Skip to main content
Erschienen in:
Buchtitelbild

2019 | OriginalPaper | Buchkapitel

1. Challenges and Opportunities in Wearable Biomedical Interfaces

verfasst von : Venkata Rajesh Pamula, Chris Van Hoof, Marian Verhelst

Erschienen in: Analog-and-Algorithm-Assisted Ultra-low Power Biosignal Acquisition Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter provides an overview of the challenges and opportunities in wearable biomedical interfaces. Specifically, the challenges involved in acquiring biosignals with high fidelity in limited power budgets are highlighted. This chapter also introduces electrocardiogram (ECG) and photoplethysmogram (PPG) signal acquisition and processing as modalities for estimating the cardiovascular state. Assisted signal processing architectures, specifically analog and algorithmic assisted approaches, are introduced as opportunities to mitigate the challenges in low-power biosignal acquisition platforms. Finally, the organization of the rest of the chapters of the book is presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Noise efficiency factor (NEF) is a quantitative metric that captures the current consumption–noise trade-off of IAs.
 
2
Applications that involve stimulation, as is the case with pacemakers, require high BW to capture pacing pulses.
 
Literatur
2.
Zurück zum Zitat A.S. Go, D. Mozaffarian, V.L. Roger, E.J. Benjamin, J.D. Berry, W.B. Borden, D.M. Bravata, S. Dai, E.S. Ford, C.S. Fox et al., Heart disease and stroke statistics-2013 update. Circulation 127(1), e6–e245 (2013) A.S. Go, D. Mozaffarian, V.L. Roger, E.J. Benjamin, J.D. Berry, W.B. Borden, D.M. Bravata, S. Dai, E.S. Ford, C.S. Fox et al., Heart disease and stroke statistics-2013 update. Circulation 127(1), e6–e245 (2013)
3.
Zurück zum Zitat G. Williams, K. Doughty, D. Bradley, A systems approach to achieving CarerNet-an integrated and intelligent telecare system. IEEE Trans. Inf. Technol. Biomed. 2(1), 1–9 (1998)CrossRef G. Williams, K. Doughty, D. Bradley, A systems approach to achieving CarerNet-an integrated and intelligent telecare system. IEEE Trans. Inf. Technol. Biomed. 2(1), 1–9 (1998)CrossRef
4.
Zurück zum Zitat L.I. Galindez Olascoaga, K. Badami, V.R. Pamula, S. Lauwereins, W. Meert, M. Verhelst, Exploiting system configurability towards dynamic accuracy-power trade-offs in sensor front-ends, in Proceedings of the 50th Asilomar Conference on Signals, Systems, and Computers (IEEE, Piscataway, 2016), pp. 1027–1031 L.I. Galindez Olascoaga, K. Badami, V.R. Pamula, S. Lauwereins, W. Meert, M. Verhelst, Exploiting system configurability towards dynamic accuracy-power trade-offs in sensor front-ends, in Proceedings of the 50th Asilomar Conference on Signals, Systems, and Computers (IEEE, Piscataway, 2016), pp. 1027–1031
5.
Zurück zum Zitat H. Kim, S. Kim, N.V. Helleputte, A. Artes, M. Konijnenburg, J. Huisken, C.V. Hoof, R.F. Yazicioglu, A configurable and low-power mixed signal SoC for portable ECG monitoring applications. IEEE Trans. Biomed. Circuits Syst. 8(2), 257–267 (2014)CrossRef H. Kim, S. Kim, N.V. Helleputte, A. Artes, M. Konijnenburg, J. Huisken, C.V. Hoof, R.F. Yazicioglu, A configurable and low-power mixed signal SoC for portable ECG monitoring applications. IEEE Trans. Biomed. Circuits Syst. 8(2), 257–267 (2014)CrossRef
6.
Zurück zum Zitat P. Harpe, H. Gao, R. van Dommele, E. Cantatore, A.H.M. van Roermund, A 0.20 3 nW signal acquisition IC for miniature sensor nodes in 65 nm CMOS. IEEE J. Solid State Circuits 51(1), 240–248 (2016) P. Harpe, H. Gao, R. van Dommele, E. Cantatore, A.H.M. van Roermund, A 0.20 3 nW signal acquisition IC for miniature sensor nodes in 65 nm CMOS. IEEE J. Solid State Circuits 51(1), 240–248 (2016)
7.
Zurück zum Zitat M. Steyaert, W. Sansen, A micropower low-noise monolithic instrumentation amplifier for medical purposes. IEEE J. Solid State Circuits 22(6), 1163–1168 (1987)CrossRef M. Steyaert, W. Sansen, A micropower low-noise monolithic instrumentation amplifier for medical purposes. IEEE J. Solid State Circuits 22(6), 1163–1168 (1987)CrossRef
