Skip to main content

2021 | OriginalPaper | Buchkapitel

3. Characteristics of Bacterial Cellulose

Textile and Fashion Perspective

verfasst von : Dr. Subramanian Senthilkannan Muthu, Dr. R. Rathinamoorthy

Erschienen in: Bacterial Cellulose

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The chapter details the various structural, chemical and morphological properties of bacterial cellulose in detail. In specific to the textile and fashion application, more emphasis is given on the various post-treatment processes like alkali treatment, bleaching and colouration. The effects of the post-treatment on the structural properties were analysed. In the latter section, various drying methods are discussed and the role of different drying methods on the properties of bacterial cellulose is also detailed. The potential of in-situ and ex-situ functionalisation of bacterial cellulose using different functional materials is elucidated in the end of the chapter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mohite BV, Patil SV (2014) Physical, structural, mechanical and thermal characterization of bacterial cellulose by G. hansenii NCIM 2529. Carbohydr Polym 106:132–141 Mohite BV, Patil SV (2014) Physical, structural, mechanical and thermal characterization of bacterial cellulose by G. hansenii NCIM 2529. Carbohydr Polym 106:132–141
2.
Zurück zum Zitat Ul-Islam M, Khana T, Park JK (2012) Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohyd Polym 88:596–603CrossRef Ul-Islam M, Khana T, Park JK (2012) Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohyd Polym 88:596–603CrossRef
3.
Zurück zum Zitat Chen H-H, Chen L-C, Huang H-C, Lin S-B (2011) In situ modification of bacterial cellulose nanostructure by adding CMC during the growth of Gluconacetobacter xylinus. Cellulose 18:1573–1583CrossRef Chen H-H, Chen L-C, Huang H-C, Lin S-B (2011) In situ modification of bacterial cellulose nanostructure by adding CMC during the growth of Gluconacetobacter xylinus. Cellulose 18:1573–1583CrossRef
4.
Zurück zum Zitat Khandelwal M, Windle AH, Hessler N (2016) In situ tunability of bacteria produced cellulose by additives in the culture media. J Mater Sci 51:4839–4844CrossRef Khandelwal M, Windle AH, Hessler N (2016) In situ tunability of bacteria produced cellulose by additives in the culture media. J Mater Sci 51:4839–4844CrossRef
5.
Zurück zum Zitat Rukaa DR, Simon GP, Deana KM (2013) In situ modifications to bacterial cellulose with the water insoluble polymer poly-3-hydroxybutyrate. Carbohyd Polym 92:1717–1723CrossRef Rukaa DR, Simon GP, Deana KM (2013) In situ modifications to bacterial cellulose with the water insoluble polymer poly-3-hydroxybutyrate. Carbohyd Polym 92:1717–1723CrossRef
6.
Zurück zum Zitat Teixeira SRZ, dos Reis EM, Apati GP, Meier MM, Nogueira AL, Garcia MCF, dos Santos Schneidera AL, Pezzin APT, Porto LM (2019) Biosynthesis and functionalization of bacterial cellulose membranes with cerium nitrate and silver nanoparticles. Mater Res 22(suppl. 1):e20190054 Teixeira SRZ, dos Reis EM, Apati GP, Meier MM, Nogueira AL, Garcia MCF, dos Santos Schneidera AL, Pezzin APT, Porto LM (2019) Biosynthesis and functionalization of bacterial cellulose membranes with cerium nitrate and silver nanoparticles. Mater Res 22(suppl. 1):e20190054
7.
Zurück zum Zitat Pal S, Nisi R, Stoppa M, Licciulli A (2017) Silver-functionalized bacterial cellulose as antibacterial membrane for wound-healing applications. ACS Omega 2:3632–3639CrossRef Pal S, Nisi R, Stoppa M, Licciulli A (2017) Silver-functionalized bacterial cellulose as antibacterial membrane for wound-healing applications. ACS Omega 2:3632–3639CrossRef
8.
Zurück zum Zitat Shao W, Wu J, Liu H, Ye S, Jiang L, Liu X (2017) Novel bioactive surface functionalization of bacterial cellulose membrane. Carbohyd Polym 178:270–276CrossRef Shao W, Wu J, Liu H, Ye S, Jiang L, Liu X (2017) Novel bioactive surface functionalization of bacterial cellulose membrane. Carbohyd Polym 178:270–276CrossRef
11.
Zurück zum Zitat Moharram MA, Mahmoud OM (2008) FTIR spectroscopic study of the effect of microwave heating on the transformation of cellulose I into cellulose II during mercerization. J Appl Polym Sci 107:30–36CrossRef Moharram MA, Mahmoud OM (2008) FTIR spectroscopic study of the effect of microwave heating on the transformation of cellulose I into cellulose II during mercerization. J Appl Polym Sci 107:30–36CrossRef
12.
