Skip to main content
Erschienen in: Journal of Materials Science 2/2017

21.09.2016 | Review

Carbon nanotube-based interconnections

verfasst von: J. Mittal, K. L. Lin

Erschienen in: Journal of Materials Science | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Reductions in feature size and function integration require either replacement or modification of existing interconnect materials to fit ever advancing technology. Due to their remarkable properties, carbon nanotubes (CNTs) are selected as candidates for future interconnect material. It is hopeful to help move the Moore’s law further since it is presently hindered by the current Cu- and Si-based technologies. The present paper serves as a compendium of research work on the application of CNTs for interconnection applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Moore GE (1965) Cramming more components onto integrated circuits. Electronics 38:1–4 Moore GE (1965) Cramming more components onto integrated circuits. Electronics 38:1–4
2.
Zurück zum Zitat Tummala RR (2001) Fundamentals of microsystems packaging. McGraw Hill, New York 2001 Tummala RR (2001) Fundamentals of microsystems packaging. McGraw Hill, New York 2001
3.
Zurück zum Zitat International Technology Roadmap for Semiconductors—Assembly and Packaging (2003) International Technology Roadmap for Semiconductors—Assembly and Packaging (2003)
4.
Zurück zum Zitat Kumar KM, Kripesh V, Tay AAO (2008) Single-wall carbon nanotube (SWCNT) functionalized Sn–Ag–Cu lead-free composite solders. J. Alloys Compd 450:229–237CrossRef Kumar KM, Kripesh V, Tay AAO (2008) Single-wall carbon nanotube (SWCNT) functionalized Sn–Ag–Cu lead-free composite solders. J. Alloys Compd 450:229–237CrossRef
5.
Zurück zum Zitat Lu D, Wong CP (2009) Materials for advanced packaging. Springer, IrvineCrossRef Lu D, Wong CP (2009) Materials for advanced packaging. Springer, IrvineCrossRef
6.
Zurück zum Zitat Chen F, Gardner D (1998) Influence of line dimensions on the Resistance of Cu interconnections. IEEE Elect Dev Lett 19:508–510CrossRef Chen F, Gardner D (1998) Influence of line dimensions on the Resistance of Cu interconnections. IEEE Elect Dev Lett 19:508–510CrossRef
7.
Zurück zum Zitat Seraphim D, Lasky RC, Li CY (1989) Principles of Electronic Packaging., Mcgraw Hill Series in Electrical and Computer EngineeringMcgraw-Hill College publisher (US), New York Seraphim D, Lasky RC, Li CY (1989) Principles of Electronic Packaging., Mcgraw Hill Series in Electrical and Computer EngineeringMcgraw-Hill College publisher (US), New York
8.
Zurück zum Zitat Liu J, Kumar P, Dutta I, Raj R, Sidhu R (2011) Liquid phase sintered Cu–In composite solders for thermal interface material and interconnect applications. J Mater Sci 46:7012–7025. doi:10.1007/s10853-011-5670-x CrossRef Liu J, Kumar P, Dutta I, Raj R, Sidhu R (2011) Liquid phase sintered Cu–In composite solders for thermal interface material and interconnect applications. J Mater Sci 46:7012–7025. doi:10.​1007/​s10853-011-5670-x CrossRef
9.
11.
Zurück zum Zitat International Technology Roadmap for Semiconductors, (2004) International Technology Roadmap for Semiconductors, (2004)
12.
Zurück zum Zitat Lau JH (1994) Ball grid array technology., Electronic Packaging & Interconnection SeriesMcGraw Hill Professional publisher, New York Lau JH (1994) Ball grid array technology., Electronic Packaging & Interconnection SeriesMcGraw Hill Professional publisher, New York
13.
Zurück zum Zitat Steinhogl W, Schindler G, Steinlesberger G, Traving M, Engelhardt M (2005) Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller. J Appl Phys 97:023706CrossRef Steinhogl W, Schindler G, Steinlesberger G, Traving M, Engelhardt M (2005) Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller. J Appl Phys 97:023706CrossRef
14.
