Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 4/2019

27.03.2019 | Original Article

Characterization of solid biofuel produced from banana stalk via hydrothermal carbonization

verfasst von: Md. Atikul Islam, Md. Ali Akber, Sharif Hassan Limon, Md. Ahedul Akbor, Md. Azharul Islam

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, banana stalk was used as a feedstock to produce hydrochar by hydrothermal carbonization (HTC). The effect of varying carbonization temperature (160 to 200 °C), varying reaction time (1 to 3 h) on yield, and higher heating value (HHV) of hydrochar was examined. With increasing temperature and reaction time, the hydrochar yield varied from 57.8 to 75.3%, whereas HHV varied from 18.1 to 18.9 MJ/kg. The carbon content, energy density, and energy recovery of all of the hydrochars were improved after conversion. The decrease of the O/C and H/C values was in agreement with the increasing coalification of hydrochars with increasing the severity of HTC conditions. The surface characteristics and thermal degradation properties of hydrochars were also assessed by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The low ash and sulfur content after the HTC process indicates that banana stalk hydrochar can be a potential raw material for energy production.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mohapatra D, Mishra S, Sutar N (2010) Banana and its by-product utilization: an overview. J Sci Ind Res 69:323–329 Mohapatra D, Mishra S, Sutar N (2010) Banana and its by-product utilization: an overview. J Sci Ind Res 69:323–329
2.
Zurück zum Zitat Kumar KPS, Bhowmik D, Duraivel S, Umadevi M (2012) Traditional and medicinal uses of banana. J Pharmacogn Phytochem 1(3):51–63 Kumar KPS, Bhowmik D, Duraivel S, Umadevi M (2012) Traditional and medicinal uses of banana. J Pharmacogn Phytochem 1(3):51–63
5.
Zurück zum Zitat Mohiuddin AKM, Saha MK, Hossian MS Ferdoushi A (2014) Usefulness of banana (Musa paradisiaca) wastes in manufacturing of bio-products: a review. Agriculturists 12(1):148–158 Mohiuddin AKM, Saha MK, Hossian MS Ferdoushi A (2014) Usefulness of banana (Musa paradisiaca) wastes in manufacturing of bio-products: a review. Agriculturists 12(1):148–158
6.
Zurück zum Zitat Tock JY, Lai CL, Lee KT, Tan KT, Bhatia S (2010) Banana biomass as potential renewable energy resource: a Malaysian case study. Renew Sust Energ Rev 14(2):798–805 Tock JY, Lai CL, Lee KT, Tan KT, Bhatia S (2010) Banana biomass as potential renewable energy resource: a Malaysian case study. Renew Sust Energ Rev 14(2):798–805
7.
Zurück zum Zitat Abdullah N, Sulaiman F, Miskam MA, Taib RM (2014) Characterization of banana (Musa spp.) pseudo-stem and fruit-bunch-stem as a potential renewable energy resource. Int J Biol Vet Agric Food Eng 8(8):712 Abdullah N, Sulaiman F, Miskam MA, Taib RM (2014) Characterization of banana (Musa spp.) pseudo-stem and fruit-bunch-stem as a potential renewable energy resource. Int J Biol Vet Agric Food Eng 8(8):712
8.
Zurück zum Zitat Gabhane J, William SP, Gadhe A, Rath R, Vaidya AN, Wate S (2014) Pretreatment of banana agricultural waste for bio-ethanol production: individual and interactive effects of acid and alkali pretreatments with autoclaving, microwave heating and ultrasonication. Waste Manag 34(2):498–503 Gabhane J, William SP, Gadhe A, Rath R, Vaidya AN, Wate S (2014) Pretreatment of banana agricultural waste for bio-ethanol production: individual and interactive effects of acid and alkali pretreatments with autoclaving, microwave heating and ultrasonication. Waste Manag 34(2):498–503
9.
Zurück zum Zitat Fernandes ERK, Marangoni C, Souza O, Sellin N (2013) Thermochemical characterization of banana leaves as a potential energy source. Energy Convers Manag 75:603–608 Fernandes ERK, Marangoni C, Souza O, Sellin N (2013) Thermochemical characterization of banana leaves as a potential energy source. Energy Convers Manag 75:603–608
10.
