Skip to main content
Erschienen in:
Buchtitelbild

2021 | OriginalPaper | Buchkapitel

1. Challenges and Perspectives of Biorefineries

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The valorization of lignocellulosic biomass (LCB) to biofuels and value-added commodities in biorefineries shows the promise to address the energy demands, the global climate changes, and the societal needs. However, it is still urgent to develop modern biorefinery scenarios to transform LCB into high-value products for the sustainability and feasibility. This chapter summarizes the challenges and perspectives of biorefineries from the aspects of the LCB properties, the process and product, the conversional and emerging technologies, and the lignin valorization. Due to the complex structures of LCB, a substantial knowledge in understanding of its intrinsic properties is essential to facilitate sustainable conversion. The conversional and emerging technologies related to pretreatment, hydrolysis, and fermentation and the interactions among these units have been described systematically. The development of these technologies would further reduce the process cost of biorefineries. After that, the lignin valorization strategies have been discussed to make a sustainable biorefinery. The requirements of innovative modern biorefineries have been proposed to meet the implication of LCB conversion to biofuels and value-added commodities. The summary of these perspectives of LCB upgrading to a diverse set of products would guide the process design, the technology development, and the implementation of biorefineries by mitigating technical risk for scale-up with the improvement of the profitability of biorefinery. Overall, the improved sustainability of biorefinery holds potential advantages to address the problems facing the energy and the societal needs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ragauskas, A. J., et al. (2014). Lignin valorization: Improving lignin processing in the biorefinery. Science, 344, 709.CrossRef Ragauskas, A. J., et al. (2014). Lignin valorization: Improving lignin processing in the biorefinery. Science, 344, 709.CrossRef
2.
Zurück zum Zitat Lynd, L. R. (2017). The grand challenge of cellulosic biofuels. Nature Biotechnology, 35, 912–915.CrossRef Lynd, L. R. (2017). The grand challenge of cellulosic biofuels. Nature Biotechnology, 35, 912–915.CrossRef
3.
Zurück zum Zitat Cantero, D., et al. (2019). Pretreatment processes of biomass for biorefineries: Current status and prospects. Annual Review of Chemical and Biomolecular Engineering, 10, 289–310.CrossRef Cantero, D., et al. (2019). Pretreatment processes of biomass for biorefineries: Current status and prospects. Annual Review of Chemical and Biomolecular Engineering, 10, 289–310.CrossRef
4.
Zurück zum Zitat Alonso, D. M., et al. (2017). Increasing the revenue from lignocellulosic biomass: Maximizing feedstock utilization. Science Advances, 3, e1603301.CrossRef Alonso, D. M., et al. (2017). Increasing the revenue from lignocellulosic biomass: Maximizing feedstock utilization. Science Advances, 3, e1603301.CrossRef
5.
Zurück zum Zitat Liu, Z. H., et al. (2019). Identifying and creating pathways to improve biological lignin valorization. Renewable and Sustainable Energy Reviews, 105, 349–362.CrossRef Liu, Z. H., et al. (2019). Identifying and creating pathways to improve biological lignin valorization. Renewable and Sustainable Energy Reviews, 105, 349–362.CrossRef
6.
Zurück zum Zitat Jin, M. J., Gunawan, C., Uppugundla, N., Balan, V., & Dale, B. E. (2012). A novel integrated biological process for cellulosic ethanol production featuring high ethanol productivity, enzyme recycling and yeast cells reuse. Energy & Environmental Science, 5, 7168–7175.CrossRef Jin, M. J., Gunawan, C., Uppugundla, N., Balan, V., & Dale, B. E. (2012). A novel integrated biological process for cellulosic ethanol production featuring high ethanol productivity, enzyme recycling and yeast cells reuse. Energy & Environmental Science, 5, 7168–7175.CrossRef
7.
Zurück zum Zitat Himmel, M. E., et al. (2007). Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science, 315, 804–807.CrossRef Himmel, M. E., et al. (2007). Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science, 315, 804–807.CrossRef
8.
Zurück zum Zitat Mohanty, A. K., Vivekanandhan, S., Pin, J. M., & Misra, M. (2018). Composites from renewable and sustainable resources: Challenges and innovations. Science, 362, 536–542.CrossRef Mohanty, A. K., Vivekanandhan, S., Pin, J. M., & Misra, M. (2018). Composites from renewable and sustainable resources: Challenges and innovations. Science, 362, 536–542.CrossRef
9.
Zurück zum Zitat Seidl, P. R., & Goulart, A. K. (2016). Pretreatment processes for lignocellulosic biomass conversion to biofuels and bioproducts. Current Opinion in Green and Sustainable Chemistry, 2, 48–53.CrossRef Seidl, P. R., & Goulart, A. K. (2016). Pretreatment processes for lignocellulosic biomass conversion to biofuels and bioproducts. Current Opinion in Green and Sustainable Chemistry, 2, 48–53.CrossRef
10.
Zurück zum Zitat Zhang, X., Tu, M. B., & Paice, M. G. (2011). Routes to potential bioproducts from Lignocellulosic biomass lignin and hemicelluloses. Bioenergy Research, 4, 246–257.CrossRef Zhang, X., Tu, M. B., & Paice, M. G. (2011). Routes to potential bioproducts from Lignocellulosic biomass lignin and hemicelluloses. Bioenergy Research, 4, 246–257.CrossRef
11.
Zurück zum Zitat Liu, Z. H., et al. (2013). Effects of biomass particle size on steam explosion pretreatment performance for improving the enzyme digestibility of corn stover. Industrial Crops and Products, 44, 176–184.CrossRef Liu, Z. H., et al. (2013). Effects of biomass particle size on steam explosion pretreatment performance for improving the enzyme digestibility of corn stover. Industrial Crops and Products, 44, 176–184.CrossRef
12.