Zurück zum Zitat Im S, Srivastava N, Banerjee K, Goodson KE (2005) Scaling analysis of multilevel interconnect temperatures for high performance ICs. IEEE TED 52:2710CrossRef Im S, Srivastava N, Banerjee K, Goodson KE (2005) Scaling analysis of multilevel interconnect temperatures for high performance ICs. IEEE TED 52:2710CrossRef
15.
Zurück zum Zitat Srivastava N, Banerjee KA (2004) A comparative scaling analysis of metallic and carbon nanotube interconnections for nanometer scale VLSI technologies. VMIC Proceedings, pp 393–398 Srivastava N, Banerjee KA (2004) A comparative scaling analysis of metallic and carbon nanotube interconnections for nanometer scale VLSI technologies. VMIC Proceedings, pp 393–398
16.
Zurück zum Zitat Banerjee K, Srivastava N (2006) Are Carbon nanotubes the future of VLSI interconnections? In: ACM design automation conference proceedings, pp 809–814 Banerjee K, Srivastava N (2006) Are Carbon nanotubes the future of VLSI interconnections? In: ACM design automation conference proceedings, pp 809–814
17.
Zurück zum Zitat Tang KE (2012) Time varying long run mean of commodity prices and the modelling of futures term structures. Quant Financ 12:781–790CrossRef Tang KE (2012) Time varying long run mean of commodity prices and the modelling of futures term structures. Quant Financ 12:781–790CrossRef
18.
Zurück zum Zitat Volder MFL, Tawlick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial application. Science 339:535–539CrossRef Volder MFL, Tawlick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial application. Science 339:535–539CrossRef
19.
Zurück zum Zitat Hong TK, Lee DW, Choi HJ, Shin HS, Kim BS (2010) Transparent flexible conducting hybrid multilayer Thin films of multiwalled carbon nanotubes with grapheme nanosheets. ACS Nano 4:2861–2868 Hong TK, Lee DW, Choi HJ, Shin HS, Kim BS (2010) Transparent flexible conducting hybrid multilayer Thin films of multiwalled carbon nanotubes with grapheme nanosheets. ACS Nano 4:2861–2868
20.
Zurück zum Zitat Jiao L, Zhang L, Wang X, Diankov G, Dai H (2009) Narrow grapheme nanoribbons from carbon nanotubes. Nature 458:877–880CrossRef Jiao L, Zhang L, Wang X, Diankov G, Dai H (2009) Narrow grapheme nanoribbons from carbon nanotubes. Nature 458:877–880CrossRef
21.
Zurück zum Zitat Kang SJ, Kocabas C, Ozel T, Shim M, Pimparkar N, Alam MA et al (2007) High performance electronics using dense, perfectly aligned arrays of single wall carbon nanotubes. Nat Nanotech 2:230–236CrossRef Kang SJ, Kocabas C, Ozel T, Shim M, Pimparkar N, Alam MA et al (2007) High performance electronics using dense, perfectly aligned arrays of single wall carbon nanotubes. Nat Nanotech 2:230–236CrossRef
22.
Zurück zum Zitat Ding Y, Alias H, Wen D, Williams RA (2006) Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf 49:240–250CrossRef Ding Y, Alias H, Wen D, Williams RA (2006) Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf 49:240–250CrossRef
24.
Zurück zum Zitat Chai Y, Chan PCH, Fu Y, Chuang YC, Liu CY (2008) Electromigration studies of Cu/carbon nanotube composite interconnects using blech structure. IEEE Electron Device Lett 29:1001–1003CrossRef Chai Y, Chan PCH, Fu Y, Chuang YC, Liu CY (2008) Electromigration studies of Cu/carbon nanotube composite interconnects using blech structure. IEEE Electron Device Lett 29:1001–1003CrossRef
25.
26.
Zurück zum Zitat Iijima S, Icihashi T (1993) Single shell carbon nanotubes of 1 nm diameter. Nature 363:603–605CrossRef Iijima S, Icihashi T (1993) Single shell carbon nanotubes of 1 nm diameter. Nature 363:603–605CrossRef
27.
Zurück zum Zitat Anantram P, Léonard F (2006) Physics of carbon nanotube electronic devices. Rep Prog Phys 69:507–561CrossRef Anantram P, Léonard F (2006) Physics of carbon nanotube electronic devices. Rep Prog Phys 69:507–561CrossRef
28.
