Skip to main content

2014 | OriginalPaper | Buchkapitel

Chemical Routes to Graphene-Based Flexible Electrodes for Electrochemical Energy Storage

verfasst von : Fei Liu, Dongfeng Xue

Erschienen in: Low-cost Nanomaterials

Verlag: Springer London

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Due to their many fascinating properties and low-cost preparation by chemical reduction method, particular attention has been paid to the graphene-based materials in the application of energy storage devices. In the present chapter, we focus on the latest work regarding the development of flexible electrodes for batteries and supercapacitors based on graphene as well as graphene-based composites. To begin with, graphene as the sole or dominant part of flexible electrode will be discussed, involving its structure, relationship between structure and performance, and strategies to improve their performances; The next major section deals with graphene as conductive matrix for flexible electrode, the role of graphene to offer efficient electrically conductive channels and flexible mechanical supports will be discussed. Another role of graphene in flexible electrode is as active additives to improve the performance of cellulose and carbon nanofiber papers, examples will be given and such strategy is promising for further reducing the cost of flexible electrodes. Finally, prospects and further developments in this exciting field of graphene-based flexible energy storage devices will be also suggested.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Nishide H, Oyaizu K (2008) Materials science—toward flexible batteries. Science 319(5864):737–738CrossRef Nishide H, Oyaizu K (2008) Materials science—toward flexible batteries. Science 319(5864):737–738CrossRef
2.
Zurück zum Zitat Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367CrossRef Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367CrossRef
3.
Zurück zum Zitat Feng J, Sun X, Wu C, Peng L, Lin C, Hu S, Yang J, Xie Y (2011) Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors. J Am Chem Soc 133(44):17832–17838CrossRef Feng J, Sun X, Wu C, Peng L, Lin C, Hu S, Yang J, Xie Y (2011) Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors. J Am Chem Soc 133(44):17832–17838CrossRef
4.
Zurück zum Zitat Nyholm L, Nystrom G, Mihranyan A, Stromme M (2011) Toward flexible polymer and paper-based energy storage devices. Adv Mater 23(33):3751–3769 Nyholm L, Nystrom G, Mihranyan A, Stromme M (2011) Toward flexible polymer and paper-based energy storage devices. Adv Mater 23(33):3751–3769
5.
Zurück zum Zitat Liu F, Song S, Xue D, Zhang H (2012) Selective crystallization with preferred lithium-ion storage capability of inorganic materials. Nanoscale Res Lett 7:149CrossRef Liu F, Song S, Xue D, Zhang H (2012) Selective crystallization with preferred lithium-ion storage capability of inorganic materials. Nanoscale Res Lett 7:149CrossRef
6.
Zurück zum Zitat Pushparaj VL, Shaijumon MM, Kumar A, Murugesan S, Ci L, Vajtai R, Linhardt RJ, Nalamasu O, Ajayan PM (2007) Flexible energy storage devices based on nanocomposite paper. Proc Natl Acad Sci 104(34):13574–13577CrossRef Pushparaj VL, Shaijumon MM, Kumar A, Murugesan S, Ci L, Vajtai R, Linhardt RJ, Nalamasu O, Ajayan PM (2007) Flexible energy storage devices based on nanocomposite paper. Proc Natl Acad Sci 104(34):13574–13577CrossRef
7.
Zurück zum Zitat Sukjae J, Houk J, Youngbin L, Daewoo S, Seunghyun B, Byung Hee H, Jong-Hyun A (2010) Flexible, transparent single-walled carbon nanotube transistors with graphene electrodes. Nanotechnology 21(42):425201 Sukjae J, Houk J, Youngbin L, Daewoo S, Seunghyun B, Byung Hee H, Jong-Hyun A (2010) Flexible, transparent single-walled carbon nanotube transistors with graphene electrodes. Nanotechnology 21(42):425201
8.
Zurück zum Zitat Gwon H, Kim H-S, Lee KU, Seo D-H, Park YC, Lee Y-S, Ahn BT, Kang K (2011) Flexible energy storage devices based on graphene paper. Energy Environ Sci 4(4):1277–1283CrossRef Gwon H, Kim H-S, Lee KU, Seo D-H, Park YC, Lee Y-S, Ahn BT, Kang K (2011) Flexible energy storage devices based on graphene paper. Energy Environ Sci 4(4):1277–1283CrossRef
9.