Zurück zum Zitat Nathoa C, Sirisukpoca U, Pisutpaisal N (2014) Production of hydrogen and methane from banana peel by two phase anaerobic fermentation. Energy Procedia 50:702–710 Nathoa C, Sirisukpoca U, Pisutpaisal N (2014) Production of hydrogen and methane from banana peel by two phase anaerobic fermentation. Energy Procedia 50:702–710
11.
Zurück zum Zitat Al-Hamamre Z, Saidan M, Hararah M, Rawajfeh K, Alkhasawneh HE, Al-Shannag M (2017) Wastes and biomass materials as sustainable-renewable energy resources for Jordan. Renew Sust Energ Rev 67:295–314 Al-Hamamre Z, Saidan M, Hararah M, Rawajfeh K, Alkhasawneh HE, Al-Shannag M (2017) Wastes and biomass materials as sustainable-renewable energy resources for Jordan. Renew Sust Energ Rev 67:295–314
12.
Zurück zum Zitat Hau JL, Ray R, Thorpe RB, Azapagic A (2008) A thermodynamic model of the outputs of gasification of solid waste. Int J Chem React Eng 6(1):A35 Hau JL, Ray R, Thorpe RB, Azapagic A (2008) A thermodynamic model of the outputs of gasification of solid waste. Int J Chem React Eng 6(1):A35
13.
Zurück zum Zitat Yao Z, Ma X, Wu Z, Yao T (2017) TGA–FTIR analysis of co-pyrolysis characteristics of hydrochar and paper sludge. J Anal Appl Pyrolysis 123:40–48 Yao Z, Ma X, Wu Z, Yao T (2017) TGA–FTIR analysis of co-pyrolysis characteristics of hydrochar and paper sludge. J Anal Appl Pyrolysis 123:40–48
14.
Zurück zum Zitat Gumisiriza R, Hawumba JF, Okure M, Hensel O (2017) Biomass waste-to-energy valorisation technologies: a review case for banana processing in Uganda. Biotechnol Biofuels 10(1):11 Gumisiriza R, Hawumba JF, Okure M, Hensel O (2017) Biomass waste-to-energy valorisation technologies: a review case for banana processing in Uganda. Biotechnol Biofuels 10(1):11
15.
Zurück zum Zitat Kambo HS, Dutta A (2015) A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sust Energ Rev 45:359–378 Kambo HS, Dutta A (2015) A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sust Energ Rev 45:359–378
16.
Zurück zum Zitat Yao Z, Ma X (2018) Effects of hydrothermal treatment on the pyrolysis behavior of Chinese fan palm. Bioresour Technol 247:504–512 Yao Z, Ma X (2018) Effects of hydrothermal treatment on the pyrolysis behavior of Chinese fan palm. Bioresour Technol 247:504–512
17.
Zurück zum Zitat Chen X, Lin Q, He R, Zhao X, Li G (2017) Hydrochar production from watermelon peel by hydrothermal carbonization. Bioresour Technol 241:236–243 Chen X, Lin Q, He R, Zhao X, Li G (2017) Hydrochar production from watermelon peel by hydrothermal carbonization. Bioresour Technol 241:236–243
18.
Zurück zum Zitat Chen X, Ma X, Peng X, Lin Y, Yao Z (2018) Conversion of sweet potato waste to solid fuel via hydrothermal carbonization. Bioresour Technol 249:900–907 Chen X, Ma X, Peng X, Lin Y, Yao Z (2018) Conversion of sweet potato waste to solid fuel via hydrothermal carbonization. Bioresour Technol 249:900–907
19.
Zurück zum Zitat Islam MA, Asif M, Hameed BH (2015) Pyrolysis kinetics of raw and hydrothermally carbonized Karanj (Pongamiapinnata) fruit hulls via thermogravimetric analysis. Bioresour Technol 179:227–233 Islam MA, Asif M, Hameed BH (2015) Pyrolysis kinetics of raw and hydrothermally carbonized Karanj (Pongamiapinnata) fruit hulls via thermogravimetric analysis. Bioresour Technol 179:227–233
20.
Zurück zum Zitat Reza MT, Lynam JG, Uddin MH, Coronella CJ (2013) Hydrothermal carbonization: fate of inorganics. Biomass Bioenergy 49:86–94 Reza MT, Lynam JG, Uddin MH, Coronella CJ (2013) Hydrothermal carbonization: fate of inorganics. Biomass Bioenergy 49:86–94
21.