Zurück zum Zitat Graham P, Duesberg GS, Hoenlein W, Liebau M, Martin R, Kreupl F et al (2005) How do carbon nanotubes fit into the semiconductor roadmap? Appl Phys A 80:1141–1151CrossRef Graham P, Duesberg GS, Hoenlein W, Liebau M, Martin R, Kreupl F et al (2005) How do carbon nanotubes fit into the semiconductor roadmap? Appl Phys A 80:1141–1151CrossRef
30.
Zurück zum Zitat Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes- the route towards applications. Science 297:787–792CrossRef Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes- the route towards applications. Science 297:787–792CrossRef
31.
Zurück zum Zitat Radosavljević M, Lefebvre MJ, Johnson AT (2001) High-field electrical transport and breakdown in bundles of single-wall carbon nanotubes. Phys Rev B 64:241307RCrossRef Radosavljević M, Lefebvre MJ, Johnson AT (2001) High-field electrical transport and breakdown in bundles of single-wall carbon nanotubes. Phys Rev B 64:241307RCrossRef
32.
Zurück zum Zitat Banerjee K, Mehrotra A (2001) Global (Interconnect) Warming. IEEE Circuits Devices 17:16–32CrossRef Banerjee K, Mehrotra A (2001) Global (Interconnect) Warming. IEEE Circuits Devices 17:16–32CrossRef
33.
Zurück zum Zitat Banerjee K, Srivastava N (2006) Are Carbon nanotubes the future of VLSI interconnections? In: ACM Design Automation Conference, pp 809–814 Banerjee K, Srivastava N (2006) Are Carbon nanotubes the future of VLSI interconnections? In: ACM Design Automation Conference, pp 809–814
34.
Zurück zum Zitat Wei BQ, Vajtai R, Ajayan PM (2001) Reliability and current carrying capacity of CNT. Appl Phys Lett 79:1172–1174CrossRef Wei BQ, Vajtai R, Ajayan PM (2001) Reliability and current carrying capacity of CNT. Appl Phys Lett 79:1172–1174CrossRef
35.
Zurück zum Zitat Huang ML, Zhou Q, Zhao N, Liu XY, Zhang ZL (2014) Reverse polarity effect and cross-solder interaction in Cu/Sn–9Zn/Ni interconnect during liquid–solid electromigration. J Mater Sci 49:1755–1763. doi:10.1007/s10853-013-7862-z CrossRef Huang ML, Zhou Q, Zhao N, Liu XY, Zhang ZL (2014) Reverse polarity effect and cross-solder interaction in Cu/Sn–9Zn/Ni interconnect during liquid–solid electromigration. J Mater Sci 49:1755–1763. doi:10.​1007/​s10853-013-7862-z CrossRef
37.
Zurück zum Zitat Sharma P, Ahuja P (2008) Recent advances in the carbon nanotubes based electronics. Mater Res Bull 43:2517–2526CrossRef Sharma P, Ahuja P (2008) Recent advances in the carbon nanotubes based electronics. Mater Res Bull 43:2517–2526CrossRef
38.
Zurück zum Zitat Hone J, Whitney M, Piskoti C, Zettl A (1999) Thermal conductivity of single-walled carbon nanotubes. Phys Rev B 59:R2514–R2516CrossRef Hone J, Whitney M, Piskoti C, Zettl A (1999) Thermal conductivity of single-walled carbon nanotubes. Phys Rev B 59:R2514–R2516CrossRef
39.
Zurück zum Zitat Weast RC, Astle MJ (1980–1981) CRC hand book of chemistry and Physics, 61st edn. CRC press Inc. Boca Raton Weast RC, Astle MJ (1980–1981) CRC hand book of chemistry and Physics, 61st edn. CRC press Inc. Boca Raton
40.
Zurück zum Zitat Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T (1996) Electrical conductivity of individual carbon nanotubes. Nature 382:54–56CrossRef Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T (1996) Electrical conductivity of individual carbon nanotubes. Nature 382:54–56CrossRef
41.
