Skip to main content
Erschienen in: Journal of Materials Science 2/2017

09.09.2016 | Original Paper

Chemical surface modification of graphene oxide by femtosecond laser pulse irradiation in aqueous suspensions

verfasst von: Muttaqin, Takahiro Nakamura, Yuta Nishina, Shunichi Sato

Erschienen in: Journal of Materials Science | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Reduction of graphene oxide (GO) by femtosecond laser pulse irradiation of an aqueous suspension was studied. Different laser parameters such as laser fluence and irradiation time were scanned to obtain the optimum reduced graphene oxide (rGO) with fewer defect sites and lower electrical resistivity. The fabricated rGO samples were characterized using several techniques such as X-ray diffraction, UV–Visible absorption spectrometry, Raman spectroscopy, X-ray photoelectron spectroscopy, and others. The XRD profiles of rGO revealed that the interplanar spacing between carbon layers significantly decreased to 3.51 Å, which is close to that of pristine graphite. Furthermore, the intensity ratio of D and G bands of rGO measured by Raman spectroscopy was more than 20 % smaller than that of GO, indicating the enhancement of sp2 domains. It is noted that the defect sites and the disorder carbon double bond networks on the basal graphene plane were relatively decreased after reduction. In addition, the electrical resistivity of rGO significantly decreased to 3.3 Ω·cm under the optimum condition. From these results, femtosecond laser can be used as a suitable tool for GO reduction because it is a simple, controllable, and flexible method for getting highly reduced graphene oxide.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV, Jiang D, Dubonos SV, Grigorieva IV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Dubonos SV, Grigorieva IV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef
2.
Zurück zum Zitat Orlita M, Faugeras C, Plochocka P, Neugebauer P, Martinez G, Maude DK et al (2008) Approaching the dirac point in high-mobility multilayer epitaxial graphene. Phys Rev Lett 101:267601–267604CrossRef Orlita M, Faugeras C, Plochocka P, Neugebauer P, Martinez G, Maude DK et al (2008) Approaching the dirac point in high-mobility multilayer epitaxial graphene. Phys Rev Lett 101:267601–267604CrossRef
3.
Zurück zum Zitat Balandin AA, Gosh S, Bao W, Calizo I, Teweldebrhan D, Miao F et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef Balandin AA, Gosh S, Bao W, Calizo I, Teweldebrhan D, Miao F et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef
4.
Zurück zum Zitat Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef
5.
Zurück zum Zitat Loh KP, Bao Q, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical application. Nat Chem 2:1015–1024CrossRef Loh KP, Bao Q, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical application. Nat Chem 2:1015–1024CrossRef
6.
Zurück zum Zitat Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ et al (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541CrossRef Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ et al (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541CrossRef
7.
Zurück zum Zitat Bian X, Song ZL, Qian Y, Gao W, Cheng ZQ, Chen L et al (2014) Fabrication of graphene-isolated-Au-nanocrystal nanostructures for multimodal cell imaging and photothermal-enhanced chemotherapy. Sci Rep 4:6093–6101CrossRef Bian X, Song ZL, Qian Y, Gao W, Cheng ZQ, Chen L et al (2014) Fabrication of graphene-isolated-Au-nanocrystal nanostructures for multimodal cell imaging and photothermal-enhanced chemotherapy. Sci Rep 4:6093–6101CrossRef
8.
Zurück zum Zitat Wang X, Zhi L, Müllen K (2008) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 8:323–327CrossRef Wang X, Zhi L, Müllen K (2008) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 8:323–327CrossRef
9.
Zurück zum Zitat Hummers WS, Offeman EE (1953) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef Hummers WS, Offeman EE (1953) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef
10.
Zurück zum Zitat Eda G, Mattevi C, Yamaguchi H, Kim H, Chhowalla M (2009) Insulator to semimetal transition in graphene oxide. J Phys Chem C 113:15768–15771CrossRef Eda G, Mattevi C, Yamaguchi H, Kim H, Chhowalla M (2009) Insulator to semimetal transition in graphene oxide. J Phys Chem C 113:15768–15771CrossRef
11.
