Skip to main content

2021 | OriginalPaper | Buchkapitel

Challenges and Materials in Artificial Organ Manufacturing

verfasst von : Sumit Budhiraja, Prerna Priya Ashok, K. Mathiyazhagan

Erschienen in: Advances in Engineering Materials

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Additive manufacturing (AM), is also known as rapid prototyping, is considered as a revolution in field of manufacturing and fabrications and boosted the development in biomedical fabrication. The 3D printing technique is mostly utilized in the field of medical for the manufacturing of medical equipment and surgical equipment, especially 3D biomedical printing which means 3D printing of substance which are biologically compatible to human body, blood and cells in the field of tissue fabrications. The main aim of tissue fabrications and engineering is to produce the artificial organ which is functional and viable. To fulfill this objective, investigation of various manufacturing techniques and materials is required. The process is difficult as it includes multiple aspects of human physiology, like types of multiple cell culturing, vasculature, nerve innervation, and interactions with nearby cells. This paper objective is to find the suitable material, is difficult task and, need in-depth focus on why it is difficult & what are the factors influencing the negative role of effective utilization of 3D printing tissue engineering. Also, this paper focuses on comparative study of materials in economic perspective human organ manufacturing. At the end, the conclusion elaborates about the applications and challenges of additive manufacturing in medical field and the alternative materials for organ tissue manufacturing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wang, X., Ao, Q., Tian, X., Fan, J., Tong, H., Hou, W., & Bai, S. (2017). Gelatin-Based hydrogels for organ 3D bioprinting. Polymers, 9(12), 401.CrossRef Wang, X., Ao, Q., Tian, X., Fan, J., Tong, H., Hou, W., & Bai, S. (2017). Gelatin-Based hydrogels for organ 3D bioprinting. Polymers, 9(12), 401.CrossRef
6.
Zurück zum Zitat Wang, X., Yan, Y., & Zhang, R. (2010). Recent trends and challenges in complex organ manufacturing. Tissue Engineering Part B: Reviews, 16(2), 189–197.CrossRef Wang, X., Yan, Y., & Zhang, R. (2010). Recent trends and challenges in complex organ manufacturing. Tissue Engineering Part B: Reviews, 16(2), 189–197.CrossRef
8.
Zurück zum Zitat Kalita, S. J. (2010). Rapid prototyping in biomedical engineering: structural intricacies of biological materials. Bio-integration of Medical Implant Materials, 349–397. Kalita, S. J. (2010). Rapid prototyping in biomedical engineering: structural intricacies of biological materials. Bio-integration of Medical Implant Materials, 349–397.
9.
Zurück zum Zitat Rath, S. N., Pryymachuk, G., Bleiziffer, O. A., Lam, C. X. F., Arkudas, A., & Ho, S. T. B. (2011). Hyaluronan-based heparin-incorporated hydrogels for the generation of axially vascularized bioartificial bone tissues: In vitro and in vivo evaluation in a PLDLLA–TCP–PCL-composite system. Journal of Materials Science: Materials in Medicine, 22(5), 1279–1291. Rath, S. N., Pryymachuk, G., Bleiziffer, O. A., Lam, C. X. F., Arkudas, A., & Ho, S. T. B. (2011). Hyaluronan-based heparin-incorporated hydrogels for the generation of axially vascularized bioartificial bone tissues: In vitro and in vivo evaluation in a PLDLLA–TCP–PCL-composite system. Journal of Materials Science: Materials in Medicine, 22(5), 1279–1291.
10.
Zurück zum Zitat Guvendiren, M., Lu, H. D., & Burdick, J. A. (2012). Shear-thinning hydrogels for biomedical applications. Soft Matter, 8(2), 260–272. Guvendiren, M., Lu, H. D., & Burdick, J. A. (2012). Shear-thinning hydrogels for biomedical applications. Soft Matter, 8(2), 260–272.
12.