Zurück zum Zitat Chowdhury T, Rohan JR (2013) Carbon nanotube composites for electronic interconnect application. In: Suzuki S (ed) Synthesis and applications of carbon nanotubes and their applications. InTech, Croatia Chowdhury T, Rohan JR (2013) Carbon nanotube composites for electronic interconnect application. In: Suzuki S (ed) Synthesis and applications of carbon nanotubes and their applications. InTech, Croatia
42.
Zurück zum Zitat Graham AP, Duesberg GS, Seidel RV, Liebau M, Unger E, Pamler W et al (2005) Carbon nanotubes for microelectronics? Small 1:382–390CrossRef Graham AP, Duesberg GS, Seidel RV, Liebau M, Unger E, Pamler W et al (2005) Carbon nanotubes for microelectronics? Small 1:382–390CrossRef
43.
Zurück zum Zitat Maniwa Y, Fujiwara R, Kira H, Tou H, Kataura H, Suzuki S et al (2001) Thermal expansion of single wall carbon nanotube (SWCNT) bundles: X-ray diffraction studies. Phy Rev B 64(1–3):241402(R)CrossRef Maniwa Y, Fujiwara R, Kira H, Tou H, Kataura H, Suzuki S et al (2001) Thermal expansion of single wall carbon nanotube (SWCNT) bundles: X-ray diffraction studies. Phy Rev B 64(1–3):241402(R)CrossRef
44.
Zurück zum Zitat Giancoli D (2009) Physics for scientists and engineers with modern physics, 4th edn. Prentice Hall, Upper Saddle River Giancoli D (2009) Physics for scientists and engineers with modern physics, 4th edn. Prentice Hall, Upper Saddle River
45.
Zurück zum Zitat Naeemi A, Sarvari R (2005) Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI). IEEE Elect Device Lett 26:84–86CrossRef Naeemi A, Sarvari R (2005) Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI). IEEE Elect Device Lett 26:84–86CrossRef
46.
Zurück zum Zitat Zhou Y, Sreekala S, Ajayan PM, Nayak SK (2008) Resistance of copper nanowires and comparison with carbon nanotube bundles for interconnect applications using first principles calculations. J Phys Condens Matter 20:095209CrossRef Zhou Y, Sreekala S, Ajayan PM, Nayak SK (2008) Resistance of copper nanowires and comparison with carbon nanotube bundles for interconnect applications using first principles calculations. J Phys Condens Matter 20:095209CrossRef
47.
Zurück zum Zitat Srivastava N, Joshi RV, Baneijee K (2005) Carbon nanotube interconnects: implications for performance, power dissipation and thermal management. IEEE IEDM pp 257–260 Srivastava N, Joshi RV, Baneijee K (2005) Carbon nanotube interconnects: implications for performance, power dissipation and thermal management. IEEE IEDM pp 257–260
48.
Zurück zum Zitat Li H, Yin WY, Banerjee K, Mao JF (2008) Circuit modelling and performance analysis of multi-walled carbon nanotube interconnects. IEEE Trans Electron Device 55:1328–1337CrossRef Li H, Yin WY, Banerjee K, Mao JF (2008) Circuit modelling and performance analysis of multi-walled carbon nanotube interconnects. IEEE Trans Electron Device 55:1328–1337CrossRef
49.
Zurück zum Zitat Haruehanroengra S, Wang W (2007) Analyzing conductance of mixed carbon-nanotube bundles for interconnect applications. IEEE Electron Device Lett 28:756–759CrossRef Haruehanroengra S, Wang W (2007) Analyzing conductance of mixed carbon-nanotube bundles for interconnect applications. IEEE Electron Device Lett 28:756–759CrossRef
50.
Zurück zum Zitat Kreupl F, Graham AP, Duesberg GS, Steinhögl W, Liebau M, Unger E (2002) Carbon nanotubes in interconnect applications. Microelectron Eng 64:399–408CrossRef Kreupl F, Graham AP, Duesberg GS, Steinhögl W, Liebau M, Unger E (2002) Carbon nanotubes in interconnect applications. Microelectron Eng 64:399–408CrossRef
51.