Zurück zum Zitat Eda G, Franchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nano 3:270–274CrossRef Eda G, Franchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nano 3:270–274CrossRef
12.
Zurück zum Zitat Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50:3210–3228CrossRef Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50:3210–3228CrossRef
13.
Zurück zum Zitat Cote LJ, Silva RC, Huang J (2009) Flash reduction and patterning of graphite oxide and its polymer composite. J Am Chem Soc 131:11027–11032CrossRef Cote LJ, Silva RC, Huang J (2009) Flash reduction and patterning of graphite oxide and its polymer composite. J Am Chem Soc 131:11027–11032CrossRef
14.
Zurück zum Zitat Ng YH, Iwase A, Kudo A, Amal R (2010) Reducing graphene oxide on a visible-light BiVO4 photocatalyst for enhanced photoelectrochemical water splitting. J Phys Chem Lett 1:2607–2612CrossRef Ng YH, Iwase A, Kudo A, Amal R (2010) Reducing graphene oxide on a visible-light BiVO4 photocatalyst for enhanced photoelectrochemical water splitting. J Phys Chem Lett 1:2607–2612CrossRef
15.
Zurück zum Zitat Zhang Y, Guo L, Wei S, He Y, Xia H, Chen Q et al (2010) Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today 5:15–20CrossRef Zhang Y, Guo L, Wei S, He Y, Xia H, Chen Q et al (2010) Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today 5:15–20CrossRef
16.
Zurück zum Zitat Compagnini G, Russo P, Tomarchio F, Puglisi O, D’Urso L et al (2012) Laser assisted green synthesis of free standing reduced graphene oxides at the water-air interface. Nanotechnology 23:505601–505606CrossRef Compagnini G, Russo P, Tomarchio F, Puglisi O, D’Urso L et al (2012) Laser assisted green synthesis of free standing reduced graphene oxides at the water-air interface. Nanotechnology 23:505601–505606CrossRef
17.
Zurück zum Zitat Gao W, Singh N, Song L, Liu Z, Reddy ALM, Ci L et al (2011) Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat Nanotechnol. doi:10.1038/NNANO.2011.110 Gao W, Singh N, Song L, Liu Z, Reddy ALM, Ci L et al (2011) Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat Nanotechnol. doi:10.​1038/​NNANO.​2011.​110
18.
Zurück zum Zitat Chichkov BN, Momma S, Nolte S, von Alvensleben F, Tünnermann A (1996) Femtosecond, picosecond and nanosecond laser ablation of solids. Appl Phys A 63:109–115CrossRef Chichkov BN, Momma S, Nolte S, von Alvensleben F, Tünnermann A (1996) Femtosecond, picosecond and nanosecond laser ablation of solids. Appl Phys A 63:109–115CrossRef
19.
Zurück zum Zitat Miyamoto Y, Zhang H, Tománek D (2010) Photoexfoliation of graphene from graphite: an ab initio study. Phys Rev Lett 104:208302–208305CrossRef Miyamoto Y, Zhang H, Tománek D (2010) Photoexfoliation of graphene from graphite: an ab initio study. Phys Rev Lett 104:208302–208305CrossRef
20.
Zurück zum Zitat Zhang H, Miyamoto Y (2012) Graphene production by laser shot on graphene oxide; ab initio prediction. Phys Rev B 85:033402–033405CrossRef Zhang H, Miyamoto Y (2012) Graphene production by laser shot on graphene oxide; ab initio prediction. Phys Rev B 85:033402–033405CrossRef
21.
Zurück zum Zitat Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A et al (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814CrossRef Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A et al (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814CrossRef
22.
Zurück zum Zitat Shang J, Ma L, Li J, Ai W, Yu T, Gurzadyan GG (2012) The origin of fluorescence from graphene oxide. Sci Rep 2:792–799CrossRef Shang J, Ma L, Li J, Ai W, Yu T, Gurzadyan GG (2012) The origin of fluorescence from graphene oxide. Sci Rep 2:792–799CrossRef
23.
Zurück zum Zitat Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S (2010) Reduction of graphene oxide vial-ascorbic acid. Chem Commun 46:1112–1114CrossRef Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S (2010) Reduction of graphene oxide vial-ascorbic acid. Chem Commun 46:1112–1114CrossRef
24.
