Skip to main content
Erschienen in: Earth Science Informatics 4/2021

26.04.2021 | Research Article

Change detection in remote sensing images based on manifold regularized joint non-negative matrix factorization

verfasst von: Weidong Yan, Xinxin Liu, Jinhuan Wen, Jinfeng Hong, Sa Zhang, Rui Zhao

Erschienen in: Earth Science Informatics | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A novel and effective change detection method based on manifold regularized joint non-negative matrix factorization (MJNMF) framework is proposed in this paper, which detects the changes that occurred in multi-temporal remote sensing images. Most change detection methods, including dictionary learning, principal component analysis (PCA), etc., do not consider the non-negativity among image pixels. However, image itself is a non-negative signal, and the non-negative constraint has better interpretability in practical applications. Nonnegative Matrix Factorization, which incorporates the non-negativity constraint and thus learns object parts, obtains the parts-based representation as well as enhancing the interpretability of the issue correspondingly. In this paper, our proposed approach based on MJNMF framework aims to establish a pair of joint basis matrices by unchanged training samples from unchanged area. Then, unchanged pixels can be well reconstructed by the corresponding basis matrix, while changed pixels cannot be reconstructed from the basis matrix corresponding to the knowledge of unchanged samples, or a larger reconstruction error can be generated even if changed pixels are reconfigurable. In order to suppress similar information and highlight different information, the cross-reconstruction error is used to generate the difference image. Finally, the binary image is obtained by the robust fuzzy local information c-means (FLICM) clustering algorithm. In addition, inspired by manifold learning, we incorporate manifold regularization into the proposed method to keep the geometric structure of data and improve the accuracy of change detection. Experimental results obtained on simulated and real remote sensing images confirm the effectiveness of the proposed method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Belkin M, Niyogi P (2002) Laplacian eigenmaps and spectral techniques for embedding and clustering. Adv Neural Inf Proces Syst 6:585–591 Belkin M, Niyogi P (2002) Laplacian eigenmaps and spectral techniques for embedding and clustering. Adv Neural Inf Proces Syst 6:585–591
Zurück zum Zitat Bezdek JC, Ehrlich R, Full W (1984) Fcm: the fuzzy c-means clustering algorithm. Comput Geosci 2:191–203CrossRef Bezdek JC, Ehrlich R, Full W (1984) Fcm: the fuzzy c-means clustering algorithm. Comput Geosci 2:191–203CrossRef
Zurück zum Zitat Bruzzone L, Cossu R (2003) An adaptive approach to reducing registration noise effects in unsupervised change detection. IEEE Trans Geosci Remote Sens 11:2455–2465CrossRef Bruzzone L, Cossu R (2003) An adaptive approach to reducing registration noise effects in unsupervised change detection. IEEE Trans Geosci Remote Sens 11:2455–2465CrossRef
Zurück zum Zitat Bruzzone L, Serpico SB (1997) An iterative technique for the detection of land-cover transitions in multitemporal remote-sensing images. IEEE Trans Geosci Remote Sens 4:858–867CrossRef Bruzzone L, Serpico SB (1997) An iterative technique for the detection of land-cover transitions in multitemporal remote-sensing images. IEEE Trans Geosci Remote Sens 4:858–867CrossRef
Zurück zum Zitat Bujor F, Trouve E, Valet L (2004) Application of log-cumulants to the detection of spatiotemporal discontinuities in multitemporal SAR images. IEEE Trans Geosci Remote Sens 10:2073–2084CrossRef Bujor F, Trouve E, Valet L (2004) Application of log-cumulants to the detection of spatiotemporal discontinuities in multitemporal SAR images. IEEE Trans Geosci Remote Sens 10:2073–2084CrossRef