Zurück zum Zitat Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohyd Res 340:2376–2391CrossRef Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohyd Res 340:2376–2391CrossRef
14.
Zurück zum Zitat Focher B, Palma MT, Canetti M, Torri G, Cosentino C, Gastaldi G (2001) Structural differences between non-wood plant celluloses: evidence from solid state NMR, vibrational spectroscopy and X-ray diffractometry. Ind Crops Prod 13:193–208CrossRef Focher B, Palma MT, Canetti M, Torri G, Cosentino C, Gastaldi G (2001) Structural differences between non-wood plant celluloses: evidence from solid state NMR, vibrational spectroscopy and X-ray diffractometry. Ind Crops Prod 13:193–208CrossRef
15.
Zurück zum Zitat Movasaghi Z, Rehman S, Rehman I (2008) Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev 43:134–179CrossRef Movasaghi Z, Rehman S, Rehman I (2008) Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev 43:134–179CrossRef
17.
Zurück zum Zitat Kacurakova M, Smith AC, Gidley MJ, Wilson RH (2002) Molecular interactions in bacterial cellulose composites studied by 1D FT-IR and dynamic 2D FT-IR spectroscopy. Carbohyd Res 337:1145–1153CrossRef Kacurakova M, Smith AC, Gidley MJ, Wilson RH (2002) Molecular interactions in bacterial cellulose composites studied by 1D FT-IR and dynamic 2D FT-IR spectroscopy. Carbohyd Res 337:1145–1153CrossRef
18.
Zurück zum Zitat Han J, Shim E, Kim HR (2019) Effects of cultivation, washing, and bleaching conditions on bacterial cellulose fabric production. Text Res J 89(6):1094–1104CrossRef Han J, Shim E, Kim HR (2019) Effects of cultivation, washing, and bleaching conditions on bacterial cellulose fabric production. Text Res J 89(6):1094–1104CrossRef
19.
Zurück zum Zitat Song JE, Cavaco-Paulo A, Silva C (2020) Improvement of bacterial cellulose nonwoven fabrics by physical entrapment of lauryl gallate oligomers. Text Res J 90(2):166–178CrossRef Song JE, Cavaco-Paulo A, Silva C (2020) Improvement of bacterial cellulose nonwoven fabrics by physical entrapment of lauryl gallate oligomers. Text Res J 90(2):166–178CrossRef
20.
Zurück zum Zitat Yu X, Atalla RH (1996) Production of cellulose II by Acetobacter xylinum in the presence of 2,6-dichlorobenzonitrile. Int J Biol Macromol 19:145–146CrossRef Yu X, Atalla RH (1996) Production of cellulose II by Acetobacter xylinum in the presence of 2,6-dichlorobenzonitrile. Int J Biol Macromol 19:145–146CrossRef
21.
Zurück zum Zitat Maeda H, Nakajima M, Hagiwara T, Sawaguchi T, Yano S (2006) Bacterial, cellulose/silica hybrid fabricated by mimicking biocomposites. J Mater Sci 41(17):564–565CrossRef Maeda H, Nakajima M, Hagiwara T, Sawaguchi T, Yano S (2006) Bacterial, cellulose/silica hybrid fabricated by mimicking biocomposites. J Mater Sci 41(17):564–565CrossRef
22.
Zurück zum Zitat Kulkarni PK, Dixit SA, Singh UB (2012) Evaluation of baceterial cellolose produced from Acetobacter xylini, as Pharmaceutical excipient. Am J Drug Discovery Dev 2(2):72–86 Kulkarni PK, Dixit SA, Singh UB (2012) Evaluation of baceterial cellolose produced from Acetobacter xylini, as Pharmaceutical excipient. Am J Drug Discovery Dev 2(2):72–86
23.
Zurück zum Zitat Tsouko E, Kourmentza C, Ladakis D, Kopsahelis N, Mandala I, Papanikolaou S, Paloukis F, Alves V, Koutinas A (2015) Bacterial cellulose production from industrial waste and by-product streams. Int J Mol Sci 16:14832–14849CrossRef Tsouko E, Kourmentza C, Ladakis D, Kopsahelis N, Mandala I, Papanikolaou S, Paloukis F, Alves V, Koutinas A (2015) Bacterial cellulose production from industrial waste and by-product streams. Int J Mol Sci 16:14832–14849CrossRef
24.
