Skip to main content
Erschienen in: Physics of Metals and Metallography 2/2020

01.02.2020 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Change in the Phase Composition and Lattice Parameters of the Solid Solution Based on α-Ti in the Surface Layers of the Ti–6Al–4V Alloy Subjected to Electron-Beam Treatment

verfasst von: O. B. Perevalova, A. V. Panin, E. A. Sinyakova

Erschienen in: Physics of Metals and Metallography | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The microstructure, phase composition, and lattice parameters of the α-Ti- based solid solution in the Ti–6Al–4V alloy treated by pulsed and continuous electron beams with the energy density of 18–24 and 450 J/cm2, respectively, have been investigated using the methods of X-ray diffraction analysis and transmission and scanning electron microscopy. In the initial state, the two-phase (α + β) alloy had a polycrystalline structure with the equiaxed α-phase grains and β-phase grains located at the junctions or along the boundaries of the α-phase grains. After the electron-beam treatment, α' martensite with a lamellar structure is formed in the molten surface layer, which then experiences an α' → α + α'' + β phase transformation. In the α phase, the lamellar structure inherited from the α' martensite is retained; the β phase is located along the boundaries of lamellar grains of the α phase; the α'' phase is located both in the β phase and inside the lamellar grains of the α phase. It has been revealed that the greater the total volume fraction of the β and α'' phases, the greater the lattice parameters of α-Ti and their axial ratio c/a, and the less the total mean-square displacements of atoms in the 101 direction in the α-Ti phase. The decrease in the total mean-square displacements in the α-Ti phase is due to the diffusion of the vanadium atoms into the β phase. With an increase in the energy density of the electron beam and with a decrease in the rate of cooling of the molten layer, the total volume fraction of the β and α'' phases increases and reaches 6%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat V. A. Shulov, Yu. D. Yagodnin, A. M. Sulima, and V. V. Tetyukhin, “ Ion beam modification of the surface layers of titanium alloys,” Metalloved. Term. Obrab., No. 8, 24–29 (1990). V. A. Shulov, Yu. D. Yagodnin, A. M. Sulima, and V. V. Tetyukhin, “ Ion beam modification of the surface layers of titanium alloys,” Metalloved. Term. Obrab., No. 8, 24–29 (1990).
2.
Zurück zum Zitat Y-k. Gao, “Surface modification of TC4 titanium alloy by high current pulsed electron beam (HCPEB) with different pulsed energy densities,” J. Alloys Compd. 572, 180–185 (2013).CrossRef Y-k. Gao, “Surface modification of TC4 titanium alloy by high current pulsed electron beam (HCPEB) with different pulsed energy densities,” J. Alloys Compd. 572, 180–185 (2013).CrossRef
3.
Zurück zum Zitat V. P. Rotshtein and V. A. Shulov, “Surface modification and alloying of aluminum and titanium alloys with low energy high current electron beams,” J. Metall. 2011, Article ID 673685. V. P. Rotshtein and V. A. Shulov, “Surface modification and alloying of aluminum and titanium alloys with low energy high current electron beams,” J. Metall. 2011, Article ID 673685.
4.
Zurück zum Zitat X. D. Zhang, J. X. Zou, S. Weber, S. Z. Hao, C. Dong, and T. Grosdider, “Microstructure and property modifications in a near α-Ti alloy induced by pulsed electron beam surface treatment,” Surf. Coat. Technol. 206, 295–304 (2011).CrossRef X. D. Zhang, J. X. Zou, S. Weber, S. Z. Hao, C. Dong, and T. Grosdider, “Microstructure and property modifications in a near α-Ti alloy induced by pulsed electron beam surface treatment,” Surf. Coat. Technol. 206, 295–304 (2011).CrossRef
5.
Zurück zum Zitat M. P. Kashchenko and V. G. Chashchina, “Crystal dynamics of the BCC-HCP martensitic transformation: I. Controlling wave process,” Phys. Met. Metallogr. 105, 537–543 (2008).CrossRef M. P. Kashchenko and V. G. Chashchina, “Crystal dynamics of the BCC-HCP martensitic transformation: I. Controlling wave process,” Phys. Met. Metallogr. 105, 537–543 (2008).CrossRef