Zurück zum Zitat Volpe M, Fiori L, Volpe R, Messineo A (2016) Upgrading of olive tree trimmings residue as biofuel by hydrothermal carbonization and torrefaction: a comparative study. Chem Eng Trans 50:13–18 Volpe M, Fiori L, Volpe R, Messineo A (2016) Upgrading of olive tree trimmings residue as biofuel by hydrothermal carbonization and torrefaction: a comparative study. Chem Eng Trans 50:13–18
22.
Zurück zum Zitat Nizamuddin S, Baloch HA, Griffin GJ, Mubarak NM, Bhutto AW, Abro R, Mazari SA, Ali BS (2017) An overview of effect of process parameters on hydrothermal carbonization of biomass. Renew Sust Energ Rev 73:1289–1299 Nizamuddin S, Baloch HA, Griffin GJ, Mubarak NM, Bhutto AW, Abro R, Mazari SA, Ali BS (2017) An overview of effect of process parameters on hydrothermal carbonization of biomass. Renew Sust Energ Rev 73:1289–1299
23.
Zurück zum Zitat Lucian M, Volpe M, Gao L, Piro G, Goldfarb JL, Fiori L (2018) Impact of hydrothermal carbonization conditions on the formation of hydrochars and secondary chars from the organic fraction of municipal solid waste. Fuel 233:257–268 Lucian M, Volpe M, Gao L, Piro G, Goldfarb JL, Fiori L (2018) Impact of hydrothermal carbonization conditions on the formation of hydrochars and secondary chars from the organic fraction of municipal solid waste. Fuel 233:257–268
24.
Zurück zum Zitat Park KY, Lee K, Kim D (2018) Characterized hydrochar of algal biomass for producing solid fuel through hydrothermal carbonization. Bioresour Technol 258:119–124 Park KY, Lee K, Kim D (2018) Characterized hydrochar of algal biomass for producing solid fuel through hydrothermal carbonization. Bioresour Technol 258:119–124
25.
Zurück zum Zitat Mäkelä M, Benavente V, Fullana A (2015) Hydrothermal carbonization of lignocellulosic biomass: effect of process conditions on hydrochar properties. Appl Energy 155:576–584 Mäkelä M, Benavente V, Fullana A (2015) Hydrothermal carbonization of lignocellulosic biomass: effect of process conditions on hydrochar properties. Appl Energy 155:576–584
26.
Zurück zum Zitat Nakason K, Panyapinyopol B, Kanokkantapong V, Viriya-empikul N, Kraithong W, Pavasant P (2018) Characteristics of hydrochar and hydrothermal liquid products from hydrothermal carbonization of corncob. Biomass Conv Bioref 8(1):199–210 Nakason K, Panyapinyopol B, Kanokkantapong V, Viriya-empikul N, Kraithong W, Pavasant P (2018) Characteristics of hydrochar and hydrothermal liquid products from hydrothermal carbonization of corncob. Biomass Conv Bioref 8(1):199–210
27.
Zurück zum Zitat Smith AM, Whittaker C, Shield I, Ross AB (2018) The potential for production of high quality bio-coal from early harvested Miscanthus by hydrothermal carbonisation. Fuel 220:546–557 Smith AM, Whittaker C, Shield I, Ross AB (2018) The potential for production of high quality bio-coal from early harvested Miscanthus by hydrothermal carbonisation. Fuel 220:546–557
28.
Zurück zum Zitat Volpe M, Wüst D, Merzari F, Lucian M, Andreottola G, Kruse A, Fiori L (2018) One stage olive mill waste streams valorisation via hydrothermal carbonisation. Waste Manag 80:224–234 Volpe M, Wüst D, Merzari F, Lucian M, Andreottola G, Kruse A, Fiori L (2018) One stage olive mill waste streams valorisation via hydrothermal carbonisation. Waste Manag 80:224–234
29.
Zurück zum Zitat Mäkelä M, Kwong CW, Broström M, Yoshikawa K (2017) Hydrothermal treatment of grape marc for solid fuel applications. Energy Convers Manag 145:371–377 Mäkelä M, Kwong CW, Broström M, Yoshikawa K (2017) Hydrothermal treatment of grape marc for solid fuel applications. Energy Convers Manag 145:371–377
30.