Zurück zum Zitat Rohaeti E, Endang Widjajanti Laksono FX, Rakhmawati A (2017) Characterization and the activity of bacterial cellulose prepared from rice waste water by addition with Glycerol and chitosan. ARPN J Agric Biol Sci 12(8):241–248 Rohaeti E, Endang Widjajanti Laksono FX, Rakhmawati A (2017) Characterization and the activity of bacterial cellulose prepared from rice waste water by addition with Glycerol and chitosan. ARPN J Agric Biol Sci 12(8):241–248
25.
Zurück zum Zitat George J, Ramanab KV, Sabapathy SN, Jagannath JH, Bawa AS (2005) Characterization of chemically treated bacterial (Acetobacter xylinum), biopolymer: some thermo-mechanical properties. Int J Biol Macromol 37:189–194CrossRef George J, Ramanab KV, Sabapathy SN, Jagannath JH, Bawa AS (2005) Characterization of chemically treated bacterial (Acetobacter xylinum), biopolymer: some thermo-mechanical properties. Int J Biol Macromol 37:189–194CrossRef
26.
Zurück zum Zitat Cheng K-C, Catchmark JM, Demirci A (2009) Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J Biol Eng 3:12CrossRef Cheng K-C, Catchmark JM, Demirci A (2009) Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J Biol Eng 3:12CrossRef
27.
Zurück zum Zitat Jia Y, Wang X, Huo M, Zhai X, Li F, Zhong C Preparation and characterization of a novel bacterial cellulose/chitosan bio-hydrogel. Nanomaterials Nanotechnol 7:1–8 Jia Y, Wang X, Huo M, Zhai X, Li F, Zhong C Preparation and characterization of a novel bacterial cellulose/chitosan bio-hydrogel. Nanomaterials Nanotechnol 7:1–8
28.
Zurück zum Zitat Barud HS, Ribeiro CA, Crespi MS, Martines MAU, Dexpert-Ghys J, Marques RFC, Messaddeq Y, Ribeiro SJL (2007) Thermal characterization of bacterial cellulose–phosphate composite membranes. J Therm Anal Calorim 87(3):815–818 Barud HS, Ribeiro CA, Crespi MS, Martines MAU, Dexpert-Ghys J, Marques RFC, Messaddeq Y, Ribeiro SJL (2007) Thermal characterization of bacterial cellulose–phosphate composite membranes. J Therm Anal Calorim 87(3):815–818
29.
Zurück zum Zitat Barud HS, de Araújo Júnior AM, de Assunção RMN, Meireles CS, Cerqueira DA, Filho GR, Messaddeq Y, Ribeiro SJL (2007) Thermal characterization of cellulose acetate produced from homogeneous acetylation of bacterial cellulose. Thermochim Acta 471(1):61–69 Barud HS, de Araújo Júnior AM, de Assunção RMN, Meireles CS, Cerqueira DA, Filho GR, Messaddeq Y, Ribeiro SJL (2007) Thermal characterization of cellulose acetate produced from homogeneous acetylation of bacterial cellulose. Thermochim Acta 471(1):61–69
30.
Zurück zum Zitat Yim SM, Song JE, Kim HR (2017) Production and characterization of bacterial cellulose fabrics bynitrogen sources of tea and carbon sources of sugar. Process Biochem 59:26–36CrossRef Yim SM, Song JE, Kim HR (2017) Production and characterization of bacterial cellulose fabrics bynitrogen sources of tea and carbon sources of sugar. Process Biochem 59:26–36CrossRef
31.
Zurück zum Zitat Hassan EA, Abdelhady HM, Sohir S. El-Salam A, Abdullah SM (2015) The characterization of bacterial cellulose produced by Acetobacter xylinum and Komgataeibacter saccharovorans under optimized. Br Microbiol Res J 9(3):1–13 Hassan EA, Abdelhady HM, Sohir S. El-Salam A, Abdullah SM (2015) The characterization of bacterial cellulose produced by Acetobacter xylinum and Komgataeibacter saccharovorans under optimized. Br Microbiol Res J 9(3):1–13
32.
Zurück zum Zitat Gea S, Reynolds CT, Roohpour N, Wirjosentono B, Soykeabkaew N, Bilotti E, Peijs T (2011) Investigation into the structural, morphological, mechanical and thermal behaviour of bacterial cellulose after a two-step purification process. Biores Technol 102:9105–9110CrossRef Gea S, Reynolds CT, Roohpour N, Wirjosentono B, Soykeabkaew N, Bilotti E, Peijs T (2011) Investigation into the structural, morphological, mechanical and thermal behaviour of bacterial cellulose after a two-step purification process. Biores Technol 102:9105–9110CrossRef
33.
