Skip to main content

2017 | OriginalPaper | Buchkapitel

4. CFD Modeling of a Pilot-Scale Steam Methane Reforming Furnace

verfasst von : Andres Aguirre, Anh Tran, Liangfeng Lao, Helen Durand, Marquis Crose, Panagiotis D. Christofides

Erschienen in: Advances in Energy Systems Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hydrogen is a required key material for petroleum refineries that convert crude oil into a variety of products with higher economic value, e.g., gasoline. In chemical process plants and petroleum refineries, hydrogen is produced primarily by the steam methane reforming (SMR) process synthesizing hydrogen and carbon oxides from methane and superheated steam in the presence of a nickel-based catalyst network in a steam methane reformer. Traditionally, the optimized and profitable operating conditions of a steam methane reformer are analyzed and determined by on-site parametric study at industrial-scale plants or pilot-scale units, which is an experimental approach, and therefore, it must be conducted by changing process parameters in small increments over a long time period in order to prevent significant production and capital loss. Motivated by the above considerations, the present work focuses on developing a computational fluid dynamics (CFD) model of a pilot-scale steam methane reformer comprised of four industrial-scale reforming reactors, three industrial-scale burners and three flue gas tunnels. The pilot-scale reformer CFD model is developed by analyzing well-established physical phenomena, i.e., the transport of momentum, material and energy, and chemical reactions, i.e., combustion and the SMR process, that take place inside the steam methane reformer. Specifically, the \(P-1\) radiation model, standard \(k-\epsilon \) turbulence model, compressible ideal gas equation of state and finite rate/eddy dissipation (FR/ED) turbulence-chemistry interaction model are adopted to simulate the macroscopic and microscopic events in the reformer. The conditions for the tube-side feed, burner feed and combustion chamber refractory walls are consistent with typical reformer plant data Latham (2008) so that the simulation results generated by the pilot-scale reformer can be validated by the plant data. The simulation results are shown to be in agreement with publicly available plant data reported in the literature and also with the simulation data generated by a well-developed single reforming tube CFD model. Subsequently, the proposed pilot-scale reformer CFD model is employed for a parametric study of the mass flow rate of the burner feed, i.e., a \(20\,\%\) increase from its nominal value. The corresponding simulation results demonstrate the advantages offered by this CFD model for parametric study by showing that with the increased burner feed, the outer reforming tube wall temperature exceeds the maximum allowable temperature; these results were developed quickly with the aid of a CFD model, compared to the timescale on which parametric studies are performed on-site and without the potential for rupture of the reforming tubes during the study.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Amirshaghaghi, H., Zamaniyan, A., Ebrahimi, H., & Zarkesh, M. (2010). Numerical simulation of methane partial oxidation in the burner and combustion chamber of autothermal reformer. Applied Mathematical Modelling, 34, 2312–2322.CrossRef Amirshaghaghi, H., Zamaniyan, A., Ebrahimi, H., & Zarkesh, M. (2010). Numerical simulation of methane partial oxidation in the burner and combustion chamber of autothermal reformer. Applied Mathematical Modelling, 34, 2312–2322.CrossRef
Zurück zum Zitat Bane, S. P. M., Ziegler, J. L., & Shepherd, J. E. (2010). Development of One-Step Chemistry Models for Flame and Ignition Simulations. Technical Report. GALCIT Report GALCITFM:2010.002. Bane, S. P. M., Ziegler, J. L., & Shepherd, J. E. (2010). Development of One-Step Chemistry Models for Flame and Ignition Simulations. Technical Report. GALCIT Report GALCITFM:2010.002.