Zurück zum Zitat Naeemi A, Meindi JD (2007) Carbon nanotube interconnects Proceeding ISPD ‘07 77-84 Naeemi A, Meindi JD (2007) Carbon nanotube interconnects Proceeding ISPD ‘07 77-84
52.
Zurück zum Zitat Rueckes T, Kim K, Joselevich E, Tseng GV, Cheung CL, Lieber CM (2000) Carbon nanotube based nonvolatile random access memory for molecular computing. Science 289:94–97CrossRef Rueckes T, Kim K, Joselevich E, Tseng GV, Cheung CL, Lieber CM (2000) Carbon nanotube based nonvolatile random access memory for molecular computing. Science 289:94–97CrossRef
53.
Zurück zum Zitat Cao Q, Kim HS, Pimparker N, Kulkarni JP, Wang C, Shim CM et al (2008) Medium scale carbon nanotube thin film integrated circuits on flexible plastic substrates. Nature 454:495–500CrossRef Cao Q, Kim HS, Pimparker N, Kulkarni JP, Wang C, Shim CM et al (2008) Medium scale carbon nanotube thin film integrated circuits on flexible plastic substrates. Nature 454:495–500CrossRef
55.
Zurück zum Zitat Kumar VR, Kaushik BK, Patnaik A (2014) An accurate FDTD model for crosstalk analysis of CMOS-gate-driven coupled RLC interconnects. IEEE Trans Electromagn Compat 56:1185–1193CrossRef Kumar VR, Kaushik BK, Patnaik A (2014) An accurate FDTD model for crosstalk analysis of CMOS-gate-driven coupled RLC interconnects. IEEE Trans Electromagn Compat 56:1185–1193CrossRef
56.
Zurück zum Zitat Kumar VR, Alam A, Kaushik BK, Patnaik A (2015) An unconditionally stable FDTD model for crosstalk analysis of VLSI interconnects. IEEE Trans Compon Packag Manuf Technol 5:1810–1817CrossRef Kumar VR, Alam A, Kaushik BK, Patnaik A (2015) An unconditionally stable FDTD model for crosstalk analysis of VLSI interconnects. IEEE Trans Compon Packag Manuf Technol 5:1810–1817CrossRef
57.
Zurück zum Zitat Kumar VR, Kaushik BK, Patnaik A (2015) Crosstalk noise modeling of multiwall carbon nanotube (MWCNT) interconnects using finite-difference time-domain (FDTD) technique. Microelectron Reliab y 55:155–163CrossRef Kumar VR, Kaushik BK, Patnaik A (2015) Crosstalk noise modeling of multiwall carbon nanotube (MWCNT) interconnects using finite-difference time-domain (FDTD) technique. Microelectron Reliab y 55:155–163CrossRef
58.
Zurück zum Zitat Kumar VR, Kaushik BK, Patnaik A (2015) Improved crosstalk noise modeling of MWCNT interconnects using FDTD technique. Microelectron J 46:1263–1268CrossRef Kumar VR, Kaushik BK, Patnaik A (2015) Improved crosstalk noise modeling of MWCNT interconnects using FDTD technique. Microelectron J 46:1263–1268CrossRef
59.
Zurück zum Zitat Majumder MK, Kaushik BK, Manhas SK (2014) Analysis of delay and dynamic crosstalk in bundled carbon nanotube interconnects 56:1666–1673 Majumder MK, Kaushik BK, Manhas SK (2014) Analysis of delay and dynamic crosstalk in bundled carbon nanotube interconnects 56:1666–1673
60.
Zurück zum Zitat Majumder MK, Pandya ND, Kaushik BK, Manhas SK (2012) Dynamic crosstalk effect in mixed CNT bundle interconnects. Electron Lett 48:384–385CrossRef Majumder MK, Pandya ND, Kaushik BK, Manhas SK (2012) Dynamic crosstalk effect in mixed CNT bundle interconnects. Electron Lett 48:384–385CrossRef
61.
Zurück zum Zitat Subash S, Kolar J, Chowdhury MH (2011) A new spatially rearranged bundle of mixed carbon nanotubes as VLSI interconnection. IEEE Trans Nanotech 12:3–12CrossRef Subash S, Kolar J, Chowdhury MH (2011) A new spatially rearranged bundle of mixed carbon nanotubes as VLSI interconnection. IEEE Trans Nanotech 12:3–12CrossRef
62.