Zurück zum Zitat Fernandes M, Gama M, Dourado F, Souto AP (2019) Development of novel bacterial cellulose composites for the textile and shoe industry. Microb Biotechnol 12(4):650–661CrossRef Fernandes M, Gama M, Dourado F, Souto AP (2019) Development of novel bacterial cellulose composites for the textile and shoe industry. Microb Biotechnol 12(4):650–661CrossRef
34.
Zurück zum Zitat Gelin K, Bodin A, Gatenholm P, Mihranyan A, Edwards K, Stromme M (2007) Characterization of water in bacterial cellulose using dielectric spectroscopy and electron microscopy. Polymer 48:7623–7631CrossRef Gelin K, Bodin A, Gatenholm P, Mihranyan A, Edwards K, Stromme M (2007) Characterization of water in bacterial cellulose using dielectric spectroscopy and electron microscopy. Polymer 48:7623–7631CrossRef
35.
Zurück zum Zitat Cazón P, Velázquez G, Vázqueza M (2020) Bacterial cellulose films: evaluation of the water interaction. Food Packag Shelf Life 25:100526CrossRef Cazón P, Velázquez G, Vázqueza M (2020) Bacterial cellulose films: evaluation of the water interaction. Food Packag Shelf Life 25:100526CrossRef
36.
Zurück zum Zitat Rebelo AR, Archer AJ, Chen X, Liu C, Yang G, Liu Y (2018) Dehydration of bacterial cellulose and the water content effects on its viscoelastic and electrochemical properties. Sci Technol Adv Mater 19(1):203–211CrossRef Rebelo AR, Archer AJ, Chen X, Liu C, Yang G, Liu Y (2018) Dehydration of bacterial cellulose and the water content effects on its viscoelastic and electrochemical properties. Sci Technol Adv Mater 19(1):203–211CrossRef
37.
Zurück zum Zitat Schrecker ST, Gostomski PA (2005) Determining the water holding capacity of microbial cellulose. Biotech Lett 27:1435–1438CrossRef Schrecker ST, Gostomski PA (2005) Determining the water holding capacity of microbial cellulose. Biotech Lett 27:1435–1438CrossRef
38.
Zurück zum Zitat Lin W-C, Lien C-C, Yeh H-J, Yu C-M, Hsu S (2013) Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr Polym 94:603–611CrossRef Lin W-C, Lien C-C, Yeh H-J, Yu C-M, Hsu S (2013) Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr Polym 94:603–611CrossRef
39.
Zurück zum Zitat Roy S, Gennadios A, Weller CL, Testin RF (2000) Water vapor transport parameters of a cast wheat gluten film. Ind Crops Prod 11:43–50CrossRef Roy S, Gennadios A, Weller CL, Testin RF (2000) Water vapor transport parameters of a cast wheat gluten film. Ind Crops Prod 11:43–50CrossRef
40.
Zurück zum Zitat Phisalaphong M, Suwanmajo T, Tammarate P (2008) Synthesis and characterization of bacterial cellulose/alginate blend membranes. J Appl Polym Sci 107:3419–3424CrossRef Phisalaphong M, Suwanmajo T, Tammarate P (2008) Synthesis and characterization of bacterial cellulose/alginate blend membranes. J Appl Polym Sci 107:3419–3424CrossRef
41.
Zurück zum Zitat Cazón P, Vázquez M, Velazquez G (2020) Environmentally friendly films combining bacterial cellulose, chitosan, and polyvinyl alcohol: effect of water activity on barrier, mechanical, and optical properties. Biomacromolecules 21:753–760CrossRef Cazón P, Vázquez M, Velazquez G (2020) Environmentally friendly films combining bacterial cellulose, chitosan, and polyvinyl alcohol: effect of water activity on barrier, mechanical, and optical properties. Biomacromolecules 21:753–760CrossRef
42.
Zurück zum Zitat Tome LC, Brandao L, Mendes AM, Silvestre AJD, Neto CP, Gandini A, Freire CSR, Marrucho IM (2010) Preparation and characterization of bacterial cellulose membranes with tailored surface and barrier properties. Cellulose 17:1203–1211 Tome LC, Brandao L, Mendes AM, Silvestre AJD, Neto CP, Gandini A, Freire CSR, Marrucho IM (2010) Preparation and characterization of bacterial cellulose membranes with tailored surface and barrier properties. Cellulose 17:1203–1211
43.
44.
Zurück zum Zitat Wu X (2018) Control of the mechanical behavior of bacterial cellulose by mercerization. Master of Science thesis, Case Western Reserve University Wu X (2018) Control of the mechanical behavior of bacterial cellulose by mercerization. Master of Science thesis, Case Western Reserve University
45.