Zurück zum Zitat Kumar, R., Singh, S., & Singh, O. V. (2008). Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives. Journal of Industrial Microbiology & Biotechnology, 35, 377–391.CrossRef Kumar, R., Singh, S., & Singh, O. V. (2008). Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives. Journal of Industrial Microbiology & Biotechnology, 35, 377–391.CrossRef
13.
Zurück zum Zitat Kumari, D., & Singh, R. (2018). Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renewable and Sustainable Energy Reviews, 90, 877–891.CrossRef Kumari, D., & Singh, R. (2018). Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renewable and Sustainable Energy Reviews, 90, 877–891.CrossRef
14.
Zurück zum Zitat Ragauskas, A. J., et al. (2006). The path forward for biofuels and biomaterials. Science, 311, 484–489.CrossRef Ragauskas, A. J., et al. (2006). The path forward for biofuels and biomaterials. Science, 311, 484–489.CrossRef
15.
Zurück zum Zitat Mohanty, A. K., Misra, M., & Drzal, L. T. (2002). Sustainable bio-composites from renewable resources: Opportunities and challenges in the green materials world. Abstracts of Papers of the American Chemical Society, 223, D70–D70. Mohanty, A. K., Misra, M., & Drzal, L. T. (2002). Sustainable bio-composites from renewable resources: Opportunities and challenges in the green materials world. Abstracts of Papers of the American Chemical Society, 223, D70–D70.
16.
Zurück zum Zitat Ozdenkci, K., et al. (2017). A novel biorefinery integration concept for lignocellulosic biomass. Energy Conversion and Management, 149, 974–987.CrossRef Ozdenkci, K., et al. (2017). A novel biorefinery integration concept for lignocellulosic biomass. Energy Conversion and Management, 149, 974–987.CrossRef
17.
Zurück zum Zitat Kawaguchi, H., Hasunuma, T., Ogino, C., & Kondo, A. (2016). Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks. Current Opinion in Biotechnology, 42, 30–39.CrossRef Kawaguchi, H., Hasunuma, T., Ogino, C., & Kondo, A. (2016). Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks. Current Opinion in Biotechnology, 42, 30–39.CrossRef
18.
Zurück zum Zitat Tilman, D., Hill, J., & Lehman, C. (2006). Carbon-negative biofuels from low-input high-diversity grassland biomass. Science, 314, 1598–1600.CrossRef Tilman, D., Hill, J., & Lehman, C. (2006). Carbon-negative biofuels from low-input high-diversity grassland biomass. Science, 314, 1598–1600.CrossRef
19.
Zurück zum Zitat Hassan, S. S., Williams, G. A., & Jaiswal, A. K. (2019). Lignocellulosic biorefineries in Europe: Current state and prospects. Trends in Biotechnology, 37, 231–234.CrossRef Hassan, S. S., Williams, G. A., & Jaiswal, A. K. (2019). Lignocellulosic biorefineries in Europe: Current state and prospects. Trends in Biotechnology, 37, 231–234.CrossRef
20.
Zurück zum Zitat Rinaldi, R., et al. (2016). Paving the way for lignin valorisation: Recent advances in bioengineering, Biorefining and Catalysis. Angewandte Chemie, International Edition, 55, 8164–8215.CrossRef Rinaldi, R., et al. (2016). Paving the way for lignin valorisation: Recent advances in bioengineering, Biorefining and Catalysis. Angewandte Chemie, International Edition, 55, 8164–8215.CrossRef
21.
Zurück zum Zitat Renders, T., Van den Bosch, S., Koelewijn, S. F., Schutyser, W., & Sels, B. F. (2017). Lignin-first biomass fractionation: The advent of active stabilisation strategies. Energy & Environmental Science, 10, 1551–1557.CrossRef Renders, T., Van den Bosch, S., Koelewijn, S. F., Schutyser, W., & Sels, B. F. (2017). Lignin-first biomass fractionation: The advent of active stabilisation strategies. Energy & Environmental Science, 10, 1551–1557.CrossRef
22.
Zurück zum Zitat Amiri, M. T., Dick, G. R., Questell-Santiago, Y. M., & Luterbacher, J. S. (2019). Fractionation of lignocellulosic biomass to produce uncondensed aldehyde-stabilized lignin. Nature Protocols, 14, 921–954.CrossRef Amiri, M. T., Dick, G. R., Questell-Santiago, Y. M., & Luterbacher, J. S. (2019). Fractionation of lignocellulosic biomass to produce uncondensed aldehyde-stabilized lignin. Nature Protocols, 14, 921–954.CrossRef
23.
Zurück zum Zitat Mood, S. H., et al. (2013). Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable and Sustainable Energy Reviews, 27, 77–93.CrossRef Mood, S. H., et al. (2013). Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable and Sustainable Energy Reviews, 27, 77–93.CrossRef
24.
Zurück zum Zitat Balat, M. (2011). Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Conversion and Management, 52, 858–875.CrossRef Balat, M. (2011). Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Conversion and Management, 52, 858–875.CrossRef
25.
Zurück zum Zitat Ding, S. Y., et al. (2012). How does plant Cell Wall nanoscale architecture correlate with enzymatic digestibility? Science, 338, 1055–1060.CrossRef Ding, S. Y., et al. (2012). How does plant Cell Wall nanoscale architecture correlate with enzymatic digestibility? Science, 338, 1055–1060.CrossRef
26.