Zurück zum Zitat Majumder MK, Das PK, Kumar VR, Kaushik BK (2015) Crosstalk induced delay analysis of randomly distributed mixed CNT bundle interconnect. J Circuits Syst Comput 24:1550145CrossRef Majumder MK, Das PK, Kumar VR, Kaushik BK (2015) Crosstalk induced delay analysis of randomly distributed mixed CNT bundle interconnect. J Circuits Syst Comput 24:1550145CrossRef
63.
Zurück zum Zitat Naeemi A, Meindl JD (2006) Compact physical models for multiwall carbon-nanotube interconnects. IEEE Electron Device Lett 27:338–340CrossRef Naeemi A, Meindl JD (2006) Compact physical models for multiwall carbon-nanotube interconnects. IEEE Electron Device Lett 27:338–340CrossRef
64.
Zurück zum Zitat Kreupl F (2008) Carbon nanotubes in microelectronic applications. In: Hierold C (ed) Advanced micro and nanosystems carbon nanotube devices. Wiley-VCH verlag Gmbh & Co. KGaA, Wenheim Kreupl F (2008) Carbon nanotubes in microelectronic applications. In: Hierold C (ed) Advanced micro and nanosystems carbon nanotube devices. Wiley-VCH verlag Gmbh & Co. KGaA, Wenheim
65.
Zurück zum Zitat Jiang J, Dong J, Yang HT, Xing DY (2001) Universal expression for localization length in metallic carbon nanotubes. Phys Rev B 64:045409CrossRef Jiang J, Dong J, Yang HT, Xing DY (2001) Universal expression for localization length in metallic carbon nanotubes. Phys Rev B 64:045409CrossRef
66.
Zurück zum Zitat Li HJ, Lu WG, Li JJ, Bai XD, Gu CZ (2005) Multichannel ballistic transport in multiwall carbon nanotubes. Phys Rev Lett 95:86601CrossRef Li HJ, Lu WG, Li JJ, Bai XD, Gu CZ (2005) Multichannel ballistic transport in multiwall carbon nanotubes. Phys Rev Lett 95:86601CrossRef
67.
Zurück zum Zitat Collins PG, Arnold MS, Avouris P (2001) Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292:706–709CrossRef Collins PG, Arnold MS, Avouris P (2001) Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292:706–709CrossRef
68.
Zurück zum Zitat Snow ES, Novak JP, Campbell PM, Park D (2003) Random networks of carbon nanotubes as an electronic material. App Phys Lett 82:2145–2147CrossRef Snow ES, Novak JP, Campbell PM, Park D (2003) Random networks of carbon nanotubes as an electronic material. App Phys Lett 82:2145–2147CrossRef
69.
Zurück zum Zitat Javey A, Guo J, Paulsson M, Wang Q, Mann D, Lundstrom M et al (2004) High-field quasiballistic transport in short carbon nanotubes. Phys Rev lett 92:10684CrossRef Javey A, Guo J, Paulsson M, Wang Q, Mann D, Lundstrom M et al (2004) High-field quasiballistic transport in short carbon nanotubes. Phys Rev lett 92:10684CrossRef
70.
Zurück zum Zitat Tan CM, Baudot C, Han Y, Jing H (2012) Applications of multi-walled carbon nanotube in electronic packaging. Nanoscale Res Lett 7:1–7CrossRef Tan CM, Baudot C, Han Y, Jing H (2012) Applications of multi-walled carbon nanotube in electronic packaging. Nanoscale Res Lett 7:1–7CrossRef
71.
Zurück zum Zitat Strano MS, Dyke CA, Ursey ML, Barone PW, Allen MJ, Shan H et al (2003) Electronic structure control of single -walled carbon nanotube functionalization. Science 301:1519–1522CrossRef Strano MS, Dyke CA, Ursey ML, Barone PW, Allen MJ, Shan H et al (2003) Electronic structure control of single -walled carbon nanotube functionalization. Science 301:1519–1522CrossRef
72.