6.
Zurück zum Zitat M. P. Kashchenko and V. G. Chashchina, “Crystal dynamics of the BCC-HCP martensitic transformation: II. Morphology,” Phys. Met. Metallogr. 106. 14–23 (2008).CrossRef M. P. Kashchenko and V. G. Chashchina, “Crystal dynamics of the BCC-HCP martensitic transformation: II. Morphology,” Phys. Met. Metallogr. 106. 14–23 (2008).CrossRef
7.
Zurück zum Zitat O. B. Perevalova, A. V. Panin, and Yu. F. Ivanov, “Electron-beam treatment induced changes in the solid solution parameters and microstructure of technical titanium,” Fiz. Khim. Obrab. Met., No. 5, 36–45 (2016). O. B. Perevalova, A. V. Panin, and Yu. F. Ivanov, “Electron-beam treatment induced changes in the solid solution parameters and microstructure of technical titanium,” Fiz. Khim. Obrab. Met., No. 5, 36–45 (2016).
8.
Zurück zum Zitat A. V. Panin, M. S. Kazachenok, O. M. Borodovitsina, O. B. Perevalova, O. M. Stepanova, and Yu. F. Ivanov, “Modification of the structure of surface layers of commercial titanium in the process of treatment by low-energy high-current electron beams,” Phys. Met. Metallogr. 117, 550–561 (2016).CrossRef A. V. Panin, M. S. Kazachenok, O. M. Borodovitsina, O. B. Perevalova, O. M. Stepanova, and Yu. F. Ivanov, “Modification of the structure of surface layers of commercial titanium in the process of treatment by low-energy high-current electron beams,” Phys. Met. Metallogr. 117, 550–561 (2016).CrossRef
9.
Zurück zum Zitat W. Xu, E. W. Lui, A. Pateras, M. Qian, and M. Brandt, “In situ tailoring microstructure in additively manufactured Ti–6Al–4V for superior mechanical performance,” Acta Mater. 125, 390–400 (2017).CrossRef W. Xu, E. W. Lui, A. Pateras, M. Qian, and M. Brandt, “In situ tailoring microstructure in additively manufactured Ti–6Al–4V for superior mechanical performance,” Acta Mater. 125, 390–400 (2017).CrossRef
10.
Zurück zum Zitat G. Guo, G. Tang, X. Ma, M. Sun, and G. E. Ozur, “Effect of high current pulsed electron beam irradiation on wear and corrosion resistance of Ti6Al4V,” Surf. Coat. Technol. 229, 140–145 (2013).CrossRef G. Guo, G. Tang, X. Ma, M. Sun, and G. E. Ozur, “Effect of high current pulsed electron beam irradiation on wear and corrosion resistance of Ti6Al4V,” Surf. Coat. Technol. 229, 140–145 (2013).CrossRef
11.
Zurück zum Zitat V. A. Shulov, A. N. Gromov, D. A. Teryaev, Yu. A. Perlovich, M. G. Isaenkova, and V. A. Fasenko, “Texture formation in the surface layer of VT6 alloy targets irradiated by intense pulsed electron beams,” Inorg. Mater.: Appl. Res. 8, 387–391 (2017).CrossRef V. A. Shulov, A. N. Gromov, D. A. Teryaev, Yu. A. Perlovich, M. G. Isaenkova, and V. A. Fasenko, “Texture formation in the surface layer of VT6 alloy targets irradiated by intense pulsed electron beams,” Inorg. Mater.: Appl. Res. 8, 387–391 (2017).CrossRef
12.
Zurück zum Zitat X. D. Zhang, S. Z. Hao, T. Grosdidier, J. X. Zou, B. Gao, B. Bolle, N. Allain-Bonasso, Y. Qin, X. N. Li, and C. Dong, “Surface Modification of light alloys by low-energy high-current pulsed electron beam,” J. Metall. 2012, Article ID 762125. X. D. Zhang, S. Z. Hao, T. Grosdidier, J. X. Zou, B. Gao, B. Bolle, N. Allain-Bonasso, Y. Qin, X. N. Li, and C. Dong, “Surface Modification of light alloys by low-energy high-current pulsed electron beam,” J. Metall. 2012, Article ID 762125.
13.
Zurück zum Zitat D. I. Proskurovsky, V. P. Rotshtein, G. E. Ozur, A. B. Markov, D. S. Nazarov, V. A. Shulov, Yu. F. Ivanov, and R. G. Buchheit, “Pulsed electron-beam technology for surface modification of metallic materials,” J. Vac. Sci. Technol., A 16, 2480–2488 (1998).CrossRef D. I. Proskurovsky, V. P. Rotshtein, G. E. Ozur, A. B. Markov, D. S. Nazarov, V. A. Shulov, Yu. F. Ivanov, and R. G. Buchheit, “Pulsed electron-beam technology for surface modification of metallic materials,” J. Vac. Sci. Technol., A 16, 2480–2488 (1998).CrossRef
14.
Zurück zum Zitat A. V. Panin, M. S. Kazachenok, O. B. Perevalova, E. A. Sinyakova, K. V. Krukovskii, and S. A. Martynov, “Multiscale deformation of commercial titanium and alloy Ti–6Al–4V subjected to high-frequency electron beam treatment,” Fiz. Mezomekh. 21, 45–56 (2018). A. V. Panin, M. S. Kazachenok, O. B. Perevalova, E. A. Sinyakova, K. V. Krukovskii, and S. A. Martynov, “Multiscale deformation of commercial titanium and alloy Ti–6Al–4V subjected to high-frequency electron beam treatment,” Fiz. Mezomekh. 21, 45–56 (2018).