Zurück zum Zitat Agbor, V. B., Cicek, N., Sparling, R., Berlin, A., & Levin, D. B. (2011). Biomass pretreatment: Fundamentals toward application. Biotechnology Advances, 29, 675–685.CrossRef Agbor, V. B., Cicek, N., Sparling, R., Berlin, A., & Levin, D. B. (2011). Biomass pretreatment: Fundamentals toward application. Biotechnology Advances, 29, 675–685.CrossRef
27.
Zurück zum Zitat Saha, B. C. (2003). Hemicellulose bioconversion. Journal of Industrial Microbiology & Biotechnology, 30, 279–291.CrossRef Saha, B. C. (2003). Hemicellulose bioconversion. Journal of Industrial Microbiology & Biotechnology, 30, 279–291.CrossRef
28.
Zurück zum Zitat Girio, F. M., et al. (2010). Hemicelluloses for fuel ethanol: A review. Bioresource Technology, 101, 4775–4800.CrossRef Girio, F. M., et al. (2010). Hemicelluloses for fuel ethanol: A review. Bioresource Technology, 101, 4775–4800.CrossRef
29.
Zurück zum Zitat Liu, Z. H., et al. (2019). Cooperative valorization of lignin and residual sugar to polyhydroxyalkanoate (PHA) for enhanced yield and carbon utilization in biorefineries. Sustainable Energy & Fuels, 3, 2024–2037.CrossRef Liu, Z. H., et al. (2019). Cooperative valorization of lignin and residual sugar to polyhydroxyalkanoate (PHA) for enhanced yield and carbon utilization in biorefineries. Sustainable Energy & Fuels, 3, 2024–2037.CrossRef
30.
Zurück zum Zitat Zhang, Y. H. P. (2008). Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. Journal of Industrial Microbiology & Biotechnology, 35, 367–375.CrossRef Zhang, Y. H. P. (2008). Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. Journal of Industrial Microbiology & Biotechnology, 35, 367–375.CrossRef
31.
Zurück zum Zitat Chen, H. Z., & Liu, Z. H. (2015). Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products. Biotechnology Journal, 10, 866–885.CrossRef Chen, H. Z., & Liu, Z. H. (2015). Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products. Biotechnology Journal, 10, 866–885.CrossRef
32.
Zurück zum Zitat Zhao, X. B., Zhang, L. H., & Liu, D. H. (2012). Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels, Bioproducts and Biorefining, 6, 465–482.CrossRef Zhao, X. B., Zhang, L. H., & Liu, D. H. (2012). Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels, Bioproducts and Biorefining, 6, 465–482.CrossRef
33.
Zurück zum Zitat Holwerda, E. K., et al. (2019). Multiple levers for overcoming the recalcitrance of lignocellulosic biomass. Biotechnol Biofuels, 12, 1–12. Holwerda, E. K., et al. (2019). Multiple levers for overcoming the recalcitrance of lignocellulosic biomass. Biotechnol Biofuels, 12, 1–12.
34.
Zurück zum Zitat Tarasov, D., Leitch, M., & Fatehi, P. (2018). Lignin-carbohydrate complexes: Properties, applications, analyses, and methods of extraction: A review. Biotechnology for Biofuels, 11, 269.CrossRef Tarasov, D., Leitch, M., & Fatehi, P. (2018). Lignin-carbohydrate complexes: Properties, applications, analyses, and methods of extraction: A review. Biotechnology for Biofuels, 11, 269.CrossRef
35.
Zurück zum Zitat Liu, Z. H., & Chen, H. Z. (2016). Mechanical property of different corn Stover morphological fractions and its correlations with high solids enzymatic hydrolysis by periodic peristalsis. Bioresource Technology, 214, 292–302.CrossRef Liu, Z. H., & Chen, H. Z. (2016). Mechanical property of different corn Stover morphological fractions and its correlations with high solids enzymatic hydrolysis by periodic peristalsis. Bioresource Technology, 214, 292–302.CrossRef
36.
Zurück zum Zitat Liu, Z. H., Qin, L., Li, B. Z., & Yuan, Y. J. (2015). Physical and chemical characterizations of corn Stover from leading pretreatment methods and effects on enzymatic hydrolysis. ACS Sustainable Chemistry & Engineering, 3, 140–146.CrossRef Liu, Z. H., Qin, L., Li, B. Z., & Yuan, Y. J. (2015). Physical and chemical characterizations of corn Stover from leading pretreatment methods and effects on enzymatic hydrolysis. ACS Sustainable Chemistry & Engineering, 3, 140–146.CrossRef
37.
Zurück zum Zitat Mosier, N., et al. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 673–686.CrossRef Mosier, N., et al. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 673–686.CrossRef
38.
Zurück zum Zitat Yang, B., & Wyman, C. E. (2008). Pretreatment: The key to unlocking low-cost cellulosic ethanol. Biofuels, Bioproducts and Biorefining, 2, 26–40.CrossRef Yang, B., & Wyman, C. E. (2008). Pretreatment: The key to unlocking low-cost cellulosic ethanol. Biofuels, Bioproducts and Biorefining, 2, 26–40.CrossRef
39.
Zurück zum Zitat Wyman, C. E., et al. (2005). Coordinated development of leading biomass pretreatment technologies. Bioresource Technology, 96, 1959–1966.CrossRef Wyman, C. E., et al. (2005). Coordinated development of leading biomass pretreatment technologies. Bioresource Technology, 96, 1959–1966.CrossRef
40.
Zurück zum Zitat Sindhu, R., Binod, P., & Pandey, A. (2016). Biological pretreatment of lignocellulosic biomass - an overview. Bioresource Technology, 199, 76–82.CrossRef Sindhu, R., Binod, P., & Pandey, A. (2016). Biological pretreatment of lignocellulosic biomass - an overview. Bioresource Technology, 199, 76–82.CrossRef
41.