Zurück zum Zitat An L, Fu Q, Lu C, Liu J (2004) A simple chemical route to selectively eliminate metallic carbon nanotubes in nanotube network devices. J Am Chem Soc 126:10520–10521CrossRef An L, Fu Q, Lu C, Liu J (2004) A simple chemical route to selectively eliminate metallic carbon nanotubes in nanotube network devices. J Am Chem Soc 126:10520–10521CrossRef
73.
Zurück zum Zitat Chen J, Klinke C, Afzali A, Chan K, Avouris P (2004) Self-aligned carbon nanotube transistors with novel chemical doping. IEDM Technical Digest IEEE, pp 695–698 Chen J, Klinke C, Afzali A, Chan K, Avouris P (2004) Self-aligned carbon nanotube transistors with novel chemical doping. IEDM Technical Digest IEEE, pp 695–698
74.
Zurück zum Zitat Kochi JK, Rathore R, Magueres PL (2008) Stable dimeric aromatic cation radicals, structural and spectral characterization of through space charge delocalization. J Org Chem 65:6826–6836CrossRef Kochi JK, Rathore R, Magueres PL (2008) Stable dimeric aromatic cation radicals, structural and spectral characterization of through space charge delocalization. J Org Chem 65:6826–6836CrossRef
75.
Zurück zum Zitat Shen J, Puech P, Ondarçuhu T, Escoffier W, Raquet B, Monthioux M (2012) The effect of adsorbed species and exposure to sulfuric acid on the electrical conductance of individual single-wall carbon nanotube transistors. Carbon 50:3953–3956CrossRef Shen J, Puech P, Ondarçuhu T, Escoffier W, Raquet B, Monthioux M (2012) The effect of adsorbed species and exposure to sulfuric acid on the electrical conductance of individual single-wall carbon nanotube transistors. Carbon 50:3953–3956CrossRef
76.
Zurück zum Zitat Avouris P, Chen Z, Perebeinos V (2007) Carbon based electronics. Nat Nanotech 2:605–615CrossRef Avouris P, Chen Z, Perebeinos V (2007) Carbon based electronics. Nat Nanotech 2:605–615CrossRef
77.
Zurück zum Zitat Naeemi A, Sarvati R, Meindl JD (2004) Performance comparison between carbon nanotube and copper interconnects for GSI. IEDM Technical Digest, pp 699–702 Naeemi A, Sarvati R, Meindl JD (2004) Performance comparison between carbon nanotube and copper interconnects for GSI. IEDM Technical Digest, pp 699–702
78.
Zurück zum Zitat Lu W, Lieber CM (2007) Nanoelectronics from bottom. Nat Mater 6:841–850CrossRef Lu W, Lieber CM (2007) Nanoelectronics from bottom. Nat Mater 6:841–850CrossRef
79.
Zurück zum Zitat Zhu L, Sun Y, Hess DW, Wong CP (2006) Well aligned open ended carbon nanotube architectures: an approach for device assembly. Nano Lett 6:243–247CrossRef Zhu L, Sun Y, Hess DW, Wong CP (2006) Well aligned open ended carbon nanotube architectures: an approach for device assembly. Nano Lett 6:243–247CrossRef
80.
Zurück zum Zitat Kumar A, Pushparaj VL, Kar S, Nalamasu O, Ajayan PM, Baskaran R (2006) Contact transfer of aligned carbon nanotube arrays onto conducting substrates. Appl phy Lett 89:163120CrossRef Kumar A, Pushparaj VL, Kar S, Nalamasu O, Ajayan PM, Baskaran R (2006) Contact transfer of aligned carbon nanotube arrays onto conducting substrates. Appl phy Lett 89:163120CrossRef
81.
Zurück zum Zitat Brown WL, Jin S, Zhu W (2002) Article comprising vertically nano-interconnected circuit devices and method for making the same. US Patent 6,383,923B1 Brown WL, Jin S, Zhu W (2002) Article comprising vertically nano-interconnected circuit devices and method for making the same. US Patent 6,383,923B1
82.