Zurück zum Zitat Borysiak S, Garbarczyk J Applying the WAXS method to estimate the supermolecular structure of cellulose fibres after mercerisation. Fibres Text Eastern Europe, 11(5 (44)):104–106 Borysiak S, Garbarczyk J Applying the WAXS method to estimate the supermolecular structure of cellulose fibres after mercerisation. Fibres Text Eastern Europe, 11(5 (44)):104–106
46.
Zurück zum Zitat Okano T, Sarko A (1985) Mercerization of cellulose. 2. Alkali cellulose intermediates and a possible mercerization mechanism. J Appl Polym Sci 30(1):325–332 Okano T, Sarko A (1985) Mercerization of cellulose. 2. Alkali cellulose intermediates and a possible mercerization mechanism. J Appl Polym Sci 30(1):325–332
47.
Zurück zum Zitat Gea S (2010) Innovative bio-nanocomposites based on bacterial cellulose. Doctor of Philosophy, thesis, Queen Mary University of London, London Gea S (2010) Innovative bio-nanocomposites based on bacterial cellulose. Doctor of Philosophy, thesis, Queen Mary University of London, London
48.
Zurück zum Zitat Kamal ASM, Misnon MI, Fadil F (2020) The effect of sodium hydroxide concentration on yield and properties of bacterial cellulose membranes. In: The 1st annual technology, applied science and engineering conference, IOP conference series: materials science and engineering, vol 732, p 012064 Kamal ASM, Misnon MI, Fadil F (2020) The effect of sodium hydroxide concentration on yield and properties of bacterial cellulose membranes. In: The 1st annual technology, applied science and engineering conference, IOP conference series: materials science and engineering, vol 732, p 012064
49.
Zurück zum Zitat Sutrisno TA, Suryanto H, Wulandari R, Muhajir M, Shahrul SM, Zahari NS (2019) The effect of chemical pretreatment process on mechanical properties and porosity of bacterial cellulose film. J Mech Eng Sci Technol 3(1):8–17 Sutrisno TA, Suryanto H, Wulandari R, Muhajir M, Shahrul SM, Zahari NS (2019) The effect of chemical pretreatment process on mechanical properties and porosity of bacterial cellulose film. J Mech Eng Sci Technol 3(1):8–17
50.
Zurück zum Zitat Meftahi A, Khajavi R, Rashidi A, Rahimi MK, Bahador A (2015) Effect of purification on nano microbial cellulose pellicle properties. Procedia Mater Sci 11:206–211CrossRef Meftahi A, Khajavi R, Rashidi A, Rahimi MK, Bahador A (2015) Effect of purification on nano microbial cellulose pellicle properties. Procedia Mater Sci 11:206–211CrossRef
51.
Zurück zum Zitat Al-Shamary EE, Al-Darwash AK (2013) Influence of fermentation condition and alkali treatment on the porosity and thickness of bacterial cellulose membranes. Online J Sci Technol 3(2) Al-Shamary EE, Al-Darwash AK (2013) Influence of fermentation condition and alkali treatment on the porosity and thickness of bacterial cellulose membranes. Online J Sci Technol 3(2)
52.
Zurück zum Zitat Indrarti L, Yudianti R (2012) Morphological and thermal properties of alkali treated bacterial cellulose from coconut water. Indonesian J Mater Sci 13(3):221–222 Indrarti L, Yudianti R (2012) Morphological and thermal properties of alkali treated bacterial cellulose from coconut water. Indonesian J Mater Sci 13(3):221–222
55.
Zurück zum Zitat Gayathry G, Gopalaswamy G (2014) Production and characterisation of microbial cellulosic fibre from Acetobacter xylinum. Indian J Fibre Text Res 39:93–96 Gayathry G, Gopalaswamy G (2014) Production and characterisation of microbial cellulosic fibre from Acetobacter xylinum. Indian J Fibre Text Res 39:93–96
56.
Zurück zum Zitat Solatorio N, Chong Liao C (2019) Synthesis of cellulose by Acetobacter xylinum: a comparison vegan leather to animal and imitation leather. Honors thesis, University of Wyoming, Spring Solatorio N, Chong Liao C (2019) Synthesis of cellulose by Acetobacter xylinum: a comparison vegan leather to animal and imitation leather. Honors thesis, University of Wyoming, Spring
59.
Zurück zum Zitat Ng FMC, Wang PW (2016) Natural self-grown fashion from bacterial cellulose: a paradigm shift design approach in fashion creation. Des J 19:837–855 Ng FMC, Wang PW (2016) Natural self-grown fashion from bacterial cellulose: a paradigm shift design approach in fashion creation. Des J 19:837–855
60.