15.
Zurück zum Zitat S. S. Gorelik, L. N. Rastorguev, and Yu. A. Skakov, X‑ray and Electron Optical Analysis (Metallurgiya, Moscow, 1970). S. S. Gorelik, L. N. Rastorguev, and Yu. A. Skakov, X‑ray and Electron Optical Analysis (Metallurgiya, Moscow, 1970).
16.
Zurück zum Zitat S. K. Sangal and P. K. Sharma, “Mean square displacements of atoms in cubic metals at melting point,” Czech. J. Phys. 18, 1413–1415 (1968).CrossRef S. K. Sangal and P. K. Sharma, “Mean square displacements of atoms in cubic metals at melting point,” Czech. J. Phys. 18, 1413–1415 (1968).CrossRef
17.
Zurück zum Zitat L. I. Mirkin, Handbook on X-ray diffraction of Polycrystals (Fizmatlit, Moscow, 1961) [in Russian]. L. I. Mirkin, Handbook on X-ray diffraction of Polycrystals (Fizmatlit, Moscow, 1961) [in Russian].
18.
Zurück zum Zitat T. Zhu and M. Li, “Lattice variations of Ti–6Al–4V alloy with hydrogen content,” Mater. Charact. 62, 724–729 (2011).CrossRef T. Zhu and M. Li, “Lattice variations of Ti–6Al–4V alloy with hydrogen content,” Mater. Charact. 62, 724–729 (2011).CrossRef
19.
Zurück zum Zitat T. V. Pryadko, “Features of hydrogenation of Ti–V alloys,” Metallofiz. Noveish. Tekhnol. 37, 243–255 (2015).CrossRef T. V. Pryadko, “Features of hydrogenation of Ti–V alloys,” Metallofiz. Noveish. Tekhnol. 37, 243–255 (2015).CrossRef
20.
Zurück zum Zitat T. F. Broderick, A. G. Jackson, H. Jones, and F. H. Froes, “The effect of cooling conditions on the microstructure of rapidly solidified Ti–6Al–4V,” Metall. Trans. A 16, 1951–1959 (1985).CrossRef T. F. Broderick, A. G. Jackson, H. Jones, and F. H. Froes, “The effect of cooling conditions on the microstructure of rapidly solidified Ti–6Al–4V,” Metall. Trans. A 16, 1951–1959 (1985).CrossRef
21.
Zurück zum Zitat E. V. Konovalova, O. B. Perevalova, N. A. Koneva, K. V. Ivanov, and E. V. Kozlov, “The effect of microdistortions and total rms atomic displacements on the parameters of twin grain boundaries in copper-based alloys,” Fund. Probl. Sovrem. Materialoved. 10, 272–276 (2013). E. V. Konovalova, O. B. Perevalova, N. A. Koneva, K. V. Ivanov, and E. V. Kozlov, “The effect of microdistortions and total rms atomic displacements on the parameters of twin grain boundaries in copper-based alloys,” Fund. Probl. Sovrem. Materialoved. 10, 272–276 (2013).
22.
Zurück zum Zitat O. B. Perevalova, A. V. Panin, and M. S. Kazachenok, “Concentration-dependent transformation plasticity effect during hydrogenation of technically pure titanium preliminary treated with an electron beam,” Izv. Vuzov. Fiz. 61 (731), 42–50 (2018). O. B. Perevalova, A. V. Panin, and M. S. Kazachenok, “Concentration-dependent transformation plasticity effect during hydrogenation of technically pure titanium preliminary treated with an electron beam,” Izv. Vuzov. Fiz. 61 (731), 42–50 (2018).
23.
Zurück zum Zitat E. A. Sinyakova, A. V. Panin, O. B. Perevalova, A. R. Shugurov, and M. P. Kalashnikov, “The effect of phase transformations on the elastic recovery of pulsed electron beam irradiated Ti–6Al–4V titanium alloy during scratching,” J. Alloys Compd. 795, 275–283 (2019).CrossRef E. A. Sinyakova, A. V. Panin, O. B. Perevalova, A. R. Shugurov, and M. P. Kalashnikov, “The effect of phase transformations on the elastic recovery of pulsed electron beam irradiated Ti–6Al–4V titanium alloy during scratching,” J. Alloys Compd. 795, 275–283 (2019).CrossRef
Metadaten
Titel
Change in the Phase Composition and Lattice Parameters of the Solid Solution Based on α-Ti in the Surface Layers of the Ti–6Al–4V Alloy Subjected to Electron-Beam Treatment
verfasst von
O. B. Perevalova
A. V. Panin
E. A. Sinyakova
Publikationsdatum
01.02.2020
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 2/2020
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20020143

Weitere Artikel der Ausgabe 2/2020

Physics of Metals and Metallography 2/2020 Zur Ausgabe