Zurück zum Zitat Marga, F., Jakab, K., Khatiwala, C., Shepherd, B., Dorfman, S., & Hubbard, B. (2012). Toward engineering functional organ modules by additive manufacturing. Biofabrication, 4(2), 022001.CrossRef Marga, F., Jakab, K., Khatiwala, C., Shepherd, B., Dorfman, S., & Hubbard, B. (2012). Toward engineering functional organ modules by additive manufacturing. Biofabrication, 4(2), 022001.CrossRef
13.
Zurück zum Zitat IKADA, Y. (2001). Biocompatibility of hydrogels. Gels Handbook, 388–407. IKADA, Y. (2001). Biocompatibility of hydrogels. Gels Handbook, 388–407.
14.
Zurück zum Zitat Zhu, J., Zhang, Y., Xu, N., Wang, L., Xiang, X., & Zhu, X. (2013). The preparation of PLL–GRGDS modified PTSG copolymer scaffolds and their effects on manufacturing artificial salivary gland. Journal of Biomaterials Science, Polymer Edition, 24(15), 1721–1739.CrossRef Zhu, J., Zhang, Y., Xu, N., Wang, L., Xiang, X., & Zhu, X. (2013). The preparation of PLL–GRGDS modified PTSG copolymer scaffolds and their effects on manufacturing artificial salivary gland. Journal of Biomaterials Science, Polymer Edition, 24(15), 1721–1739.CrossRef
15.
Zurück zum Zitat Ahmed, E. M. (2015). Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 6(2), 105–121.CrossRef Ahmed, E. M. (2015). Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 6(2), 105–121.CrossRef
17.
Zurück zum Zitat Li, Jianyu, Suo, Zhigang, & Vlassak, Joost J. (2014). Stiff, strong, and tough hydrogels with good chemical stability. Journal of Materials Chemistry B, 2(39), 6708–6713.CrossRef Li, Jianyu, Suo, Zhigang, & Vlassak, Joost J. (2014). Stiff, strong, and tough hydrogels with good chemical stability. Journal of Materials Chemistry B, 2(39), 6708–6713.CrossRef
18.
Zurück zum Zitat Ahn, S. H., Lee, J., Park, S. A., & Kim, W. D. (2016). Three-dimensional bioprinting equipment technologies for tissue engineering and regenerative medicine. Tissue Engineering and Regenerative Medicine, 13(6), 663–676.CrossRef Ahn, S. H., Lee, J., Park, S. A., & Kim, W. D. (2016). Three-dimensional bioprinting equipment technologies for tissue engineering and regenerative medicine. Tissue Engineering and Regenerative Medicine, 13(6), 663–676.CrossRef
19.
Zurück zum Zitat Park, S.-H., Jung, C. S., & Min, B.-H. (2016). Advances in three-dimensional bioprinting for hard tissue engineering. Tissue Engineering and Regenerative Medicine, 13(6), 622–635.CrossRef Park, S.-H., Jung, C. S., & Min, B.-H. (2016). Advances in three-dimensional bioprinting for hard tissue engineering. Tissue Engineering and Regenerative Medicine, 13(6), 622–635.CrossRef
20.
Zurück zum Zitat Agarwala, S. (2016). A perspective on 3D bioprinting technology: Present and future. Journal of Engineering and Applied Science, 9(4), 931. Agarwala, S. (2016). A perspective on 3D bioprinting technology: Present and future. Journal of Engineering and Applied Science, 9(4), 931.
21.
Zurück zum Zitat Zadpoor, A. A., & Malda, J. (2016). Additive manufacturing of biomaterials, tissues, and organs. Annals of Biomedical Engineering, 45(1), 1–11.CrossRef Zadpoor, A. A., & Malda, J. (2016). Additive manufacturing of biomaterials, tissues, and organs. Annals of Biomedical Engineering, 45(1), 1–11.CrossRef
22.
Zurück zum Zitat Zhang, Y. S., Yue, K., Aleman, J., Mollazadeh-Moghaddam, K., Bakht, S. M., & Yang, J. (2016). 3D bioprinting for tissue and organ fabrication. Annals of Biomedical Engineering, 45(1), 148–163.CrossRef Zhang, Y. S., Yue, K., Aleman, J., Mollazadeh-Moghaddam, K., Bakht, S. M., & Yang, J. (2016). 3D bioprinting for tissue and organ fabrication. Annals of Biomedical Engineering, 45(1), 148–163.CrossRef
24.
Zurück zum Zitat Ratheesh, G., Venugopal, J. R., Chinappan, A., Ezhilarasu, H., Sadiq, A., & Ramakrishna, S. (2017). 3D fabrication of polymeric scaffolds for regenerative therapy. ACS Biomaterials Science & Engineering, 3(7), 1175–1194.CrossRef Ratheesh, G., Venugopal, J. R., Chinappan, A., Ezhilarasu, H., Sadiq, A., & Ramakrishna, S. (2017). 3D fabrication of polymeric scaffolds for regenerative therapy. ACS Biomaterials Science & Engineering, 3(7), 1175–1194.CrossRef