Zurück zum Zitat Zhong C (2010) Colored bacteria cellulose product and preparation method thereof, CN102127576A Zhong C (2010) Colored bacteria cellulose product and preparation method thereof, CN102127576A
61.
Zurück zum Zitat Tyurin I, Getmantseva V, Andreeva E, Kashcheev O (2019) The study of the molding capabilities of bacterial Cellulose. In: AUTEX2019—19th world textile conference on textiles at the crossroads, 11–15 June 2019, Ghent, Belgium Tyurin I, Getmantseva V, Andreeva E, Kashcheev O (2019) The study of the molding capabilities of bacterial Cellulose. In: AUTEX2019—19th world textile conference on textiles at the crossroads, 11–15 June 2019, Ghent, Belgium
62.
Zurück zum Zitat Lv P, Lu X, Zhou H, Sun X Biosynthesis of bacterial cellulose for in-situ assembly of intelligent packaging with natural dyes—life-made intelligent packaging. BioResources 15(2):2111–2113 Lv P, Lu X, Zhou H, Sun X Biosynthesis of bacterial cellulose for in-situ assembly of intelligent packaging with natural dyes—life-made intelligent packaging. BioResources 15(2):2111–2113
64.
Zurück zum Zitat Shim E, Kim HR (2019) Coloration of bacterial cellulose using in situ and ex situ methods. Text Res J 89(7):1297–1310CrossRef Shim E, Kim HR (2019) Coloration of bacterial cellulose using in situ and ex situ methods. Text Res J 89(7):1297–1310CrossRef
65.
Zurück zum Zitat Gao M, Li J, Bao Z, Hu M, Nian R, Feng D, An D, Li X, Xian M, Zhang H (2019) A natural in situ fabrication method of functional bacterial cellulose using a microorganism. Nat Commun 10:437CrossRef Gao M, Li J, Bao Z, Hu M, Nian R, Feng D, An D, Li X, Xian M, Zhang H (2019) A natural in situ fabrication method of functional bacterial cellulose using a microorganism. Nat Commun 10:437CrossRef
69.
Zurück zum Zitat Song JE, Su J, Noro J, Cavaco‑Paulo A, Silva C, Kim HR (2018) Bio-coloration of bacterial cellulose assisted by immobilized laccase. AMB Expr 8:19CrossRef Song JE, Su J, Noro J, Cavaco‑Paulo A, Silva C, Kim HR (2018) Bio-coloration of bacterial cellulose assisted by immobilized laccase. AMB Expr 8:19CrossRef
70.
Zurück zum Zitat Miyamoto H, Tsuduki M, Ago M, Yamane C, Ueda M, Okajima K (2014) Influence of dyestuffs on the crystallinity of a bacterial cellulose and a regenerated cellulose. Text Res J 84(11):1147–1158CrossRef Miyamoto H, Tsuduki M, Ago M, Yamane C, Ueda M, Okajima K (2014) Influence of dyestuffs on the crystallinity of a bacterial cellulose and a regenerated cellulose. Text Res J 84(11):1147–1158CrossRef
72.
Zurück zum Zitat Sederavičiūtė F, Domskienė J, Baltina I (2019) Influence of drying temperature on tensile and bursting strength of bacterial cellulose biofilm. Mater Sci 25(3) Sederavičiūtė F, Domskienė J, Baltina I (2019) Influence of drying temperature on tensile and bursting strength of bacterial cellulose biofilm. Mater Sci 25(3)
75.
Zurück zum Zitat Illa MP, Sharma CS, Khandelwal M (2019) Tuning the physiochemical properties of bacterial cellulose: effect of drying conditions. J Mater Sci 54:12024–12035CrossRef Illa MP, Sharma CS, Khandelwal M (2019) Tuning the physiochemical properties of bacterial cellulose: effect of drying conditions. J Mater Sci 54:12024–12035CrossRef
77.
Zurück zum Zitat Pa’e N, Hamid NIA, Khairuddin N, Zahan KA, Seng KF, Siddique BM, Muhamad II (2014) Effect of different drying methods on the morphology, crystallinity, swelling ability and tensile properties of Nata De Coco. Sains Malays 43(5):767–773 Pa’e N, Hamid NIA, Khairuddin N, Zahan KA, Seng KF, Siddique BM, Muhamad II (2014) Effect of different drying methods on the morphology, crystallinity, swelling ability and tensile properties of Nata De Coco. Sains Malays 43(5):767–773
79.
Zurück zum Zitat Zeng M, Laromaine A, Roig A (2014) Bacterial cellulose films: influence of bacterial strain and drying route on film properties. Cellulose 21:4455–4469CrossRef Zeng M, Laromaine A, Roig A (2014) Bacterial cellulose films: influence of bacterial strain and drying route on film properties. Cellulose 21:4455–4469CrossRef
81.