Zurück zum Zitat Liu, Z. H., & Chen, H. Z. (2017). Two-step size reduction and post-washing of steam exploded corn stover improving simultaneous saccharification and fermentation for ethanol production. Bioresource Technology, 223, 47–58.CrossRef Liu, Z. H., & Chen, H. Z. (2017). Two-step size reduction and post-washing of steam exploded corn stover improving simultaneous saccharification and fermentation for ethanol production. Bioresource Technology, 223, 47–58.CrossRef
42.
Zurück zum Zitat Liu, Z. H., et al. (2013). Evaluation of storage methods for the conversion of corn stover biomass to sugars based on steam explosion pretreatment. Bioresource Technology, 132, 5–15.CrossRef Liu, Z. H., et al. (2013). Evaluation of storage methods for the conversion of corn stover biomass to sugars based on steam explosion pretreatment. Bioresource Technology, 132, 5–15.CrossRef
43.
Zurück zum Zitat Feng, L., et al. (2014). Combined severity during pretreatment chemical and temperature on the Saccharification of wheat straw using acids and alkalis of differing strength. BioResources, 9, 24–38. Feng, L., et al. (2014). Combined severity during pretreatment chemical and temperature on the Saccharification of wheat straw using acids and alkalis of differing strength. BioResources, 9, 24–38.
44.
Zurück zum Zitat Shen, X. J., et al. (2019). Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization. Green Chemistry, 21, 275–283.CrossRef Shen, X. J., et al. (2019). Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization. Green Chemistry, 21, 275–283.CrossRef
45.
Zurück zum Zitat Hassan, S. S., Williams, G. A., & Jaiswal, A. K. (2018). Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresource Technology, 262, 310–318.CrossRef Hassan, S. S., Williams, G. A., & Jaiswal, A. K. (2018). Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresource Technology, 262, 310–318.CrossRef
46.
Zurück zum Zitat Liu, Z. H., et al. (2017). Synergistic maximization of the carbohydrate output and lignin processability by combinatorial pretreatment. Green Chemistry, 19, 4939–4955.CrossRef Liu, Z. H., et al. (2017). Synergistic maximization of the carbohydrate output and lignin processability by combinatorial pretreatment. Green Chemistry, 19, 4939–4955.CrossRef
47.
Zurück zum Zitat Liu, Z. H., et al. (2019). Codesign of combinatorial Organosolv pretreatment (COP) and lignin nanoparticles (LNPs) in biorefineries. ACS Sustainable Chemistry & Engineering, 7, 2634–2647.CrossRef Liu, Z. H., et al. (2019). Codesign of combinatorial Organosolv pretreatment (COP) and lignin nanoparticles (LNPs) in biorefineries. ACS Sustainable Chemistry & Engineering, 7, 2634–2647.CrossRef
48.
Zurück zum Zitat Zhang, K., Pei, Z. J., & Wang, D. H. (2016). Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review. Bioresource Technology, 199, 21–33.CrossRef Zhang, K., Pei, Z. J., & Wang, D. H. (2016). Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review. Bioresource Technology, 199, 21–33.CrossRef
49.
Zurück zum Zitat Kim, K. H., Dutta, T., Sun, J., Simmons, B., & Singh, S. (2018). Biomass pretreatment using deep eutectic solvents from lignin derived phenols. Green Chemistry, 20, 809–815.CrossRef Kim, K. H., Dutta, T., Sun, J., Simmons, B., & Singh, S. (2018). Biomass pretreatment using deep eutectic solvents from lignin derived phenols. Green Chemistry, 20, 809–815.CrossRef
50.
Zurück zum Zitat Serna, L. V. D., Alzate, C. E. O., & Alzate, C. A. C. (2016). Supercritical fluids as a green technology for the pretreatment of lignocellulosic biomass. Bioresource Technology, 199, 113–120.CrossRef Serna, L. V. D., Alzate, C. E. O., & Alzate, C. A. C. (2016). Supercritical fluids as a green technology for the pretreatment of lignocellulosic biomass. Bioresource Technology, 199, 113–120.CrossRef
51.
Zurück zum Zitat Zhang, J. W., Zhong, Y. H., Zhao, X. N., & Wang, T. H. (2010). Development of the cellulolytic fungus Trichoderma reesei strain with enhanced beta-glucosidase and filter paper activity using strong artificial cellobiohydrolase 1 promoter. Bioresource Technology, 101, 9815–9818.CrossRef Zhang, J. W., Zhong, Y. H., Zhao, X. N., & Wang, T. H. (2010). Development of the cellulolytic fungus Trichoderma reesei strain with enhanced beta-glucosidase and filter paper activity using strong artificial cellobiohydrolase 1 promoter. Bioresource Technology, 101, 9815–9818.CrossRef
52.
Zurück zum Zitat Mota, T. R., de Oliveira, D. M., Marchiosi, R., Ferrarese, O., & dos Santos, W. D. (2018). Plant cell wall composition and enzymatic deconstruction. AIMS Bioengineering, 5, 63–77.CrossRef Mota, T. R., de Oliveira, D. M., Marchiosi, R., Ferrarese, O., & dos Santos, W. D. (2018). Plant cell wall composition and enzymatic deconstruction. AIMS Bioengineering, 5, 63–77.CrossRef
53.
Zurück zum Zitat Chen, H. Z., & Liu, Z. H. (2017). Enzymatic hydrolysis of lignocellulosic biomass from low to high solids loading. Engineering in Life Sciences, 17, 489–499.CrossRef Chen, H. Z., & Liu, Z. H. (2017). Enzymatic hydrolysis of lignocellulosic biomass from low to high solids loading. Engineering in Life Sciences, 17, 489–499.CrossRef
54.