Zurück zum Zitat Celik T (2009) Unsupervised change detection in satellite images using principal component analysis and k-means clustering. IEEE Geosci Remote Sens Lett 4:772–776CrossRef Celik T (2009) Unsupervised change detection in satellite images using principal component analysis and k-means clustering. IEEE Geosci Remote Sens Lett 4:772–776CrossRef
Zurück zum Zitat Chen H, Shi Z (2020) A spatial-temporal attention-based method and a new dataset for remote sensing image change detection. Remote Sens 12(10):1662CrossRef Chen H, Shi Z (2020) A spatial-temporal attention-based method and a new dataset for remote sensing image change detection. Remote Sens 12(10):1662CrossRef
Zurück zum Zitat Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 1:35–46CrossRef Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 1:35–46CrossRef
Zurück zum Zitat Dianat R, Kasaei S (2009) Change detection in optical remote sensing images using difference-based methods and spatial information. IEEE Geosci Remote Sens Lett 1:215–219 Dianat R, Kasaei S (2009) Change detection in optical remote sensing images using difference-based methods and spatial information. IEEE Geosci Remote Sens Lett 1:215–219
Zurück zum Zitat Du B, Ru LX, Wu C, Zhang LP (2019) Unsupervised deep slow feature analysis for change detection in multi-temporal remote sensing images. IEEE Trans Geosci Remote Sens 57(12):9976–9992CrossRef Du B, Ru LX, Wu C, Zhang LP (2019) Unsupervised deep slow feature analysis for change detection in multi-temporal remote sensing images. IEEE Trans Geosci Remote Sens 57(12):9976–9992CrossRef
Zurück zum Zitat Facchinei F, Kanzow C, Sagratella S (2014) Solving quasi-variational inequalities via their KKT conditions. Math Program 2:369–412CrossRef Facchinei F, Kanzow C, Sagratella S (2014) Solving quasi-variational inequalities via their KKT conditions. Math Program 2:369–412CrossRef
Zurück zum Zitat Gao F, Dong JY, Li B, Xu Q (2016) Automatic change detection in synthetic aperture radar images based on PCANet. IEEE Geosci Remote Sens Lett 13(12):1792–1796CrossRef Gao F, Dong JY, Li B, Xu Q (2016) Automatic change detection in synthetic aperture radar images based on PCANet. IEEE Geosci Remote Sens Lett 13(12):1792–1796CrossRef
Zurück zum Zitat Gao F, Liu XP, Dong JY, Jian MW (2017) Change detection in SAR images based on deep semi-NMF and SVD networks. Remote Sens 5:435–455CrossRef Gao F, Liu XP, Dong JY, Jian MW (2017) Change detection in SAR images based on deep semi-NMF and SVD networks. Remote Sens 5:435–455CrossRef
Zurück zum Zitat Gao F, Wang X, Gao YH, Dong JY, Wang SK (2019) Sea ice change detection in SAR images based on convolutional-wavelet neural networks. IEEE Geosci Remote Sens Lett 16(8):1240–1244CrossRef Gao F, Wang X, Gao YH, Dong JY, Wang SK (2019) Sea ice change detection in SAR images based on convolutional-wavelet neural networks. IEEE Geosci Remote Sens Lett 16(8):1240–1244CrossRef
Zurück zum Zitat Ghosh S, Bruzzone L, Patra S, Bovolo F, Ghosh A (2007) A context-sensitive technique for unsupervised change detection based on hopfield-type neural networks. IEEE Trans Geosci Remote Sens 3:778–789CrossRef Ghosh S, Bruzzone L, Patra S, Bovolo F, Ghosh A (2007) A context-sensitive technique for unsupervised change detection based on hopfield-type neural networks. IEEE Trans Geosci Remote Sens 3:778–789CrossRef
Zurück zum Zitat Gong MG, Cao Y, Wu Q (2011) A neighborhood-based ratio approach for change detection in SAR images. IEEE Geosci Remote Sens Lett 2:307–311 Gong MG, Cao Y, Wu Q (2011) A neighborhood-based ratio approach for change detection in SAR images. IEEE Geosci Remote Sens Lett 2:307–311