Zurück zum Zitat Huang Z-D, Zhang B, Liang R, Zheng Q-B, Oh SW, Lin X-Y, Yousefi N, Kim J-K (2012) Effects of reduction process and carbon nanotube content on the supercapacitive performance of flexible graphene oxide papers. Carbon 50(11):4239–4251CrossRef Huang Z-D, Zhang B, Liang R, Zheng Q-B, Oh SW, Lin X-Y, Yousefi N, Kim J-K (2012) Effects of reduction process and carbon nanotube content on the supercapacitive performance of flexible graphene oxide papers. Carbon 50(11):4239–4251CrossRef
10.
Zurück zum Zitat Zhang Y, Xue D (2012) Mild synthesis route to nanostructured aplha-MnO2 as electrode materials for electrochemical energy storage. Funct Mater Lett 5(3):1250030 Zhang Y, Xue D (2012) Mild synthesis route to nanostructured aplha-MnO2 as electrode materials for electrochemical energy storage. Funct Mater Lett 5(3):1250030
11.
Zurück zum Zitat Lu P, Liu F, Xue D, Yang H, Liu Y (2012) Phase selective route to Ni(OH)2 with enhanced supercapacitance: performance dependent hydrolysis of Ni(Ac)2 at hydrothermal conditions. Electrochim Acta 78:1–10CrossRef Lu P, Liu F, Xue D, Yang H, Liu Y (2012) Phase selective route to Ni(OH)2 with enhanced supercapacitance: performance dependent hydrolysis of Ni(Ac)2 at hydrothermal conditions. Electrochim Acta 78:1–10CrossRef
12.
Zurück zum Zitat Liu J, Zhou Y, Liu F, Liu C, Wang J, Pan Y, Xue D (2012) One-pot synthesis of mesoporous interconnected carbon-encapsulated Fe3O4 nanospheres as superior anodes for Li-ion batteries. RSC Adv 2(6):2262–2265CrossRef Liu J, Zhou Y, Liu F, Liu C, Wang J, Pan Y, Xue D (2012) One-pot synthesis of mesoporous interconnected carbon-encapsulated Fe3O4 nanospheres as superior anodes for Li-ion batteries. RSC Adv 2(6):2262–2265CrossRef
13.
Zurück zum Zitat Chen Y, Huang Q, Wang J, Wang Q, Xue J (2011) Synthesis of monodispersed SnO2@C composite hollow spheres for lithium ion battery anode applications. J Mater Chem 21:17448–17453CrossRef Chen Y, Huang Q, Wang J, Wang Q, Xue J (2011) Synthesis of monodispersed SnO2@C composite hollow spheres for lithium ion battery anode applications. J Mater Chem 21:17448–17453CrossRef
14.
Zurück zum Zitat Liu J, Xue D (2010) Hollow nanostructured anode materials for Li-ion batteries. Nanoscale Res Lett 5:1525–1534CrossRef Liu J, Xue D (2010) Hollow nanostructured anode materials for Li-ion batteries. Nanoscale Res Lett 5:1525–1534CrossRef
15.
Zurück zum Zitat Liu J, Xia H, Xue D, Lu L (2009) Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries. J Am Chem Soc 131(34):12086–12087CrossRef Liu J, Xia H, Xue D, Lu L (2009) Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries. J Am Chem Soc 131(34):12086–12087CrossRef
16.
Zurück zum Zitat Cheng F, Liang J, Tao Z, Chen J (2011) Functional materials for rechargeable batteries. Adv Mater 23:1695–1715CrossRef Cheng F, Liang J, Tao Z, Chen J (2011) Functional materials for rechargeable batteries. Adv Mater 23:1695–1715CrossRef
17.
Zurück zum Zitat Liu C, Li F, Ma L, Cheng H (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62CrossRef Liu C, Li F, Ma L, Cheng H (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62CrossRef
18.