8.
Zurück zum Zitat J. Kwong, A.P. Chandrakasan, An energy-efficient biomedical signal processing platform. IEEE J. Solid State Circuits 46(7), 1742–1753 (2011)CrossRef J. Kwong, A.P. Chandrakasan, An energy-efficient biomedical signal processing platform. IEEE J. Solid State Circuits 46(7), 1742–1753 (2011)CrossRef
9.
Zurück zum Zitat A. Ba, M. Vidojkovic, K. Kanda, N.F. Kiyani, M. Lont, X. Huang, X. Wang, C. Zhou, Y.-H. Liu, M. Ding, B. Busze, S. Masui, M. Hamaminato, H. Sato, K. Philips, H. de Groot, A 0.33 nJ/bit IEEE802.15.6/proprietary MICS/ISM wireless transceiver with scalable data rate for medical implantable applications. IEEE J. Biomed. Health Inform. 19(3), 920–929 (2015)CrossRef A. Ba, M. Vidojkovic, K. Kanda, N.F. Kiyani, M. Lont, X. Huang, X. Wang, C. Zhou, Y.-H. Liu, M. Ding, B. Busze, S. Masui, M. Hamaminato, H. Sato, K. Philips, H. de Groot, A 0.33 nJ/bit IEEE802.15.6/proprietary MICS/ISM wireless transceiver with scalable data rate for medical implantable applications. IEEE J. Biomed. Health Inform. 19(3), 920–929 (2015)CrossRef
10.
Zurück zum Zitat N. Verma, A. Shoeb, J. Bohorquez, J. Dawson, J. Guttag, A.P. Chandrakasan, A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system. IEEE J. Solid State Circuits 45(4), 804–816 (2010)CrossRef N. Verma, A. Shoeb, J. Bohorquez, J. Dawson, J. Guttag, A.P. Chandrakasan, A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system. IEEE J. Solid State Circuits 45(4), 804–816 (2010)CrossRef
11.
Zurück zum Zitat H. Kim, R.F. Yazicioglu, T. Torfs, P. Merken, H.-J. Yoo, C.V. Hoof, A low power ECG signal processor for ambulatory arrhythmia monitoring system, in 2010 Symposium on VLSI Circuits (Institute of Electrical and Electronics Engineers (IEEE), Piscataway, 2010) H. Kim, R.F. Yazicioglu, T. Torfs, P. Merken, H.-J. Yoo, C.V. Hoof, A low power ECG signal processor for ambulatory arrhythmia monitoring system, in 2010 Symposium on VLSI Circuits (Institute of Electrical and Electronics Engineers (IEEE), Piscataway, 2010)
12.
Zurück zum Zitat A.Y. Dogan, J. Constantin, M. Ruggiero, A. Burg, D. Atienza, Multi-core architecture design for ultra-low-power wearable health monitoring systems, in 2012 Design, Automation and Test in Europe Conference and Exhibition (DATE) (Mar 2012) A.Y. Dogan, J. Constantin, M. Ruggiero, A. Burg, D. Atienza, Multi-core architecture design for ultra-low-power wearable health monitoring systems, in 2012 Design, Automation and Test in Europe Conference and Exhibition (DATE) (Mar 2012)
13.
Zurück zum Zitat J. Webster, Medical Instrumentation: Application and Design (Wiley, Hoboken, 2009) J. Webster, Medical Instrumentation: Application and Design (Wiley, Hoboken, 2009)
14.
Zurück zum Zitat R.F. Yazicioglu, S. Kim, T. Torfs, H. Kim, C. Van Hoof, A 30 μW analog signal processor ASIC for portable biopotential signal monitoring. IEEE J. Solid State Circuits 46(1), 209–223 (2011)CrossRef R.F. Yazicioglu, S. Kim, T. Torfs, H. Kim, C. Van Hoof, A 30 μW analog signal processor ASIC for portable biopotential signal monitoring. IEEE J. Solid State Circuits 46(1), 209–223 (2011)CrossRef
15.
Zurück zum Zitat N.V. Thakor, J.G. Webster, W.J. Tompkins, Estimation of QRS complex power spectra for design of a QRS filter. IEEE Trans. Biomed. Eng. BME-31(11), 702–706 (1984)CrossRef N.V. Thakor, J.G. Webster, W.J. Tompkins, Estimation of QRS complex power spectra for design of a QRS filter. IEEE Trans. Biomed. Eng. BME-31(11), 702–706 (1984)CrossRef
16.
Zurück zum Zitat E.S. Winokur, Single-site, noninvasive, blood pressure measurements at the ear using ballistocardiogram (BCG), and photoplethysmogram (PPG), and a low-power, reflectance-mode PPG SoC, Ph.D. dissertation, Massachusetts Institute of Technology, 2014 E.S. Winokur, Single-site, noninvasive, blood pressure measurements at the ear using ballistocardiogram (BCG), and photoplethysmogram (PPG), and a low-power, reflectance-mode PPG SoC, Ph.D. dissertation, Massachusetts Institute of Technology, 2014