Zurück zum Zitat Spanò SF, Isgrò G, Russo P, Fragalà ME, Compagnini G (2014) Tunable properties of graphene oxide reduced by laser irradiation. Appl Phys A 117:19–23CrossRef Spanò SF, Isgrò G, Russo P, Fragalà ME, Compagnini G (2014) Tunable properties of graphene oxide reduced by laser irradiation. Appl Phys A 117:19–23CrossRef
25.
Zurück zum Zitat Nethravathi C, Rajamathi M (2008) Chemical modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 46:1994–1998CrossRef Nethravathi C, Rajamathi M (2008) Chemical modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 46:1994–1998CrossRef
26.
Zurück zum Zitat Kim MC, Hwang GS, Ruoff RS (2009) Epoxide reduction with hydrazine on graphene: a first principles study. J Chem Phys 131:064704–064708CrossRef Kim MC, Hwang GS, Ruoff RS (2009) Epoxide reduction with hydrazine on graphene: a first principles study. J Chem Phys 131:064704–064708CrossRef
27.
Zurück zum Zitat Shin HJ, Kim KK, Benayad A, Yoon SM, Park HK, Jung IS et al (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater 19:1987–1992CrossRef Shin HJ, Kim KK, Benayad A, Yoon SM, Park HK, Jung IS et al (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater 19:1987–1992CrossRef
28.
Zurück zum Zitat Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102:4477–4482CrossRef Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102:4477–4482CrossRef
29.
Zurück zum Zitat Whitby RLD, Gun’ko VM, Korobeinyk A, Busquets R, Cundy AB, Lászlo K (2012) Driving forces of conformational changes in single-layer graphene oxide. ACS Nano 6:3967–3973CrossRef Whitby RLD, Gun’ko VM, Korobeinyk A, Busquets R, Cundy AB, Lászlo K (2012) Driving forces of conformational changes in single-layer graphene oxide. ACS Nano 6:3967–3973CrossRef
30.
Zurück zum Zitat Yan J, Zhang Y, Kim P, Pinczuk A (2007) Electric field effect tuning of electron-phonon coupling in graphene. Phys Rev Lett 98:166802–166805CrossRef Yan J, Zhang Y, Kim P, Pinczuk A (2007) Electric field effect tuning of electron-phonon coupling in graphene. Phys Rev Lett 98:166802–166805CrossRef
31.
Zurück zum Zitat Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107CrossRef Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107CrossRef
32.
Zurück zum Zitat Valipour A, Hamnabard N, Ahn YH (2015) Performance evaluation of highly conductive graphene (RGOHI-AcOH) and graphene/metal nanoparticles composite (RGO/Ni) coated on carbon cloth for supercapacitor application. RSC Adv 5:92970–92979CrossRef Valipour A, Hamnabard N, Ahn YH (2015) Performance evaluation of highly conductive graphene (RGOHI-AcOH) and graphene/metal nanoparticles composite (RGO/Ni) coated on carbon cloth for supercapacitor application. RSC Adv 5:92970–92979CrossRef
33.
Zurück zum Zitat Chen W, Yan L, Bangal PR (2010) Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 48:1146–1152CrossRef Chen W, Yan L, Bangal PR (2010) Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 48:1146–1152CrossRef
34.
Zurück zum Zitat Ji T, Hua Y, Sun M, Ma N (2013) The mechanism of the reaction of graphite oxide to reduced graphene oxide under ultraviolet irradiation. Carbon 54:412–418CrossRef Ji T, Hua Y, Sun M, Ma N (2013) The mechanism of the reaction of graphite oxide to reduced graphene oxide under ultraviolet irradiation. Carbon 54:412–418CrossRef
35.
Zurück zum Zitat Nipane SV, Mali MG, Gokavi GS (2014) Reduced graphene oxide supported silicotungstic acid for efficient conversion of thiols to disulfides by hydrogen peroxide. Ind Eng Chem Res 53:3924–3930CrossRef Nipane SV, Mali MG, Gokavi GS (2014) Reduced graphene oxide supported silicotungstic acid for efficient conversion of thiols to disulfides by hydrogen peroxide. Ind Eng Chem Res 53:3924–3930CrossRef
36.