Zurück zum Zitat Song H, Lee K, Kim M, Nazar L, Cho J (2010) Recent progress in nanostructured cathode materials for lithium secondary batteries. Adv Mater 20:3818–3834 Song H, Lee K, Kim M, Nazar L, Cho J (2010) Recent progress in nanostructured cathode materials for lithium secondary batteries. Adv Mater 20:3818–3834
19.
Zurück zum Zitat Arico A, Bruce P, Scrosati B, Tarascon J, Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377CrossRef Arico A, Bruce P, Scrosati B, Tarascon J, Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377CrossRef
20.
Zurück zum Zitat Liu J, Liu F, Gao K, Wu J, Xue D (2009) Recent developments in the chemical synthesis of inorganic porous capsules. J Mater Chem 19:6073–6084CrossRef Liu J, Liu F, Gao K, Wu J, Xue D (2009) Recent developments in the chemical synthesis of inorganic porous capsules. J Mater Chem 19:6073–6084CrossRef
21.
Zurück zum Zitat Liu J, Xia H, Lu L, Xue D (2010) Anisotropic Co3O4 porous nanocapsules toward high-capacity Li-ion batteries. J Mater Chem 20:1506–1510CrossRef Liu J, Xia H, Lu L, Xue D (2010) Anisotropic Co3O4 porous nanocapsules toward high-capacity Li-ion batteries. J Mater Chem 20:1506–1510CrossRef
22.
Zurück zum Zitat Liu J, Xue D (2010) Sn-based nanomaterials converted from SnS nanobelts: facile synthesis, characterizations, optical properties and energy storage performances. Electrochim Acta 56:243–250CrossRef Liu J, Xue D (2010) Sn-based nanomaterials converted from SnS nanobelts: facile synthesis, characterizations, optical properties and energy storage performances. Electrochim Acta 56:243–250CrossRef
23.
Zurück zum Zitat Liu J, Zhou Y, Liu C, Wang J, Pan Y, Xue D (2012) Self-assembled porous hierarchical-like CoO@C microsheets transformed from inorganic-organic precursors and their lithium-ion battery application. CrystEngComm 14(8):2669–2674CrossRef Liu J, Zhou Y, Liu C, Wang J, Pan Y, Xue D (2012) Self-assembled porous hierarchical-like CoO@C microsheets transformed from inorganic-organic precursors and their lithium-ion battery application. CrystEngComm 14(8):2669–2674CrossRef
24.
Zurück zum Zitat Bruce P, Scrosati B, Tarascon J (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–3946CrossRef Bruce P, Scrosati B, Tarascon J (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–3946CrossRef
25.
Zurück zum Zitat Wang H, Yang Y, Liang Y, Cui L, Casalongue H, Li Y, Hong G, Cui Y, Dai H (2011) LiMn1-xFexPO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries. Angew Chem Int Ed 50:7364–7368CrossRef Wang H, Yang Y, Liang Y, Cui L, Casalongue H, Li Y, Hong G, Cui Y, Dai H (2011) LiMn1-xFexPO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries. Angew Chem Int Ed 50:7364–7368CrossRef
26.
Zurück zum Zitat Goodenough J, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603CrossRef Goodenough J, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603CrossRef
27.
Zurück zum Zitat Ji L, Lin Z, Alcoutlabi M, Zhang X (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4:2682–2699CrossRef Ji L, Lin Z, Alcoutlabi M, Zhang X (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4:2682–2699CrossRef
28.
Zurück zum Zitat Beguin F, Szostak K, Lota G, Frackowiak E (2005) A self-supporting electrode for supercapacitors prepared by one-step pyrolysis of carbon nanotube/polyacrylonitrile blends. Adv Mater 17(19):2380–2384 Beguin F, Szostak K, Lota G, Frackowiak E (2005) A self-supporting electrode for supercapacitors prepared by one-step pyrolysis of carbon nanotube/polyacrylonitrile blends. Adv Mater 17(19):2380–2384
29.
Zurück zum Zitat Chen J, Minett AI, Liu Y, Lynam C, Sherrell P, Wang C, Wallace GG (2008) Direct growth of flexible carbon nanotube electrodes. Adv Mater 20(3):566–570 Chen J, Minett AI, Liu Y, Lynam C, Sherrell P, Wang C, Wallace GG (2008) Direct growth of flexible carbon nanotube electrodes. Adv Mater 20(3):566–570
30.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRef
31.