25.
Zurück zum Zitat Wu, D., Yu, Y., Tan, J., Huang, L., Luo, B., Lu, L. et al. (2018). 3D bioprinting of gellan gum and poly (ethylene glycol) diacrylate based hydrogels to produce human-scale constructs with high-fidelity. Materials & Design. Wu, D., Yu, Y., Tan, J., Huang, L., Luo, B., Lu, L. et al. (2018). 3D bioprinting of gellan gum and poly (ethylene glycol) diacrylate based hydrogels to produce human-scale constructs with high-fidelity. Materials & Design.
27.
Zurück zum Zitat Gupta, S., Bissoyi, A., & Bit, A. (2018). A review on 3D printable techniques for tissue engineering. BioNanoScience. Gupta, S., Bissoyi, A., & Bit, A. (2018). A review on 3D printable techniques for tissue engineering. BioNanoScience.
28.
Zurück zum Zitat Holzmeister, I., Schamel, M., Groll, J., Gbureck, U., & Vorndran, E. (2018). Artificial inorganic biohybrids: The functional combination of microorganisms and cells with inorganic materials. Acta Biomaterialia, 74, 17–35.CrossRef Holzmeister, I., Schamel, M., Groll, J., Gbureck, U., & Vorndran, E. (2018). Artificial inorganic biohybrids: The functional combination of microorganisms and cells with inorganic materials. Acta Biomaterialia, 74, 17–35.CrossRef
29.
Zurück zum Zitat Macko, M., Szczepański, Z., Mikołajewski, D., Nowak, J., Mikołajewska, E., & Furtak, J. (2019). CAE/FDM methods for design and manufacture artificial organs for exercises purposes. Current Topics in Behavioral Neurosciences, 462–469. Macko, M., Szczepański, Z., Mikołajewski, D., Nowak, J., Mikołajewska, E., & Furtak, J. (2019). CAE/FDM methods for design and manufacture artificial organs for exercises purposes. Current Topics in Behavioral Neurosciences, 462–469.
30.
Zurück zum Zitat Landers, R., & Mulhaupt, R. (2000). Desktop manufacturing of complex objects, prototypes and biomedical scaffolds utilizing computer-assisted design combined with computer-guided 3D plotting of polymers and reactive oligomers. Macromolecular Materials and Engineering, 282, 17–21.CrossRef Landers, R., & Mulhaupt, R. (2000). Desktop manufacturing of complex objects, prototypes and biomedical scaffolds utilizing computer-assisted design combined with computer-guided 3D plotting of polymers and reactive oligomers. Macromolecular Materials and Engineering, 282, 17–21.CrossRef
31.
Zurück zum Zitat Deliormanlı, A. M. (2019). Direct Write Assembly of Graphene/Poly(ε-Caprolactone) Composite Scaffolds and Evaluation of Their Biological Performance Using Mouse Bone Marrow Mesenchymal Stem Cells. Applied Biochemistry and Biotechnology. Deliormanlı, A. M. (2019). Direct Write Assembly of Graphene/Poly(ε-Caprolactone) Composite Scaffolds and Evaluation of Their Biological Performance Using Mouse Bone Marrow Mesenchymal Stem Cells. Applied Biochemistry and Biotechnology.
33.
Zurück zum Zitat Matai, I., Kaur, G., Seyedsalehi, A., McClinton, A., & Laurencin, C. T. (2019). Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials, 119536. Matai, I., Kaur, G., Seyedsalehi, A., McClinton, A., & Laurencin, C. T. (2019). Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials, 119536.
34.
Zurück zum Zitat Kou, G., Ergu, D., Chen, Y., & Lin, C. (2016). Pairwise comparison matrix in multiple criteria decision making. Technological and Economic Development of Economy, 22(5), 738–765. Kou, G., Ergu, D., Chen, Y., & Lin, C. (2016). Pairwise comparison matrix in multiple criteria decision making. Technological and Economic Development of Economy, 22(5), 738–765.
Metadaten
Titel
Challenges and Materials in Artificial Organ Manufacturing
verfasst von
Sumit Budhiraja
Prerna Priya Ashok
K. Mathiyazhagan
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-33-6029-7_59

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.