Zurück zum Zitat Dybkjaer, I. (1995). Tubular reforming and autothermal reforming of natural gas—an overview of available processes. Fuel Processing Technology, 42, 85–107.CrossRef Dybkjaer, I. (1995). Tubular reforming and autothermal reforming of natural gas—an overview of available processes. Fuel Processing Technology, 42, 85–107.CrossRef
Zurück zum Zitat de Lasa, H. I., Dogŭ, G., & Ravella, A. (Eds.) (1992). Chemical reactor technology for environmentally safe reactors and products. volume 225 of NATO ASI Series. Springer Science and Business Media, Dordrecht, The Netherlands. de Lasa, H. I., Dogŭ, G., & Ravella, A. (Eds.) (1992). Chemical reactor technology for environmentally safe reactors and products. volume 225 of NATO ASI Series. Springer Science and Business Media, Dordrecht, The Netherlands.
Zurück zum Zitat Ergun, S., & Orning, A. A. (1949). Fluid flow through randomly packed columns and fluidized beds. Industrial and Engineering Chemistry, 41, 1179–1184.CrossRef Ergun, S., & Orning, A. A. (1949). Fluid flow through randomly packed columns and fluidized beds. Industrial and Engineering Chemistry, 41, 1179–1184.CrossRef
Zurück zum Zitat Froment, G. F., & Bischoff, K. B. (1990). Chemical reactor analysis and design. New York: Wiley. Froment, G. F., & Bischoff, K. B. (1990). Chemical reactor analysis and design. New York: Wiley.
Zurück zum Zitat ANSYS Inc. (2013). ANSYS Fluent Theory Guide 15.0. ANSYS Inc. (2013). ANSYS Fluent Theory Guide 15.0.
Zurück zum Zitat Jones, W. P., & Launder, B. E. (1972). The prediction of laminarization with a two-equation model of turbulence. International Journal of Heat and Mass Transfer, 15, 301–314.CrossRef Jones, W. P., & Launder, B. E. (1972). The prediction of laminarization with a two-equation model of turbulence. International Journal of Heat and Mass Transfer, 15, 301–314.CrossRef
Zurück zum Zitat Kroschwitz, J. I., & Howe-Grant, M. (Eds.). (1999). Kirk-othmer encyclopedia of chemical technology. New York, NY: Wiley. Kroschwitz, J. I., & Howe-Grant, M. (Eds.). (1999). Kirk-othmer encyclopedia of chemical technology. New York, NY: Wiley.
Zurück zum Zitat Lao, L., Aguirre, A., Tran, A., Wu, Z., Durand, H., & Christofides, P. D. (2016). CFD modeling and control of a steam methane reforming reactor. Chemical Engineering Science, 148, 78–92. Lao, L., Aguirre, A., Tran, A., Wu, Z., Durand, H., & Christofides, P. D. (2016). CFD modeling and control of a steam methane reforming reactor. Chemical Engineering Science, 148, 78–92.
Zurück zum Zitat Latham, D. (2008). Masters thesis: Mathematical modeling of an industrial steam methane reformer. Queen’s University. Latham, D. (2008). Masters thesis: Mathematical modeling of an industrial steam methane reformer. Queen’s University.
Zurück zum Zitat Launder, B. E., & Sharma, B. I. (1974). Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mass Transfer, 1, 131–137.CrossRef Launder, B. E., & Sharma, B. I. (1974). Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mass Transfer, 1, 131–137.CrossRef
Zurück zum Zitat Magnussen, B. F. (2005). The eddy dissipation concept: A bridge between science and technology. In ECCOMAS Thematic Conference on Computational Combustion, Lisbon, Portugal. Magnussen, B. F. (2005). The eddy dissipation concept: A bridge between science and technology. In ECCOMAS Thematic Conference on Computational Combustion, Lisbon, Portugal.
Zurück zum Zitat McGreavy, C., & Newmann, M. W. (1969). Development of a mathematical model of a steam methane reformer. In Institution of Electrical Engineering, Conference on the Industrial Applications of Dynamic Modelling, Durham, NC. McGreavy, C., & Newmann, M. W. (1969). Development of a mathematical model of a steam methane reformer. In Institution of Electrical Engineering, Conference on the Industrial Applications of Dynamic Modelling, Durham, NC.