Zurück zum Zitat Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn J-H, Kim P, Choi J-Y, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706–710CrossRef Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn J-H, Kim P, Choi J-Y, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706–710CrossRef
32.
Zurück zum Zitat Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286CrossRef Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286CrossRef
33.
Zurück zum Zitat Geim AK, Novoselov KS (2007) The rise of graphene. Nature Mater 6(3):183–191CrossRef Geim AK, Novoselov KS (2007) The rise of graphene. Nature Mater 6(3):183–191CrossRef
34.
Zurück zum Zitat Avouris P, Chen Z, Perebeinos V (2007) Carbon-based electronics. Nat Nanotechnol 2(10):605–615CrossRef Avouris P, Chen Z, Perebeinos V (2007) Carbon-based electronics. Nat Nanotechnol 2(10):605–615CrossRef
35.
Zurück zum Zitat Bae S, Kim H, Lee Y, Xu X, Park J-S, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim Y-J, Kim KS, Ozyilmaz B, Ahn J-H, Hong BH, Iijima S (2010) Roll-to-roll production of 30-in. graphene films for transparent electrodes. Nat Nanotechnol 5(8):574–578CrossRef Bae S, Kim H, Lee Y, Xu X, Park J-S, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim Y-J, Kim KS, Ozyilmaz B, Ahn J-H, Hong BH, Iijima S (2010) Roll-to-roll production of 30-in. graphene films for transparent electrodes. Nat Nanotechnol 5(8):574–578CrossRef
36.
Zurück zum Zitat Geim AK (2009) Graphene: status and prospects. Science 324(5934):1530–1534CrossRef Geim AK (2009) Graphene: status and prospects. Science 324(5934):1530–1534CrossRef
37.
Zurück zum Zitat Lin YM, Dimitrakopoulos C, Jenkins KA, Farmer DB, Chiu HY, Grill A, Avouris P (2010) 100-GHz transistors from wafer-scale epitaxial graphene. Science 327(5966):662CrossRef Lin YM, Dimitrakopoulos C, Jenkins KA, Farmer DB, Chiu HY, Grill A, Avouris P (2010) 100-GHz transistors from wafer-scale epitaxial graphene. Science 327(5966):662CrossRef
38.
Zurück zum Zitat Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, Maan JC, Boebinger GS, Kim P, Geim AK (2007) Room-temperature quantum hall effect in graphene. Science 315(5817):1379CrossRef Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, Maan JC, Boebinger GS, Kim P, Geim AK (2007) Room-temperature quantum hall effect in graphene. Science 315(5817):1379CrossRef
39.
Zurück zum Zitat Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) The structure of suspended graphene sheets. Nature 446(7131):60–63CrossRef Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) The structure of suspended graphene sheets. Nature 446(7131):60–63CrossRef
40.
Zurück zum Zitat Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3(5):270–274CrossRef Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3(5):270–274CrossRef
41.
Zurück zum Zitat Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H (2008) Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol 3(9):538–542CrossRef Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H (2008) Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol 3(9):538–542CrossRef
42.
Zurück zum Zitat Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4(4):217–224CrossRef Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4(4):217–224CrossRef
43.
Zurück zum Zitat Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3(9):563–568CrossRef Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3(9):563–568CrossRef
44.
Zurück zum Zitat Li D, Mueller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3(2):101–105CrossRef Li D, Mueller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3(2):101–105CrossRef
45.
Zurück zum Zitat Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, McChesney JL, Ohta T, Reshanov SA, Roehrl J, Rotenberg E, Schmid AK, Waldmann D, Weber HB, Seyller T (2009) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Mater 8(3):203–207CrossRef Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, McChesney JL, Ohta T, Reshanov SA, Roehrl J, Rotenberg E, Schmid AK, Waldmann D, Weber HB, Seyller T (2009) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Mater 8(3):203–207CrossRef
46.
Zurück zum Zitat Sutter PW, Flege J-I, Sutter EA (2008) Epitaxial graphene on ruthenium. Nature Mater 7(5):406–411CrossRef Sutter PW, Flege J-I, Sutter EA (2008) Epitaxial graphene on ruthenium. Nature Mater 7(5):406–411CrossRef
47.