Zurück zum Zitat Alvira, P., Tomas-Pejo, E., Ballesteros, M., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology, 101, 4851–4861.CrossRef Alvira, P., Tomas-Pejo, E., Ballesteros, M., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology, 101, 4851–4861.CrossRef
55.
Zurück zum Zitat Chandra, R. P., et al. (2007). Substrate pretreatment: The key to effective enzymatic hydrolysis of lignocellulosics? Advances in Biochemical Engineering/Biotechnology, 108, 67–93.CrossRef Chandra, R. P., et al. (2007). Substrate pretreatment: The key to effective enzymatic hydrolysis of lignocellulosics? Advances in Biochemical Engineering/Biotechnology, 108, 67–93.CrossRef
56.
Zurück zum Zitat Hall, M., Bansal, P., Lee, J. H., Realff, M. J., & Bommarius, A. S. (2010). Cellulose crystallinity – A key predictor of the enzymatic hydrolysis rate. The FEBS Journal, 277, 1571–1582. Hall, M., Bansal, P., Lee, J. H., Realff, M. J., & Bommarius, A. S. (2010). Cellulose crystallinity – A key predictor of the enzymatic hydrolysis rate. The FEBS Journal, 277, 1571–1582.
57.
Zurück zum Zitat Kumar, R., et al. (2018). Cellulose-hemicellulose interactions at elevated temperatures increase cellulose recalcitrance to biological conversion. Green Chemistry, 20, 921–934.CrossRef Kumar, R., et al. (2018). Cellulose-hemicellulose interactions at elevated temperatures increase cellulose recalcitrance to biological conversion. Green Chemistry, 20, 921–934.CrossRef
58.
Zurück zum Zitat Van Dyk, J. S., & Pletschke, B. I. (2012). A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-factors affecting enzymes, conversion and synergy. Biotechnology Advances, 30, 1458–1480.CrossRef Van Dyk, J. S., & Pletschke, B. I. (2012). A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-factors affecting enzymes, conversion and synergy. Biotechnology Advances, 30, 1458–1480.CrossRef
59.
Zurück zum Zitat Yang, Q., & Pan, X. J. (2016). Correlation between lignin physicochemical properties and inhibition to enzymatic hydrolysis of cellulose. Biotechnology and Bioengineering, 113, 1213–1224.CrossRef Yang, Q., & Pan, X. J. (2016). Correlation between lignin physicochemical properties and inhibition to enzymatic hydrolysis of cellulose. Biotechnology and Bioengineering, 113, 1213–1224.CrossRef
60.
Zurück zum Zitat Jorgensen, H., Vibe-Pedersen, J., Larsen, J., & Felby, C. (2007). Liquefaction of lignocellulose at high-solids concentrations. Biotechnology and Bioengineering, 96, 862–870.CrossRef Jorgensen, H., Vibe-Pedersen, J., Larsen, J., & Felby, C. (2007). Liquefaction of lignocellulose at high-solids concentrations. Biotechnology and Bioengineering, 96, 862–870.CrossRef
61.
Zurück zum Zitat Modenbach, A. A., & Nokes, S. E. (2012). The use of high-solids loadings in biomass pretreatment-a review. Biotechnology and Bioengineering, 109, 1430–1442.CrossRef Modenbach, A. A., & Nokes, S. E. (2012). The use of high-solids loadings in biomass pretreatment-a review. Biotechnology and Bioengineering, 109, 1430–1442.CrossRef
62.
Zurück zum Zitat Nguyen, T. Y., Cai, C. M., Kumar, R., & Wyman, C. E. (2017). Overcoming factors limiting high-solids fermentation of lignocellulosic biomass to ethanol. Proceedings of the National Academy of Sciences of the United States of America, 114, 11673–11678.CrossRef Nguyen, T. Y., Cai, C. M., Kumar, R., & Wyman, C. E. (2017). Overcoming factors limiting high-solids fermentation of lignocellulosic biomass to ethanol. Proceedings of the National Academy of Sciences of the United States of America, 114, 11673–11678.CrossRef
63.
Zurück zum Zitat Jin, M. J., et al. (2017). Toward high solids loading process for lignocellulosic biofuel production at a low cost. Biotechnology and Bioengineering, 114, 980–989.CrossRef Jin, M. J., et al. (2017). Toward high solids loading process for lignocellulosic biofuel production at a low cost. Biotechnology and Bioengineering, 114, 980–989.CrossRef
64.
Zurück zum Zitat Liu, Z. H., & Chen, H. Z. (2016). Periodic peristalsis releasing constrained water in high solids enzymatic hydrolysis of steam exploded corn stover. Bioresource Technology, 205, 142–152.CrossRef Liu, Z. H., & Chen, H. Z. (2016). Periodic peristalsis releasing constrained water in high solids enzymatic hydrolysis of steam exploded corn stover. Bioresource Technology, 205, 142–152.CrossRef
65.
Zurück zum Zitat Liu, Z. H., & Chen, H. Z. (2016). Periodic peristalsis enhancing the high solids enzymatic hydrolysis performance of steam exploded corn stover biomass. Biomass and Bioenergy, 93, 13–24.CrossRef Liu, Z. H., & Chen, H. Z. (2016). Periodic peristalsis enhancing the high solids enzymatic hydrolysis performance of steam exploded corn stover biomass. Biomass and Bioenergy, 93, 13–24.CrossRef
66.