Zurück zum Zitat Luz FC, Volpe M, Fiori L, Manni A, Cordiner S, Mulone V, Rocco V (2018) Spent coffee enhanced biomethane potential via an integrated hydrothermal carbonization-anaerobic digestion process. Bioresour Technol 256:102–109 Luz FC, Volpe M, Fiori L, Manni A, Cordiner S, Mulone V, Rocco V (2018) Spent coffee enhanced biomethane potential via an integrated hydrothermal carbonization-anaerobic digestion process. Bioresour Technol 256:102–109
31.
Zurück zum Zitat Adebisi GA, Chowdhury ZZ, Hamid SBA, Ali E (2016) Hydrothermally treated banana empty fruit bunch fiber activated carbon for Pb (II) and Zn (II) removal. BioResources 11(4):9686–9709 Adebisi GA, Chowdhury ZZ, Hamid SBA, Ali E (2016) Hydrothermally treated banana empty fruit bunch fiber activated carbon for Pb (II) and Zn (II) removal. BioResources 11(4):9686–9709
32.
Zurück zum Zitat Nhuchhen DR, Salam PA (2012) Estimation of higher heating value of biomass from proximate analysis: a new approach. Fuel 99:55–63 Nhuchhen DR, Salam PA (2012) Estimation of higher heating value of biomass from proximate analysis: a new approach. Fuel 99:55–63
33.
Zurück zum Zitat Li S, Xu S, Liu S, Yang C, Lu Q (2004) Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas. Fuel Process Technol 85:1201–1211 Li S, Xu S, Liu S, Yang C, Lu Q (2004) Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas. Fuel Process Technol 85:1201–1211
34.
Zurück zum Zitat Lynam JG, Coronella CJ, Yan W, Reza MT, Vasquez VR (2011) Acetic acid and lithium chloride effects on hydrothermal carbonization of lignocellulosic biomass. Bioresour Technol 102:6192–6199 Lynam JG, Coronella CJ, Yan W, Reza MT, Vasquez VR (2011) Acetic acid and lithium chloride effects on hydrothermal carbonization of lignocellulosic biomass. Bioresour Technol 102:6192–6199
35.
Zurück zum Zitat Lu XW, Pellechia PJ, Flora JRV, Berge ND (2013) Influence of reaction time and temperature on product formation and characteristics associated with the hydrothermal carbonization of cellulose. Bioresour Technol 138:180–190 Lu XW, Pellechia PJ, Flora JRV, Berge ND (2013) Influence of reaction time and temperature on product formation and characteristics associated with the hydrothermal carbonization of cellulose. Bioresour Technol 138:180–190
36.
Zurück zum Zitat Hitzl M, Corma A, Pomares F, Renz M (2015) The hydrothermal carbonization (HTC) plant as a decentral biorefinery for wet biomass. Catal Today 257:154–159 Hitzl M, Corma A, Pomares F, Renz M (2015) The hydrothermal carbonization (HTC) plant as a decentral biorefinery for wet biomass. Catal Today 257:154–159
37.
Zurück zum Zitat Funke A, Ziegler F (2010) Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod Biorefin 4:160–177 Funke A, Ziegler F (2010) Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod Biorefin 4:160–177
38.
Zurück zum Zitat Kannan S, Gariepy Y, Raghavan GV (2018) Optimization of the conventional hydrothermal carbonization to produce hydrochar from fish waste. Biomass Conv Bioref 8(3):563–576 Kannan S, Gariepy Y, Raghavan GV (2018) Optimization of the conventional hydrothermal carbonization to produce hydrochar from fish waste. Biomass Conv Bioref 8(3):563–576
39.
Zurück zum Zitat McGaughy K, Reza MT (2018) Hydrothermal carbonization of food waste: simplified process simulation model based on experimental results. Biomass Conv Bioref 8(2):283–292 McGaughy K, Reza MT (2018) Hydrothermal carbonization of food waste: simplified process simulation model based on experimental results. Biomass Conv Bioref 8(2):283–292
40.