Zurück zum Zitat Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’homme RK, Brinson LC (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3(6):327–331CrossRef Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’homme RK, Brinson LC (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3(6):327–331CrossRef
48.
Zurück zum Zitat Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448(7152):457–460CrossRef Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448(7152):457–460CrossRef
49.
Zurück zum Zitat Wang C, Li D, Too CO, Wallace GG (2009) Electrochemical properties of graphene paper electrodes used in lithium batteries. Chem Mater 21(13):2604–2606CrossRef Wang C, Li D, Too CO, Wallace GG (2009) Electrochemical properties of graphene paper electrodes used in lithium batteries. Chem Mater 21(13):2604–2606CrossRef
50.
Zurück zum Zitat Goodenough J, Kim Y (2011) Challenges for rechargeable batteries. J Power Sources 196:6688–6694CrossRef Goodenough J, Kim Y (2011) Challenges for rechargeable batteries. J Power Sources 196:6688–6694CrossRef
51.
Zurück zum Zitat Tarascon J (2010) Key challenges in future Li-battery research. Phil Trans R Soc A 368:3227–3241CrossRef Tarascon J (2010) Key challenges in future Li-battery research. Phil Trans R Soc A 368:3227–3241CrossRef
52.
Zurück zum Zitat Abouimrane A, Compton OC, Amine K, Nguyen ST (2010) Non-annealed graphene paper as a binder-free anode for lithium-ion batteries. J Phys Chem C 114(29):12800–12804CrossRef Abouimrane A, Compton OC, Amine K, Nguyen ST (2010) Non-annealed graphene paper as a binder-free anode for lithium-ion batteries. J Phys Chem C 114(29):12800–12804CrossRef
53.
Zurück zum Zitat Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8(10):3498–3502CrossRef Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8(10):3498–3502CrossRef
54.
Zurück zum Zitat Zhang L, Shi G (2011) Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability. J Phys Chem C 115(34):17206–17212CrossRef Zhang L, Shi G (2011) Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability. J Phys Chem C 115(34):17206–17212CrossRef
55.
Zurück zum Zitat Lin Z, Liu Y, Yao Y, Hildreth OJ, Li Z, Moon K, Wong C (2011) Superior capacitance of functionalized graphene. J Phys Chem C 115(14):7120–7125 Lin Z, Liu Y, Yao Y, Hildreth OJ, Li Z, Moon K, Wong C (2011) Superior capacitance of functionalized graphene. J Phys Chem C 115(14):7120–7125
56.
Zurück zum Zitat Sun Y, Wu Q, Shi G (2011) Graphene based new energy materials. Energy Environ Sci 4(4):1113–1132CrossRef Sun Y, Wu Q, Shi G (2011) Graphene based new energy materials. Energy Environ Sci 4(4):1113–1132CrossRef
57.
Zurück zum Zitat Yu A, Roes I, Davies A, Chen Z (2010) Ultrathin, transparent, and flexible graphene films for supercapacitor application. Appl Phys Lett 96(25):253103–253105CrossRef Yu A, Roes I, Davies A, Chen Z (2010) Ultrathin, transparent, and flexible graphene films for supercapacitor application. Appl Phys Lett 96(25):253103–253105CrossRef
58.
Zurück zum Zitat El-Kady MF, Strong V, Dubin S, Kaner RB (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074):1326–1330CrossRef El-Kady MF, Strong V, Dubin S, Kaner RB (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074):1326–1330CrossRef
59.
Zurück zum Zitat Lin J, Zhong J, Bao D, Reiber-Kyle J, Wang W, Vullev V, Ozkan M, Ozkan CS (2012) Supercapacitors Based on Pillared Graphene Nanostructures. J Nanosci Nanotechnol 12(3):1770–1775CrossRef Lin J, Zhong J, Bao D, Reiber-Kyle J, Wang W, Vullev V, Ozkan M, Ozkan CS (2012) Supercapacitors Based on Pillared Graphene Nanostructures. J Nanosci Nanotechnol 12(3):1770–1775CrossRef
60.