Zurück zum Zitat da Silva, A. S., et al. (2016). High-solids content enzymatic hydrolysis of hydrothermally pretreated sugarcane bagasse using a laboratory-made enzyme blend and commercial preparations. Process Biochemistry, 51, 1561–1567.CrossRef da Silva, A. S., et al. (2016). High-solids content enzymatic hydrolysis of hydrothermally pretreated sugarcane bagasse using a laboratory-made enzyme blend and commercial preparations. Process Biochemistry, 51, 1561–1567.CrossRef
67.
Zurück zum Zitat Liu, Z. H., & Chen, H. Z. (2016). Simultaneous saccharification and co-fermentation for improving the xylose utilization of steam exploded corn stover at high solid loading. Bioresource Technology, 201, 15–26.CrossRef Liu, Z. H., & Chen, H. Z. (2016). Simultaneous saccharification and co-fermentation for improving the xylose utilization of steam exploded corn stover at high solid loading. Bioresource Technology, 201, 15–26.CrossRef
68.
Zurück zum Zitat Hu, J. G., et al. (2015). The addition of accessory enzymes enhances the hydrolytic performance of cellulase enzymes at high solid loadings. Bioresource Technology, 186, 149–153.CrossRef Hu, J. G., et al. (2015). The addition of accessory enzymes enhances the hydrolytic performance of cellulase enzymes at high solid loadings. Bioresource Technology, 186, 149–153.CrossRef
69.
Zurück zum Zitat Xue, S. S., et al. (2015). Sugar loss and enzyme inhibition due to oligosaccharide accumulation during high solids-loading enzymatic hydrolysis. Biotechnology for Biofuels, 8, 195.CrossRef Xue, S. S., et al. (2015). Sugar loss and enzyme inhibition due to oligosaccharide accumulation during high solids-loading enzymatic hydrolysis. Biotechnology for Biofuels, 8, 195.CrossRef
70.
Zurück zum Zitat Qin, L., et al. (2016). Inhibition of lignin-derived phenolic compounds to cellulase. Biotechnology for Biofuels, 9, 1–10.CrossRef Qin, L., et al. (2016). Inhibition of lignin-derived phenolic compounds to cellulase. Biotechnology for Biofuels, 9, 1–10.CrossRef
71.
Zurück zum Zitat Li, X., et al. (2018). Inhibitory effects of lignin on enzymatic hydrolysis: The role of lignin chemistry and molecular weight. Renewable Energy, 123, 664–674.CrossRef Li, X., et al. (2018). Inhibitory effects of lignin on enzymatic hydrolysis: The role of lignin chemistry and molecular weight. Renewable Energy, 123, 664–674.CrossRef
72.
Zurück zum Zitat Binod, P., Janu, K. U., Sindhu, R., & Pandey, A. (2011). Hydrolysis of Lignocellulosic biomass for bioethanol production. Bioscience, Biotechnology, and Biochemistry, 229–250, Academic press. Binod, P., Janu, K. U., Sindhu, R., & Pandey, A. (2011). Hydrolysis of Lignocellulosic biomass for bioethanol production. Bioscience, Biotechnology, and Biochemistry, 229–250, Academic press.
73.
Zurück zum Zitat Teugjas, H., & Valjamae, P. (2013). Product inhibition of cellulases studied with C-14-labeled cellulose substrates. Biotechnology for Biofuels, 6, 1–14.CrossRef Teugjas, H., & Valjamae, P. (2013). Product inhibition of cellulases studied with C-14-labeled cellulose substrates. Biotechnology for Biofuels, 6, 1–14.CrossRef
74.
Zurück zum Zitat Sun, S. L., Huang, Y., Sun, R. C., & Tu, M. B. (2016). The strong association of condensed phenolic moieties in isolated lignins with their inhibition of enzymatic hydrolysis. Green Chemistry, 18, 4276–4286.CrossRef Sun, S. L., Huang, Y., Sun, R. C., & Tu, M. B. (2016). The strong association of condensed phenolic moieties in isolated lignins with their inhibition of enzymatic hydrolysis. Green Chemistry, 18, 4276–4286.CrossRef
75.
Zurück zum Zitat Yoo, C. G., Li, M., Meng, X. Z., Pu, Y. Q., & Ragauskas, A. J. (2017). Effects of organosolv and ammonia pretreatments on lignin properties and its inhibition for enzymatic hydrolysis. Green Chemistry, 19, 2006–2016.CrossRef Yoo, C. G., Li, M., Meng, X. Z., Pu, Y. Q., & Ragauskas, A. J. (2017). Effects of organosolv and ammonia pretreatments on lignin properties and its inhibition for enzymatic hydrolysis. Green Chemistry, 19, 2006–2016.CrossRef
76.
Zurück zum Zitat Liu, Z. H., Qin, L., Zhu, J. Q., Li, B. Z., & Yuan, Y. J. (2014). Simultaneous saccharification and fermentation of steam-exploded corn stover at high glucan loading and high temperature. Biotechnology for Biofuels, 7, 1–16.CrossRef Liu, Z. H., Qin, L., Zhu, J. Q., Li, B. Z., & Yuan, Y. J. (2014). Simultaneous saccharification and fermentation of steam-exploded corn stover at high glucan loading and high temperature. Biotechnology for Biofuels, 7, 1–16.CrossRef
77.
Zurück zum Zitat Zeng, Y. N., Zhao, S., Yang, S. H., & Ding, S. Y. (2014). Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Current Opinion in Biotechnology, 27, 38–45.CrossRef Zeng, Y. N., Zhao, S., Yang, S. H., & Ding, S. Y. (2014). Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Current Opinion in Biotechnology, 27, 38–45.CrossRef
78.