Zurück zum Zitat Nizamuddin S, Mubarak NM, Tiripathi M, Jayakumar NS, Sahu JN, Ganesan P (2016) Chemical, dielectric and structural characterization of optimized hydrochar produced from hydrothermal carbonization of palm shell. Fuel 163:88–97 Nizamuddin S, Mubarak NM, Tiripathi M, Jayakumar NS, Sahu JN, Ganesan P (2016) Chemical, dielectric and structural characterization of optimized hydrochar produced from hydrothermal carbonization of palm shell. Fuel 163:88–97
41.
Zurück zum Zitat Zhang D, Wang F, Shen X, Yi W, Li Z, Li Y, Tian C (2018) Comparison study on fuel properties of hydrochars produced from corn stalk and corn stalk digestate. Energy 165:527–536 Zhang D, Wang F, Shen X, Yi W, Li Z, Li Y, Tian C (2018) Comparison study on fuel properties of hydrochars produced from corn stalk and corn stalk digestate. Energy 165:527–536
42.
Zurück zum Zitat Nakason K, Panyapinyopol B, Kanokkantapong V, Viriya-empikul N, Kraithong W, Pavasant P (2018) Characteristics of hydrochar and liquid fraction from hydrothermal carbonization of cassava rhizome. J Energy Inst 91(2):184–193 Nakason K, Panyapinyopol B, Kanokkantapong V, Viriya-empikul N, Kraithong W, Pavasant P (2018) Characteristics of hydrochar and liquid fraction from hydrothermal carbonization of cassava rhizome. J Energy Inst 91(2):184–193
43.
Zurück zum Zitat Yang HP, Yan R, Chen HP, Lee DH, Zheng CG (2007) Characteristics of hemicelluloses, cellulose and lignin pyrolysis. Fuel 86:1781–1788 Yang HP, Yan R, Chen HP, Lee DH, Zheng CG (2007) Characteristics of hemicelluloses, cellulose and lignin pyrolysis. Fuel 86:1781–1788
44.
Zurück zum Zitat Ahmad MS, Mehmood MA, Al Ayed OS, Ye G, Luo H, Ibrahim M, Rashid U, Nehdi IA, Qadir G (2017) Kinetic analyses and pyrolytic behavior of Para grass (Urochloa mutica) for its bioenergy potential. Bioresour Technol 224:708–713 Ahmad MS, Mehmood MA, Al Ayed OS, Ye G, Luo H, Ibrahim M, Rashid U, Nehdi IA, Qadir G (2017) Kinetic analyses and pyrolytic behavior of Para grass (Urochloa mutica) for its bioenergy potential. Bioresour Technol 224:708–713
45.
Zurück zum Zitat Mäkelä M, Volpe M, Volpe R, Fiori L, Dahl O (2018) Spatially resolved spectral determination of polysaccharides in hydrothermally carbonized biomass. Green Chem 20(5):1114–1120 Mäkelä M, Volpe M, Volpe R, Fiori L, Dahl O (2018) Spatially resolved spectral determination of polysaccharides in hydrothermally carbonized biomass. Green Chem 20(5):1114–1120
46.
Zurück zum Zitat Zhang D, Wang F, Zhang A, Yi W, Li Z, Shen X (2019 Mar 1) Effect of pretreatment on chemical characteristic and thermal degradation behavior of corn stalk digestate: comparison of dry and wet torrefaction. Bioresour Technol 275:239–246 Zhang D, Wang F, Zhang A, Yi W, Li Z, Shen X (2019 Mar 1) Effect of pretreatment on chemical characteristic and thermal degradation behavior of corn stalk digestate: comparison of dry and wet torrefaction. Bioresour Technol 275:239–246
47.
Zurück zum Zitat Yuan J-H, Xu R-K, Zhang H (2011) The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol 102:3488–3497 Yuan J-H, Xu R-K, Zhang H (2011) The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol 102:3488–3497
Metadaten
Titel
Characterization of solid biofuel produced from banana stalk via hydrothermal carbonization
verfasst von
Md. Atikul Islam
Md. Ali Akber
Sharif Hassan Limon
Md. Ahedul Akbor
Md. Azharul Islam
Publikationsdatum
27.03.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 4/2019
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-019-00405-5

Weitere Artikel der Ausgabe 4/2019

Biomass Conversion and Biorefinery 4/2019 Zur Ausgabe