Zurück zum Zitat Sun Y, Qiong W, Xu Y, Bai H, Li C, Shi G (2011) Highly conductive and flexible mesoporous graphitic films prepared by graphitizing the composites of graphene oxide and nanodiamond. J Mater Chem 21(20):7154–7160CrossRef Sun Y, Qiong W, Xu Y, Bai H, Li C, Shi G (2011) Highly conductive and flexible mesoporous graphitic films prepared by graphitizing the composites of graphene oxide and nanodiamond. J Mater Chem 21(20):7154–7160CrossRef
61.
Zurück zum Zitat Rakhi RB, Chen W, Cha D, Alshareef HN (2012) Nanostructured ternary electrodes for energy-storage applications. Adv Energy Mater 2(3):381–389CrossRef Rakhi RB, Chen W, Cha D, Alshareef HN (2012) Nanostructured ternary electrodes for energy-storage applications. Adv Energy Mater 2(3):381–389CrossRef
62.
Zurück zum Zitat Yang X, Zhu J, Qiu L, Li D (2011) Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors. Adv Mater 23(25):2833–2838CrossRef Yang X, Zhu J, Qiu L, Li D (2011) Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors. Adv Mater 23(25):2833–2838CrossRef
63.
Zurück zum Zitat Zhao X, Hayner CM, Kung MC, Kung HH (2011) Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications. ACS Nano 5(11):8739–8749CrossRef Zhao X, Hayner CM, Kung MC, Kung HH (2011) Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications. ACS Nano 5(11):8739–8749CrossRef
64.
Zurück zum Zitat Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332(6037):1537–1541CrossRef Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332(6037):1537–1541CrossRef
65.
Zurück zum Zitat Zhang LL, Zhao X, Stoller MD, Zhu Y, Ji H, Murali S, Wu Y, Perales S, Clevenger B, Ruoff RS (2012) Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett 12(4):1806–1812CrossRef Zhang LL, Zhao X, Stoller MD, Zhu Y, Ji H, Murali S, Wu Y, Perales S, Clevenger B, Ruoff RS (2012) Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett 12(4):1806–1812CrossRef
66.
Zurück zum Zitat Liu F, Song S, Xue D, Zhang H (2012) Folded structured graphene paper for high performance electrode materials. Adv Mater 24(8):1089–1094CrossRef Liu F, Song S, Xue D, Zhang H (2012) Folded structured graphene paper for high performance electrode materials. Adv Mater 24(8):1089–1094CrossRef
67.
Zurück zum Zitat Bai H, Li C, Shi G (2011) Functional composite materials based on chemically converted graphene. Adv Mater 23(9):1089–1115CrossRef Bai H, Li C, Shi G (2011) Functional composite materials based on chemically converted graphene. Adv Mater 23(9):1089–1115CrossRef
68.
Zurück zum Zitat Wang D-W, Li F, Zhao J, Ren W, Chen Z-G, Tan J, Wu Z-S, Gentle I, Lu GQ, Cheng H-M (2009) Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 3(7):1745–1752CrossRef Wang D-W, Li F, Zhao J, Ren W, Chen Z-G, Tan J, Wu Z-S, Gentle I, Lu GQ, Cheng H-M (2009) Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 3(7):1745–1752CrossRef
69.
Zurück zum Zitat Wang D, Kou R, Choi D, Yang Z, Nie Z, Li J, Saraf LV, Hu D, Zhang J, Graff GL, Liu J, Pope MA, Aksay IA (2010) Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage. ACS Nano 4(3):1587–1595CrossRef Wang D, Kou R, Choi D, Yang Z, Nie Z, Li J, Saraf LV, Hu D, Zhang J, Graff GL, Liu J, Pope MA, Aksay IA (2010) Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage. ACS Nano 4(3):1587–1595CrossRef
70.
Zurück zum Zitat Szczech J, Jin S (2011) Nanostructured silicon for high capacity lithium battery anodes. Energy Environ Sci 4:56–72CrossRef Szczech J, Jin S (2011) Nanostructured silicon for high capacity lithium battery anodes. Energy Environ Sci 4:56–72CrossRef
71.