Zurück zum Zitat Zhang, G. C., Liu, J. J., Kong, I. I., Kwak, S., & Jin, Y. S. (2015). Combining C6 and C5 sugar metabolism for enhancing microbial bioconversion. Current Opinion in Chemical Biology, 29, 49–57.CrossRef Zhang, G. C., Liu, J. J., Kong, I. I., Kwak, S., & Jin, Y. S. (2015). Combining C6 and C5 sugar metabolism for enhancing microbial bioconversion. Current Opinion in Chemical Biology, 29, 49–57.CrossRef
79.
Zurück zum Zitat Raud, M., Kikas, T., Sippula, O., & Shurpali, N. J. (2019). Potentials and challenges in lignocellulosic biofuel production technology. Renewable and Sustainable Energy Reviews, 111, 44–56.CrossRef Raud, M., Kikas, T., Sippula, O., & Shurpali, N. J. (2019). Potentials and challenges in lignocellulosic biofuel production technology. Renewable and Sustainable Energy Reviews, 111, 44–56.CrossRef
80.
Zurück zum Zitat Nogue, V. S., & Karhumaa, K. (2015). Xylose fermentation as a challenge for commercialization of lignocellulosic fuels and chemicals. Biotechnology Letters, 37, 761–772.CrossRef Nogue, V. S., & Karhumaa, K. (2015). Xylose fermentation as a challenge for commercialization of lignocellulosic fuels and chemicals. Biotechnology Letters, 37, 761–772.CrossRef
81.
Zurück zum Zitat Lau, M. W., & Dale, B. E. (2009). Cellulosic ethanol production from AFEX-treated corn stover using Saccharomyces cerevisiae 424A(LNH-ST). Proceedings of the National Academy of Sciences of the United States of America, 106, 1368–1373.CrossRef Lau, M. W., & Dale, B. E. (2009). Cellulosic ethanol production from AFEX-treated corn stover using Saccharomyces cerevisiae 424A(LNH-ST). Proceedings of the National Academy of Sciences of the United States of America, 106, 1368–1373.CrossRef
82.
Zurück zum Zitat Ko, J. K., Um, Y., Woo, H. M., Kim, K. H., & Lee, S. M. (2016). Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway. Bioresource Technology, 209, 290–296.CrossRef Ko, J. K., Um, Y., Woo, H. M., Kim, K. H., & Lee, S. M. (2016). Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway. Bioresource Technology, 209, 290–296.CrossRef
83.
Zurück zum Zitat Jin, M. J., Lau, M. W., Balan, V., & Dale, B. E. (2010). Two-step SSCF to convert AFEX-treated switchgrass to ethanol using commercial enzymes and Saccharomyces cerevisiae 424A(LNH-ST). Bioresource Technology, 101, 8171–8178.CrossRef Jin, M. J., Lau, M. W., Balan, V., & Dale, B. E. (2010). Two-step SSCF to convert AFEX-treated switchgrass to ethanol using commercial enzymes and Saccharomyces cerevisiae 424A(LNH-ST). Bioresource Technology, 101, 8171–8178.CrossRef
84.
Zurück zum Zitat Lee, S. K., Chou, H., Ham, T. S., Lee, T. S., & Keasling, J. D. (2008). Metabolic engineering of microorganisms for biofuels production: From bugs to synthetic biology to fuels. Current Opinion in Biotechnology, 19, 556–563.CrossRef Lee, S. K., Chou, H., Ham, T. S., Lee, T. S., & Keasling, J. D. (2008). Metabolic engineering of microorganisms for biofuels production: From bugs to synthetic biology to fuels. Current Opinion in Biotechnology, 19, 556–563.CrossRef
85.
Zurück zum Zitat Jullesson, D., David, F., Pfleger, B., & Nielsen, J. (2015). Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals. Biotechnology Advances, 33, 1395–1402.CrossRef Jullesson, D., David, F., Pfleger, B., & Nielsen, J. (2015). Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals. Biotechnology Advances, 33, 1395–1402.CrossRef
86.
Zurück zum Zitat Qi, H., Li, B. Z., Zhang, W. Q., Liu, D., & Yuan, Y. J. (2015). Modularization of genetic elements promotes synthetic metabolic engineering. Biotechnology Advances, 33, 1412–1419.CrossRef Qi, H., Li, B. Z., Zhang, W. Q., Liu, D., & Yuan, Y. J. (2015). Modularization of genetic elements promotes synthetic metabolic engineering. Biotechnology Advances, 33, 1412–1419.CrossRef
87.
Zurück zum Zitat Palmqvist, E., & Hahn-Hagerdal, B. (2000). Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technology, 74, 25–33.CrossRef Palmqvist, E., & Hahn-Hagerdal, B. (2000). Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technology, 74, 25–33.CrossRef
88.
Zurück zum Zitat Brethauer, S., & Wyman, C. E. (2010). Review: Continuous hydrolysis and fermentation for cellulosic ethanol production. Bioresource Technology, 101, 4862–4874.CrossRef Brethauer, S., & Wyman, C. E. (2010). Review: Continuous hydrolysis and fermentation for cellulosic ethanol production. Bioresource Technology, 101, 4862–4874.CrossRef
89.
Zurück zum Zitat Puligundla, P., Smogrovicova, D., Mok, C., & Obulam, V. S. R. (2019). A review of recent advances in high gravity ethanol fermentation. Renewable Energy, 133, 1366–1379.CrossRef Puligundla, P., Smogrovicova, D., Mok, C., & Obulam, V. S. R. (2019). A review of recent advances in high gravity ethanol fermentation. Renewable Energy, 133, 1366–1379.CrossRef
90.
