetMATH
19.
Zurück zum Zitat Salim, T.O., Faraj, A.W.: A generalization of Mittag-Leffler function and integral operator associated with fractional calculus. Fract. Calc. Appl. Anal. 3, 1–13 (2012) Salim, T.O., Faraj, A.W.: A generalization of Mittag-Leffler function and integral operator associated with fractional calculus. Fract. Calc. Appl. Anal. 3, 1–13 (2012)
20.
Zurück zum Zitat Gurjar, M.K., Prajapati, J.C., Gupta, K.: A study of generalized Mittag-Leffler function via fractional calculus. J. Inequal. Spec. Funct. 5(3), 6–13 (2014) MathSciNetMATH Gurjar, M.K., Prajapati, J.C., Gupta, K.: A study of generalized Mittag-Leffler function via fractional calculus. J. Inequal. Spec. Funct. 5(3), 6–13 (2014) MathSciNetMATH
21.
Zurück zum Zitat Mishra, V.N., Suthar, D.L., Purohit, S.D.: Marichev–Saigo–Maeda fractional calculus operators, Srivastava polynomials and generalized Mittag-Leffler function. Cogent Math. 4, Article ID 1320830 (2017) MathSciNetCrossRef Mishra, V.N., Suthar, D.L., Purohit, S.D.: Marichev–Saigo–Maeda fractional calculus operators, Srivastava polynomials and generalized Mittag-Leffler function. Cogent Math. 4, Article ID 1320830 (2017) MathSciNetCrossRef
22.
Zurück zum Zitat Purohit, S.D., Kalla, S.L., Suthar, D.L.: Fractional integral operators and the multiindex Mittag-Leffler functions. Scientia, Ser. A, Math. Sci. 21, 87–96 (2011) MathSciNetMATH Purohit, S.D., Kalla, S.L., Suthar, D.L.: Fractional integral operators and the multiindex Mittag-Leffler functions. Scientia, Ser. A, Math. Sci. 21, 87–96 (2011) MathSciNetMATH
23.
Zurück zum Zitat Saxena, R.K., Ram, J., Suthar, D.L.: Generalized fractional calculus of the generalized Mittag-Leffler functions. J. Indian Acad. Math. 31(1), 165–172 (2009) MathSciNetMATH Saxena, R.K., Ram, J., Suthar, D.L.: Generalized fractional calculus of the generalized Mittag-Leffler functions. J. Indian Acad. Math. 31(1), 165–172 (2009) MathSciNetMATH
24.
Zurück zum Zitat Suthar, D.L., Amsalu, H.: Generalized fractional integral operators involving Mittag-Leffler function. Appl. Appl. Math. 12(2), 1002–1016 (2017) MathSciNetMATH Suthar, D.L., Amsalu, H.: Generalized fractional integral operators involving Mittag-Leffler function. Appl. Appl. Math. 12(2), 1002–1016 (2017) MathSciNetMATH
25.
Zurück zum Zitat Suthar, D.L., Habenom, H., Tadesse, H.: Generalized fractional calculus formulas for a product of Mittag-Leffler function and multivariable polynomials. Int. J. Appl. Comput. Math. 4(1), 1–12 (2018) MathSciNetCrossRef Suthar, D.L., Habenom, H., Tadesse, H.: Generalized fractional calculus formulas for a product of Mittag-Leffler function and multivariable polynomials. Int. J. Appl. Comput. Math. 4(1), 1–12 (2018) MathSciNetCrossRef
26.
Zurück zum Zitat Suthar, D.L., Purohit, S.D.: Unified fractional integral formulae for the generalized Mittag-Leffler functions. J. Sci. Arts 27(2), 117–124 (2014) MathSciNet Suthar, D.L., Purohit, S.D.: Unified fractional integral formulae for the generalized Mittag-Leffler functions. J. Sci. Arts 27(2), 117–124 (2014) MathSciNet
27.
Zurück zum Zitat Prabhakar, T.R., Suman, R.: Some results on the polynomials \(L_{n}^{\alpha,\beta } (x)\). Rocky Mt. J. Math. 8(4), 751–754 (1978) CrossRef Prabhakar, T.R., Suman, R.: Some results on the polynomials \(L_{n}^{\alpha,\beta } (x)\). Rocky Mt. J. Math. 8(4), 751–754 (1978) CrossRef
28.
Zurück zum Zitat Rainville, E.D.: Special Functions. Macmillan, New York (1960) MATH Rainville, E.D.: Special Functions. Macmillan, New York (1960) MATH
29.
Zurück zum Zitat Srivastava, H.M.: A multilinear generating function for the Konhauser sets of bi-orthogonal polynomials suggested by the Laguerre polynomials. Pac. J. Math. 117(1), 183–191 (1985) CrossRef Srivastava, H.M.: A multilinear generating function for the Konhauser sets of bi-orthogonal polynomials suggested by the Laguerre polynomials. Pac. J. Math. 117(1), 183–191 (1985) CrossRef
30.
Zurück zum Zitat Shukla, A.K., Prajapati, J.C., Salehbhai, I.A.: On a set of polynomials suggested by the family of Konhauser polynomial. Int. J. Math. Anal. 3(13–16), 637–643 (2009) MathSciNetMATH Shukla, A.K., Prajapati, J.C., Salehbhai, I.A.: On a set of polynomials suggested by the family of Konhauser polynomial. Int. J. Math. Anal. 3(13–16), 637–643 (2009) MathSciNetMATH
31.
Zurück zum Zitat Shukla, A.K., Prajapati, J.C.: On a generalization of Mittag-Leffler function and its properties. J. Math. Anal. Appl. 336(2), 797–811 (2007) MathSciNetCrossRef Shukla, A.K., Prajapati, J.C.: On a generalization of Mittag-Leffler function and its properties. J. Math. Anal. Appl. 336(2), 797–811 (2007) MathSciNetCrossRef
33.
Zurück zum Zitat Agarwal, P., Chand, M., Jain, S.: Certain integrals involving generalized Mittag-Leffler functions. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 85(3), 359–371 (2015) MathSciNetCrossRef Agarwal, P., Chand, M., Jain, S.: Certain integrals involving generalized Mittag-Leffler functions. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 85(3), 359–371 (2015) MathSciNetCrossRef
Metadaten
Titel
Certain integrals involving multivariate Mittag-Leffler function
verfasst von
D. L. Suthar
Hafte Amsalu
Kahsay Godifey
Publikationsdatum
01.12.2019
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2019
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-019-2162-z

Weitere Artikel der Ausgabe 1/2019

Journal of Inequalities and Applications 1/2019 Zur Ausgabe

Premium Partner