Zurück zum Zitat Gong M, Zhao J, Liu J, Miao Q, Jiao L (2015) Change detection in synthetic aperture radar images based on deep neural networks. IEEE Trans Neural Netw Learn Syst 27(1):125–138CrossRef Gong M, Zhao J, Liu J, Miao Q, Jiao L (2015) Change detection in synthetic aperture radar images based on deep neural networks. IEEE Trans Neural Netw Learn Syst 27(1):125–138CrossRef
Zurück zum Zitat Gong MG, Zhang P, Su LZ (2016) Coupled dictionary learning for change detection from multisource data. IEEE Trans Geosci Remote Sens 12:7077–7091CrossRef Gong MG, Zhang P, Su LZ (2016) Coupled dictionary learning for change detection from multisource data. IEEE Trans Geosci Remote Sens 12:7077–7091CrossRef
Zurück zum Zitat Hou B, Liu Q, Wang H, Wang Y (2019) From W-net to CDGAN: Bitemporal change detection via deep learning techniques. IEEE Trans Geosci Remote Sens 58(3):1790–1802CrossRef Hou B, Liu Q, Wang H, Wang Y (2019) From W-net to CDGAN: Bitemporal change detection via deep learning techniques. IEEE Trans Geosci Remote Sens 58(3):1790–1802CrossRef
Zurück zum Zitat Hussain M, Chen D, Cheng A (2013) Change detection from remotely sensed images: from pixel-based to object-based approaches. ISPRS J Photogramm Remote Sens 2:91–106CrossRef Hussain M, Chen D, Cheng A (2013) Change detection from remotely sensed images: from pixel-based to object-based approaches. ISPRS J Photogramm Remote Sens 2:91–106CrossRef
Zurück zum Zitat Krinidis S, Chatzis V (2010) A robust fuzzy local information c-means clustering algorithm. IEEE Trans Image Process 5:1328–1337CrossRef Krinidis S, Chatzis V (2010) A robust fuzzy local information c-means clustering algorithm. IEEE Trans Image Process 5:1328–1337CrossRef
Zurück zum Zitat Kwon K, Shin JW, Kim NS (2015) Target source separation based on discriminative nonnegative matrix factorization incorporating cross-reconstruction error. IEICE Trans Inf Syst 11:2017–2020CrossRef Kwon K, Shin JW, Kim NS (2015) Target source separation based on discriminative nonnegative matrix factorization incorporating cross-reconstruction error. IEICE Trans Inf Syst 11:2017–2020CrossRef
Zurück zum Zitat Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 6755:788–791CrossRef Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 6755:788–791CrossRef
Zurück zum Zitat Lee DD, Seung HS (2001) Algorithms for non-negative matrix factorization. Proceedings of the 13th International Conference on Neural Information Processing Systems 2: 556-562 Lee DD, Seung HS (2001) Algorithms for non-negative matrix factorization. Proceedings of the 13th International Conference on Neural Information Processing Systems 2: 556-562
Zurück zum Zitat Li L, Zhao YQ, Sun JJ, Stolkin R, Liu ZG (2018) Deformable dictionary learning for SAR image change detection. IEEE Trans Geosci Remote Sens 99:1–13CrossRef Li L, Zhao YQ, Sun JJ, Stolkin R, Liu ZG (2018) Deformable dictionary learning for SAR image change detection. IEEE Trans Geosci Remote Sens 99:1–13CrossRef
Zurück zum Zitat Liu J, Gong MG, Zhao JJ, Li H, Jiao LC (2016) Difference representation learning using stacked restricted Boltzmann machines for change detection in SAR images. Soft Comput 12:4645–4657CrossRef Liu J, Gong MG, Zhao JJ, Li H, Jiao LC (2016) Difference representation learning using stacked restricted Boltzmann machines for change detection in SAR images. Soft Comput 12:4645–4657CrossRef