17.
Zurück zum Zitat J. Allen, Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 28(3), R1 (2007)CrossRef J. Allen, Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 28(3), R1 (2007)CrossRef
18.
Zurück zum Zitat C. Poon, Y. Zhang, Cuff-less and noninvasive measurements of arterial blood pressure by pulse transit time, in 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference (2005) C. Poon, Y. Zhang, Cuff-less and noninvasive measurements of arterial blood pressure by pulse transit time, in 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference (2005)
19.
Zurück zum Zitat J.G. Webster, Design of Pulse Oximeters (CRC Press, Boca Raton, 1997) J.G. Webster, Design of Pulse Oximeters (CRC Press, Boca Raton, 1997)
20.
Zurück zum Zitat K.N. Glaros, Low-power pulse oximetry and transimpedance amplifiers, Ph.D. dissertation, Imperial College London, 2011 K.N. Glaros, Low-power pulse oximetry and transimpedance amplifiers, Ph.D. dissertation, Imperial College London, 2011
21.
Zurück zum Zitat R. Sarpeshkar, Universal principles for ultra low power and energy efficient design. IEEE Trans. Circuits Syst. Express Briefs 59(4), 193–198 (2012)CrossRef R. Sarpeshkar, Universal principles for ultra low power and energy efficient design. IEEE Trans. Circuits Syst. Express Briefs 59(4), 193–198 (2012)CrossRef
22.
Zurück zum Zitat N.V. Helleputte, S. Kim, H. Kim, J.P. Kim, C.V. Hoof, R.F. Yazicioglu, A 160 μA biopotential acquisition IC with fully integrated IA and motion artifact suppression. IEEE Trans. Biomed. Circuits Syst. 6(6), 552–561 (2012)CrossRef N.V. Helleputte, S. Kim, H. Kim, J.P. Kim, C.V. Hoof, R.F. Yazicioglu, A 160 μA biopotential acquisition IC with fully integrated IA and motion artifact suppression. IEEE Trans. Biomed. Circuits Syst. 6(6), 552–561 (2012)CrossRef
23.
Zurück zum Zitat J.L. Bohorquez, M. Yip, A.P. Chandrakasan, J.L. Dawson, A biomedical sensor interface with a sinc filter and interference cancellation. IEEE J. Solid State Circuits 46(4), 746–756 (2011)CrossRef J.L. Bohorquez, M. Yip, A.P. Chandrakasan, J.L. Dawson, A biomedical sensor interface with a sinc filter and interference cancellation. IEEE J. Solid State Circuits 46(4), 746–756 (2011)CrossRef
24.
Zurück zum Zitat S. Kawahito, M. Yoshida, M. Sasaki, K. Umehara, D. Miyazaki, Y. Tadokoro, K. Murata, S. Doushou, A. Matsuzawa, A CMOS image sensor with analog two-dimensional DCT-based compression circuits for one-chip cameras. IEEE J. Solid State Circuits 32(12), 2030–2041 (1997)CrossRef S. Kawahito, M. Yoshida, M. Sasaki, K. Umehara, D. Miyazaki, Y. Tadokoro, K. Murata, S. Doushou, A. Matsuzawa, A CMOS image sensor with analog two-dimensional DCT-based compression circuits for one-chip cameras. IEEE J. Solid State Circuits 32(12), 2030–2041 (1997)CrossRef
25.
Zurück zum Zitat E.H. Lee, S.S. Wong, Analysis and design of a passive switched-capacitor matrix multiplier for approximate computing. IEEE J. Solid State Circuits 52(1), 261–271 (2017)CrossRef E.H. Lee, S.S. Wong, Analysis and design of a passive switched-capacitor matrix multiplier for approximate computing. IEEE J. Solid State Circuits 52(1), 261–271 (2017)CrossRef
26.
Zurück zum Zitat L. Yan, P. Harpe, V.R. Pamula, M. Osawa, Y. Harada, K. Tamiya, C.V. Hoof, R.F. Yazicioglu, A 680 nA ECG acquisition IC for leadless pacemaker applications. IEEE Trans. Biomed. Circuits Syst. 8(6), 779–786 (2014)CrossRef L. Yan, P. Harpe, V.R. Pamula, M. Osawa, Y. Harada, K. Tamiya, C.V. Hoof, R.F. Yazicioglu, A 680 nA ECG acquisition IC for leadless pacemaker applications. IEEE Trans. Biomed. Circuits Syst. 8(6), 779–786 (2014)CrossRef
27.
Zurück zum Zitat E. Candes, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)MathSciNetCrossRef E. Candes, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)MathSciNetCrossRef
Metadaten
Titel
Challenges and Opportunities in Wearable Biomedical Interfaces
verfasst von
Venkata Rajesh Pamula
Chris Van Hoof
Marian Verhelst
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-05870-8_1

Neuer Inhalt