Zurück zum Zitat Tsotsas E, Mujumdar AS (2011) Modern drying technology, vol 3. In: Product quality and formulation. John Wiley & Sons, Hoboken, pp 185 Tsotsas E, Mujumdar AS (2011) Modern drying technology, vol 3. In: Product quality and formulation. John Wiley & Sons, Hoboken, pp 185
83.
Zurück zum Zitat Antal T (2015) Comparative study of three drying methods: freeze, hot air assisted freeze and infrared-assisted freeze modes. Agron Res 13(4):863–878 Antal T (2015) Comparative study of three drying methods: freeze, hot air assisted freeze and infrared-assisted freeze modes. Agron Res 13(4):863–878
86.
Zurück zum Zitat Orsat V, Changrue V, Raghavan VGS (2006) Microwave drying of fruits and vegetables. Stewart Postharvest Rev 6:4 Orsat V, Changrue V, Raghavan VGS (2006) Microwave drying of fruits and vegetables. Stewart Postharvest Rev 6:4
87.
Zurück zum Zitat Indriyati I, Irmawati Y, Puspitasari T (2019) Comparative study of bacterial cellulose film dried using microwave and air convection heating. J Eng Technol Sci 51(1):121–132 Indriyati I, Irmawati Y, Puspitasari T (2019) Comparative study of bacterial cellulose film dried using microwave and air convection heating. J Eng Technol Sci 51(1):121–132
88.
Zurück zum Zitat Azadimanesh F, Mohammadi N (2015) A plasticizer index to universally correlate the normalized work of fracture and elastic modulus of plasticized cellulose triacetates. Carbohyd Polym 130:316–324CrossRef Azadimanesh F, Mohammadi N (2015) A plasticizer index to universally correlate the normalized work of fracture and elastic modulus of plasticized cellulose triacetates. Carbohyd Polym 130:316–324CrossRef
89.
Zurück zum Zitat Sun Y et al (2018) The effects of two biocompatible plasticizers on the performance of dry bacterial cellulose membrane: a comparative study. Cellulose 25(10):5893–5908CrossRef Sun Y et al (2018) The effects of two biocompatible plasticizers on the performance of dry bacterial cellulose membrane: a comparative study. Cellulose 25(10):5893–5908CrossRef
90.
Zurück zum Zitat Cielecka I et al (2019) Glycerol-plasticized bacterial nanocellulose-based composites with enhanced flexibility and liquid sorption capacity. Cellulose 26(9):5409–5426CrossRef Cielecka I et al (2019) Glycerol-plasticized bacterial nanocellulose-based composites with enhanced flexibility and liquid sorption capacity. Cellulose 26(9):5409–5426CrossRef
91.
Zurück zum Zitat Cazón P, Vázquez M, Velazquez G (2019) Composite films with UV-barrier properties of bacterial cellulose with glycerol and poly (vinyl alcohol): puncture properties, solubility, and swelling degree. Biomacromolecules 20(8):3115–3125CrossRef Cazón P, Vázquez M, Velazquez G (2019) Composite films with UV-barrier properties of bacterial cellulose with glycerol and poly (vinyl alcohol): puncture properties, solubility, and swelling degree. Biomacromolecules 20(8):3115–3125CrossRef
92.
Zurück zum Zitat Indrarti L et al (2016) Physical and mechanical properties of modified bacterial cellulose composite films. In: AIP conference proceedings, AIP Publishing LLC Indrarti L et al (2016) Physical and mechanical properties of modified bacterial cellulose composite films. In: AIP conference proceedings, AIP Publishing LLC
93.
Zurück zum Zitat Rohaeti E, Laksono E, Rakhmawati A (2017) Characterization and the activity of bacterial cellulose prepared from rice waste water by addition with glycerol and chitosan. Agric Biol Sci 12(8):241–248 Rohaeti E, Laksono E, Rakhmawati A (2017) Characterization and the activity of bacterial cellulose prepared from rice waste water by addition with glycerol and chitosan. Agric Biol Sci 12(8):241–248
94.
Zurück zum Zitat Faridah F et al (2014) Effect of plasticizer and fermetation time on cellulose membrane production and analysis of material property. In: 4th Syiah Kuala University annual international conference 2014, Syiah Kuala University Faridah F et al (2014) Effect of plasticizer and fermetation time on cellulose membrane production and analysis of material property. In: 4th Syiah Kuala University annual international conference 2014, Syiah Kuala University
95.