Zurück zum Zitat Liu, Z. H., Xie, S. X., Lin, F. R., Jin, M. J., & Yuan, J. S. (2018). Combinatorial pretreatment and fermentation optimization enabled a record yield on lignin bioconversion. Biotechnology for Biofuels, 11, 21.CrossRef Liu, Z. H., Xie, S. X., Lin, F. R., Jin, M. J., & Yuan, J. S. (2018). Combinatorial pretreatment and fermentation optimization enabled a record yield on lignin bioconversion. Biotechnology for Biofuels, 11, 21.CrossRef
91.
Zurück zum Zitat Li, M., Pu, Y. Q., & Ragauskas, A. J. (2016). Current understanding of the correlation of Lignin structure with biomass recalcitrance. Frontiers in Chemistry, 4(45), 1–8. Li, M., Pu, Y. Q., & Ragauskas, A. J. (2016). Current understanding of the correlation of Lignin structure with biomass recalcitrance. Frontiers in Chemistry, 4(45), 1–8.
92.
Zurück zum Zitat Yang, H. B., et al. (2019). Overcoming cellulose recalcitrance in woody biomass for the lignin-first biorefinery. Biotechnol Biofuels, 12, 171.CrossRef Yang, H. B., et al. (2019). Overcoming cellulose recalcitrance in woody biomass for the lignin-first biorefinery. Biotechnol Biofuels, 12, 171.CrossRef
93.
Zurück zum Zitat Giummarella, N., Pu, Y. Q., Ragauskas, A. J., & Lawoko, M. (2019). A critical review on the analysis of lignin carbohydrate bonds. Green Chemistry, 21, 1573–1595.CrossRef Giummarella, N., Pu, Y. Q., Ragauskas, A. J., & Lawoko, M. (2019). A critical review on the analysis of lignin carbohydrate bonds. Green Chemistry, 21, 1573–1595.CrossRef
94.
Zurück zum Zitat Wu, X. Y., et al. (2020). Lignin-derived electrochemical energy materials and systems. Biofuels, Bioproducts and Biorefining, 14, 650–672.CrossRef Wu, X. Y., et al. (2020). Lignin-derived electrochemical energy materials and systems. Biofuels, Bioproducts and Biorefining, 14, 650–672.CrossRef
95.
Zurück zum Zitat Huang, C., et al. (2019). Bio-inspired nanocomposite by layer-by-layer coating of chitosan/hyaluronic acid multilayers on a hard nanocellulose-hydroxyapatite matrix. Carbohydrate Polymers, 222(115036), 1–7. Huang, C., et al. (2019). Bio-inspired nanocomposite by layer-by-layer coating of chitosan/hyaluronic acid multilayers on a hard nanocellulose-hydroxyapatite matrix. Carbohydrate Polymers, 222(115036), 1–7.
96.
Zurück zum Zitat Yiamsawas, D., Beckers, S. J., Lu, H., Landfester, K., & Wurm, F. R. (2017). Morphology-controlled synthesis of lignin Nanocarriers for drug delivery and carbon materials. ACS Biomaterials Science & Engineering, 3, 2375–2383.CrossRef Yiamsawas, D., Beckers, S. J., Lu, H., Landfester, K., & Wurm, F. R. (2017). Morphology-controlled synthesis of lignin Nanocarriers for drug delivery and carbon materials. ACS Biomaterials Science & Engineering, 3, 2375–2383.CrossRef
97.
Zurück zum Zitat Figueiredo, P., et al. (2017). In vitro evaluation of biodegradable lignin-based nanoparticles for drug delivery and enhanced antiproliferation effect in cancer cells. Biomaterials, 121, 97–108.CrossRef Figueiredo, P., et al. (2017). In vitro evaluation of biodegradable lignin-based nanoparticles for drug delivery and enhanced antiproliferation effect in cancer cells. Biomaterials, 121, 97–108.CrossRef
98.
Zurück zum Zitat Liu, Z. H., et al. (2019). Defining lignin nanoparticle properties through tailored lignin reactivity by sequential organosolv fragmentation approach (SOFA). Green Chemistry, 21, 245–260.CrossRef Liu, Z. H., et al. (2019). Defining lignin nanoparticle properties through tailored lignin reactivity by sequential organosolv fragmentation approach (SOFA). Green Chemistry, 21, 245–260.CrossRef
99.
Zurück zum Zitat Jenkins, R., & Alles, C. (2011). Field to fuel: Developing sustainable biorefineries. Ecological Applications, 21, 1096–1104.CrossRef Jenkins, R., & Alles, C. (2011). Field to fuel: Developing sustainable biorefineries. Ecological Applications, 21, 1096–1104.CrossRef
100.
Zurück zum Zitat Valdivia, M., Galan, J. L., Laffarga, J., & Ramos, J. L. (2016). Biofuels 2020: Biorefineries based on lignocellulosic materials. Journal of Microbial Biotechnology, 9, 585–594.CrossRef Valdivia, M., Galan, J. L., Laffarga, J., & Ramos, J. L. (2016). Biofuels 2020: Biorefineries based on lignocellulosic materials. Journal of Microbial Biotechnology, 9, 585–594.CrossRef
101.
Zurück zum Zitat Cherubini, F. (2010). The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management, 51, 1412–1421.CrossRef Cherubini, F. (2010). The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management, 51, 1412–1421.CrossRef
102.
Zurück zum Zitat Fernando, S., Adhikari, S., Chandrapal, C., & Murali, N. (2006). Biorefineries: Current status, challenges, and future direction. Energy & Fuels, 20, 1727–1737.CrossRef Fernando, S., Adhikari, S., Chandrapal, C., & Murali, N. (2006). Biorefineries: Current status, challenges, and future direction. Energy & Fuels, 20, 1727–1737.CrossRef
Metadaten
Titel
Challenges and Perspectives of Biorefineries
verfasst von
Zhi-Hua Liu
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-65584-6_1