Zurück zum Zitat Nicol, D. G. (1995). Ph.D. Thesis: A Chemical Kinetic and Numerical Study of NOx and Pollutant Formation in Low-emission Combustion. University of Washington. Nicol, D. G. (1995). Ph.D. Thesis: A Chemical Kinetic and Numerical Study of NOx and Pollutant Formation in Low-emission Combustion. University of Washington.
Zurück zum Zitat Pantoleontos, G., Kikkinides, E. S., & Georgiadis, M. C. (2012). A heterogeneous dynamic model for the simulation and optimisation of the steam methane reforming reactor. International Journal of Hydrogen Energy, 37, 16346–16358.CrossRef Pantoleontos, G., Kikkinides, E. S., & Georgiadis, M. C. (2012). A heterogeneous dynamic model for the simulation and optimisation of the steam methane reforming reactor. International Journal of Hydrogen Energy, 37, 16346–16358.CrossRef
Zurück zum Zitat Rostrup-Nielsen, J. R. (1984). Catalysis: Science and technology (pp. 1–117). Berlin, Germany: Springer. chapter Catalytic Steam Reforming. Rostrup-Nielsen, J. R. (1984). Catalysis: Science and technology (pp. 1–117). Berlin, Germany: Springer. chapter Catalytic Steam Reforming.
Zurück zum Zitat Sadooghi, P., & Rauch, R. (2013). Pseudo heterogeneous modeling of catalytic methane steam reforming process in a fixed bed reactor. Journal of Natural Gas Science and Engineering, 11, 46–51.CrossRef Sadooghi, P., & Rauch, R. (2013). Pseudo heterogeneous modeling of catalytic methane steam reforming process in a fixed bed reactor. Journal of Natural Gas Science and Engineering, 11, 46–51.CrossRef
Zurück zum Zitat Turns, S. R. (1996). An introduction to combustion: Concepts and applications. Boston, MA: McGraw-Hill. Turns, S. R. (1996). An introduction to combustion: Concepts and applications. Boston, MA: McGraw-Hill.
Zurück zum Zitat Udengaard, N. R. (2004). Hydrogen production by steam reforming of hydrocarbons. Preprint Papers-American Chemical Society, Division of Fuel Chemistry, 49, 906–907. Udengaard, N. R. (2004). Hydrogen production by steam reforming of hydrocarbons. Preprint Papers-American Chemical Society, Division of Fuel Chemistry, 49, 906–907.
Zurück zum Zitat Wesenberg, M. H., & Svendsen, H. F. (2007). Mass and heat transfer limitations in a heterogeneous model of a gas-heated steam reformer. Industrial and Engineering Chemistry Research, 46, 667–676.CrossRef Wesenberg, M. H., & Svendsen, H. F. (2007). Mass and heat transfer limitations in a heterogeneous model of a gas-heated steam reformer. Industrial and Engineering Chemistry Research, 46, 667–676.CrossRef
Zurück zum Zitat Xu, J., & Froment, G. F. (1989). Methane steam reforming, methanation and water-gas shift: I. intrinsic kinetics. AIChE Journal, 35, 88–96.CrossRef Xu, J., & Froment, G. F. (1989). Methane steam reforming, methanation and water-gas shift: I. intrinsic kinetics. AIChE Journal, 35, 88–96.CrossRef
Zurück zum Zitat Zamaniyan, A., Behroozsarand, A., & Ebrahimi, H. (2010). Modeling and simulation of large scale hydrogen production. Journal of Natural Gas Science and Engineering, 2, 293–301.CrossRef Zamaniyan, A., Behroozsarand, A., & Ebrahimi, H. (2010). Modeling and simulation of large scale hydrogen production. Journal of Natural Gas Science and Engineering, 2, 293–301.CrossRef
Metadaten
Titel
CFD Modeling of a Pilot-Scale Steam Methane Reforming Furnace
verfasst von
Andres Aguirre
Anh Tran
Liangfeng Lao
Helen Durand
Marquis Crose
Panagiotis D. Christofides
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-42803-1_4