Zurück zum Zitat Meftahi A et al (2018) Preventing the collapse of 3D bacterial cellulose network via citric acid. J Nanostruct Chem 8(3):311–320CrossRef Meftahi A et al (2018) Preventing the collapse of 3D bacterial cellulose network via citric acid. J Nanostruct Chem 8(3):311–320CrossRef
96.
Zurück zum Zitat Teixeira SRZ et al (2019) Biosynthesis and functionalization of bacterial cellulose membranes with cerium nitrate and silver nanoparticles. Mater Res 22 Teixeira SRZ et al (2019) Biosynthesis and functionalization of bacterial cellulose membranes with cerium nitrate and silver nanoparticles. Mater Res 22
97.
Zurück zum Zitat Fürsatz M et al (2018) Functionalization of bacterial cellulose wound dressings with the antimicrobial peptide ε-poly-L-Lysine. Biomed Mater 13(2):025014CrossRef Fürsatz M et al (2018) Functionalization of bacterial cellulose wound dressings with the antimicrobial peptide ε-poly-L-Lysine. Biomed Mater 13(2):025014CrossRef
98.
Zurück zum Zitat Chu M et al (2018) Functionalization of composite bacterial cellulose with C 60 nanoparticles for wound dressing and cancer therapy. RSC Adv 8(33):18197–18203CrossRef Chu M et al (2018) Functionalization of composite bacterial cellulose with C 60 nanoparticles for wound dressing and cancer therapy. RSC Adv 8(33):18197–18203CrossRef
99.
Zurück zum Zitat Andrade FK et al (2010) Improving bacterial cellulose for blood vessel replacement: functionalization with a chimeric protein containing a cellulose-binding module and an adhesion peptide. Acta Biomater 6(10):4034–4041CrossRef Andrade FK et al (2010) Improving bacterial cellulose for blood vessel replacement: functionalization with a chimeric protein containing a cellulose-binding module and an adhesion peptide. Acta Biomater 6(10):4034–4041CrossRef
100.
Zurück zum Zitat Song JE et al (2019) Functionalization of bacterial cellulose nonwoven by poly (fluorophenol) to improve its hydrophobicity and durability. Front Bioeng Biotechnol 7:332CrossRef Song JE et al (2019) Functionalization of bacterial cellulose nonwoven by poly (fluorophenol) to improve its hydrophobicity and durability. Front Bioeng Biotechnol 7:332CrossRef
101.
Zurück zum Zitat Gao M et al (2019) A natural in situ fabrication method of functional bacterial cellulose using a microorganism. Nat Commun 10(1):1–10CrossRef Gao M et al (2019) A natural in situ fabrication method of functional bacterial cellulose using a microorganism. Nat Commun 10(1):1–10CrossRef
102.
Zurück zum Zitat Coelho F et al (2019) Bacterial cellulose membrane functionalized with hydroxiapatite and anti-bone morphogenetic protein 2: a promising material for bone regeneration. PLoS ONE 14(8):e0221286CrossRef Coelho F et al (2019) Bacterial cellulose membrane functionalized with hydroxiapatite and anti-bone morphogenetic protein 2: a promising material for bone regeneration. PLoS ONE 14(8):e0221286CrossRef
103.
Zurück zum Zitat Pal S et al (2017) Silver-functionalized bacterial cellulose as antibacterial membrane for wound-healing applications. ACS Omega 2(7):3632–3639CrossRef Pal S et al (2017) Silver-functionalized bacterial cellulose as antibacterial membrane for wound-healing applications. ACS Omega 2(7):3632–3639CrossRef
104.
Zurück zum Zitat Rouabhia M et al (2014) Production of biocompatible and antimicrobial bacterial cellulose polymers functionalized by RGDC grafting groups and gentamicin. ACS Appl Mater Interfaces 6(3):1439–1446CrossRef Rouabhia M et al (2014) Production of biocompatible and antimicrobial bacterial cellulose polymers functionalized by RGDC grafting groups and gentamicin. ACS Appl Mater Interfaces 6(3):1439–1446CrossRef
105.
Zurück zum Zitat Zhuang S, Wang J (2019) Removal of U (VI) from aqueous solution using phosphate functionalized bacterial cellulose as efficient adsorbent. Radiochim Acta 107(6):459–467CrossRef Zhuang S, Wang J (2019) Removal of U (VI) from aqueous solution using phosphate functionalized bacterial cellulose as efficient adsorbent. Radiochim Acta 107(6):459–467CrossRef
Metadaten
Titel
Characteristics of Bacterial Cellulose
verfasst von
Dr. Subramanian Senthilkannan Muthu
Dr. R. Rathinamoorthy
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-9581-3_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.