Zurück zum Zitat Liu R, Jiang D, Zhang L, Zhang Z (2020) Deep depthwise separable convolutional network for change detection in optical aerial images. IEEE J Sel Top Appl Earth Obs Remote Sens 13:1109–1118CrossRef Liu R, Jiang D, Zhang L, Zhang Z (2020) Deep depthwise separable convolutional network for change detection in optical aerial images. IEEE J Sel Top Appl Earth Obs Remote Sens 13:1109–1118CrossRef
Zurück zum Zitat Lu XQ, Yuan Y, Zheng XT (2017) Joint dictionary learning for multispectral change detection. IEEE Trans Cybern 4:884–897 Lu XQ, Yuan Y, Zheng XT (2017) Joint dictionary learning for multispectral change detection. IEEE Trans Cybern 4:884–897
Zurück zum Zitat Marchesi S, Bruzzone L (2009) ICA and kernel ICA for change detection in multispectral remote sensing images. Proc IEEE Int Geosci Remote Sens Symp 2:980–983 Marchesi S, Bruzzone L (2009) ICA and kernel ICA for change detection in multispectral remote sensing images. Proc IEEE Int Geosci Remote Sens Symp 2:980–983
Zurück zum Zitat Onur I, Maktav D, Sari M (2009) Change detection of land cover and land use using remote sensing and GIS: a case study in Kemer, Turkey. Int J Remote Sens 7:1749–1757CrossRef Onur I, Maktav D, Sari M (2009) Change detection of land cover and land use using remote sensing and GIS: a case study in Kemer, Turkey. Int J Remote Sens 7:1749–1757CrossRef
Zurück zum Zitat Ridd MK, Liu J (1998) A comparison of four algorithms for change detection in an urban environment. Remote Sens Environ 2:95–100CrossRef Ridd MK, Liu J (1998) A comparison of four algorithms for change detection in an urban environment. Remote Sens Environ 2:95–100CrossRef
Zurück zum Zitat Rokni K, Ahmad A, Selamat A (2014) Water feature extraction and change detection using multitemporal Landsat imagery. Remote Sens 5:4173–4189CrossRef Rokni K, Ahmad A, Selamat A (2014) Water feature extraction and change detection using multitemporal Landsat imagery. Remote Sens 5:4173–4189CrossRef
Zurück zum Zitat Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 5500:2323–2326CrossRef Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 5500:2323–2326CrossRef
Zurück zum Zitat Tenenbaum J, Silva V, Langford J (2000) A global geometric framework for nonlinear dimensionality reduction. Science 5500:2319–2323CrossRef Tenenbaum J, Silva V, Langford J (2000) A global geometric framework for nonlinear dimensionality reduction. Science 5500:2319–2323CrossRef
Zurück zum Zitat Ullman S (1997) High-level vision: object recognition and visual cognition. Opt Eng 5:231–256 Ullman S (1997) High-level vision: object recognition and visual cognition. Opt Eng 5:231–256
Zurück zum Zitat Yan W, Shi S, Pan L, Zhang G, Wang L (2018) Unsupervised change detection in SAR images based on frequency difference and a modified fuzzy c-means clustering. Int J Remote Sens 39(10):3055–3075CrossRef Yan W, Shi S, Pan L, Zhang G, Wang L (2018) Unsupervised change detection in SAR images based on frequency difference and a modified fuzzy c-means clustering. Int J Remote Sens 39(10):3055–3075CrossRef
Zurück zum Zitat Zhang X, Zheng Y, Feng J (2012) SAR image change detection based on low rank matrix decomposition. Proc IEEE Int Geosci Remote Sens Symp 12:6271–6274 Zhang X, Zheng Y, Feng J (2012) SAR image change detection based on low rank matrix decomposition. Proc IEEE Int Geosci Remote Sens Symp 12:6271–6274
Metadaten
Titel
Change detection in remote sensing images based on manifold regularized joint non-negative matrix factorization
verfasst von
Weidong Yan
Xinxin Liu
Jinhuan Wen
Jinfeng Hong
Sa Zhang
Rui Zhao
Publikationsdatum
26.04.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Earth Science Informatics / Ausgabe 4/2021
Print ISSN: 1865-0473
Elektronische ISSN: 1865-0481
DOI
https://doi.org/10.1007/s12145-021-00620-7

Weitere Artikel der Ausgabe 4/2021

Earth Science Informatics 4/2021 Zur Ausgabe

Premium Partner