Zurück zum Zitat Pommeret S, Gobert F, Mostafavi M, Lampre I, Mialocq JC (2001) Femtochemistry of the hydrated electron at decimolar concentration. J Phys Chem A 105:11400–11406CrossRef Pommeret S, Gobert F, Mostafavi M, Lampre I, Mialocq JC (2001) Femtochemistry of the hydrated electron at decimolar concentration. J Phys Chem A 105:11400–11406CrossRef
37.
Zurück zum Zitat Xu SC, Irle S, Musaev DG, Lin MC (2006) Quantum chemical study of the dissociative adsorption of OH and H2O on pristine and defective graphite (0001) surfaces: reaction mechanisms and kinetics. J Phys Chem C 111:1355–1365CrossRef Xu SC, Irle S, Musaev DG, Lin MC (2006) Quantum chemical study of the dissociative adsorption of OH and H2O on pristine and defective graphite (0001) surfaces: reaction mechanisms and kinetics. J Phys Chem C 111:1355–1365CrossRef
38.
Zurück zum Zitat Gao X, Jang J, Nagase S (2009) Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J Phys Chem C 114:832–842CrossRef Gao X, Jang J, Nagase S (2009) Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J Phys Chem C 114:832–842CrossRef
39.
Zurück zum Zitat Chin SL, Lagacé S (1996) Generation of H2, O2 and H2O from water by the use of intense femtosecond laser pulses and the possibility of laser sterilization. Appl Opt 35:907–911CrossRef Chin SL, Lagacé S (1996) Generation of H2, O2 and H2O from water by the use of intense femtosecond laser pulses and the possibility of laser sterilization. Appl Opt 35:907–911CrossRef
40.
Zurück zum Zitat Besner S, Meunir M (2010) Femtosecond laser synthesis of Au Ag nanoalloys: photoinduced oxidation and ions release. J Phys Chem C 114:10403–10409CrossRef Besner S, Meunir M (2010) Femtosecond laser synthesis of Au Ag nanoalloys: photoinduced oxidation and ions release. J Phys Chem C 114:10403–10409CrossRef
41.
Zurück zum Zitat Xing WL, Lalwani G, Rusakova I, Sitharaman B (2014) Degradation of graphene by hydrogen peroxide. Part Part Syst Char 31:745–750CrossRef Xing WL, Lalwani G, Rusakova I, Sitharaman B (2014) Degradation of graphene by hydrogen peroxide. Part Part Syst Char 31:745–750CrossRef
42.
Zurück zum Zitat Wittmann G, Horváth I, Dombi A (2002) UV-induced decomposition of ozone and hydrogen peroxide in the aqueous phase at pH 2–7. Ozone Sci Eng 24:281–291CrossRef Wittmann G, Horváth I, Dombi A (2002) UV-induced decomposition of ozone and hydrogen peroxide in the aqueous phase at pH 2–7. Ozone Sci Eng 24:281–291CrossRef
43.
Zurück zum Zitat Liu B, Yin S, Wang Y, Guo C, Wu X, Dong Q et al (2015) A facile one-step solvothermal synthesis and electrical properties of reduced graphene oxide/rod-shaped potassium tungsten bronze nanocomposite. J Nanosci Nanotechnol 15:7305–7310CrossRef Liu B, Yin S, Wang Y, Guo C, Wu X, Dong Q et al (2015) A facile one-step solvothermal synthesis and electrical properties of reduced graphene oxide/rod-shaped potassium tungsten bronze nanocomposite. J Nanosci Nanotechnol 15:7305–7310CrossRef
Metadaten
Titel
Chemical surface modification of graphene oxide by femtosecond laser pulse irradiation in aqueous suspensions
verfasst von
Muttaqin
Takahiro Nakamura
Yuta Nishina
Shunichi Sato
Publikationsdatum
09.09.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 2/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0368-8

Weitere Artikel der Ausgabe 2/2017

Journal of Materials Science 2/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.