Zurück zum Zitat Teki R, Datta M, Krishnan P, Parker T, Lu T, Kumta P, Koratkar N (2009) Nanostructured silicon anodes for lithium ion rechargeable batteries. Small 5:2236–2242CrossRef Teki R, Datta M, Krishnan P, Parker T, Lu T, Kumta P, Koratkar N (2009) Nanostructured silicon anodes for lithium ion rechargeable batteries. Small 5:2236–2242CrossRef
72.
Zurück zum Zitat Tao H-C, Fan L-Z, Mei Y, Qu X (2011) Self-supporting Si/Reduced Graphene Oxide nanocomposite films as anode for lithium ion batteries. Electrochem Commun 13(12):1332–1335CrossRef Tao H-C, Fan L-Z, Mei Y, Qu X (2011) Self-supporting Si/Reduced Graphene Oxide nanocomposite films as anode for lithium ion batteries. Electrochem Commun 13(12):1332–1335CrossRef
73.
Zurück zum Zitat Liu S, Liu X, Li Z, Yang S, Wang J (2011) Fabrication of free-standing graphene/polyaniline nanofibers composite paper via electrostatic adsorption for electrochemical supercapacitors. New J Chem 35(2):369–374CrossRef Liu S, Liu X, Li Z, Yang S, Wang J (2011) Fabrication of free-standing graphene/polyaniline nanofibers composite paper via electrostatic adsorption for electrochemical supercapacitors. New J Chem 35(2):369–374CrossRef
74.
Zurück zum Zitat Yu A, Park HW, Davies A, Higgins DC, Chen Z, Xiao X (2011) Free-standing layer-by-layer hybrid thin film of graphene–MnO2 nanotube as anode for lithium ion batteries. J Phys Chem Lett 2(15):1855–1860CrossRef Yu A, Park HW, Davies A, Higgins DC, Chen Z, Xiao X (2011) Free-standing layer-by-layer hybrid thin film of graphene–MnO2 nanotube as anode for lithium ion batteries. J Phys Chem Lett 2(15):1855–1860CrossRef
75.
Zurück zum Zitat Liu F, Xue D (2012) Flexible composite electrodes upon aerogel derived graphene paper towards lithium-ion batteries. Energ Environ Focus 1(2):93–98 Liu F, Xue D (2012) Flexible composite electrodes upon aerogel derived graphene paper towards lithium-ion batteries. Energ Environ Focus 1(2):93–98
76.
Zurück zum Zitat Kang Y-R, Li Y-L, Hou F, Wen Y-Y, Su D (2012) Fabrication of electric papers of graphene nanosheet shelled cellulose fibres by dispersion and infiltration as flexible electrodes for energy storage. Nanoscale 4(10):3248–3253CrossRef Kang Y-R, Li Y-L, Hou F, Wen Y-Y, Su D (2012) Fabrication of electric papers of graphene nanosheet shelled cellulose fibres by dispersion and infiltration as flexible electrodes for energy storage. Nanoscale 4(10):3248–3253CrossRef
77.
Zurück zum Zitat Weng Z, Su Y, Wang D-W, Li F, Du J, Cheng H-M (2011) Graphene-cellulose paper flexible supercapacitors. Adv Energy Mater 1(5):917–922CrossRef Weng Z, Su Y, Wang D-W, Li F, Du J, Cheng H-M (2011) Graphene-cellulose paper flexible supercapacitors. Adv Energy Mater 1(5):917–922CrossRef
78.
Zurück zum Zitat Tai Z, Yan X, Lang J, Xue Q (2012) Enhancement of capacitance performance of flexible carbon nanofiber paper by adding graphene nanosheets. J Power Sources 199:373–378 Tai Z, Yan X, Lang J, Xue Q (2012) Enhancement of capacitance performance of flexible carbon nanofiber paper by adding graphene nanosheets. J Power Sources 199:373–378
Metadaten
Titel
Chemical Routes to Graphene-Based Flexible Electrodes for Electrochemical Energy Storage
verfasst von
Fei Liu
Dongfeng Xue
Copyright-Jahr
2014
Verlag
Springer London
DOI
https://doi.org/10.1007/978-1-4471-6473-9_15