Zurück zum Zitat Lo PY, Chiang JS, Wei J, Hwang CL, Wang HH, Lai MJ, Kao MJ (2004) Manufacturing method of carbon nanotube transistors. US Patent 6821911B1 Lo PY, Chiang JS, Wei J, Hwang CL, Wang HH, Lai MJ, Kao MJ (2004) Manufacturing method of carbon nanotube transistors. US Patent 6821911B1
83.
Zurück zum Zitat Schlaf R (2004) Method of producing an integrated circuit with a carbon nanotube. US patent 6835613B2 Schlaf R (2004) Method of producing an integrated circuit with a carbon nanotube. US patent 6835613B2
84.
Zurück zum Zitat Snow ES, Novak JP, Camphell PM (2005) Interconnected networks of single walled carbon nanotubes US Patent 6,918,284B2 Snow ES, Novak JP, Camphell PM (2005) Interconnected networks of single walled carbon nanotubes US Patent 6,918,284B2
85.
Zurück zum Zitat Zhang Y, Doyle BS, Bourianoff GI (2005) Multigate carbon nanotube transistors. US Patent 2005:6,972, 467B2 Zhang Y, Doyle BS, Bourianoff GI (2005) Multigate carbon nanotube transistors. US Patent 2005:6,972, 467B2
86.
Zurück zum Zitat Teo KC, Wong WK, Pan B (2008) Carbon nanotubes via interconnect, US patent 2008:7453154 B2 Teo KC, Wong WK, Pan B (2008) Carbon nanotubes via interconnect, US patent 2008:7453154 B2
87.
Zurück zum Zitat Ren ZF, Huang ZP, Wang DZ, Wen JG (1999) Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot. Appl Phys Lett 75:1086–1088CrossRef Ren ZF, Huang ZP, Wang DZ, Wen JG (1999) Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot. Appl Phys Lett 75:1086–1088CrossRef
88.
Zurück zum Zitat Talpatra S, Kar S, Pal SK, Vajtai R, Ci L, Victor P (2006) Direct growth of aligned carbon nanotubes on bulk metals. Nat Nanotech 1:12–16CrossRef Talpatra S, Kar S, Pal SK, Vajtai R, Ci L, Victor P (2006) Direct growth of aligned carbon nanotubes on bulk metals. Nat Nanotech 1:12–16CrossRef
89.
Zurück zum Zitat Li J, Ye Q, Cassell A, Ng HT, Stevens R, Han J, Meyyappan M (2003) Bottom-up approach for carbon nanotube interconnects. Appl Phys Lett 82:2491–2493CrossRef Li J, Ye Q, Cassell A, Ng HT, Stevens R, Han J, Meyyappan M (2003) Bottom-up approach for carbon nanotube interconnects. Appl Phys Lett 82:2491–2493CrossRef
90.
Zurück zum Zitat Li YJ, Sun J, Lau SP, Chen Y, Tay BK (2001) Carbon nanotube film prepared by thermal chemical vapor deposition at low temperature for field emission applications. Appl Phys Lett 79:1670–1672CrossRef Li YJ, Sun J, Lau SP, Chen Y, Tay BK (2001) Carbon nanotube film prepared by thermal chemical vapor deposition at low temperature for field emission applications. Appl Phys Lett 79:1670–1672CrossRef
91.
Zurück zum Zitat Wang Y (2005) Electronic assembly with carbon nanotube contact formations or interconnections, US patent 0285116A1 Wang Y (2005) Electronic assembly with carbon nanotube contact formations or interconnections, US patent 0285116A1
92.
Zurück zum Zitat Gstrein F, Lavale AR, Dubin V, Dominguez JE (2006) Carbon nanotube interconnect contacts. US patent 0281306A1 Gstrein F, Lavale AR, Dubin V, Dominguez JE (2006) Carbon nanotube interconnect contacts. US patent 0281306A1
93.
Zurück zum Zitat Gu S, Elmer J, Burke PA (2006) Use selective growth metallization to improve electrical connection between carbon nanotube and electrodes US patent 0292716A1 Gu S, Elmer J, Burke PA (2006) Use selective growth metallization to improve electrical connection between carbon nanotube and electrodes US patent 0292716A1
94.
Zurück zum Zitat Wakharkar V, Raravikar N (2008) Electronic packages and components thereof formed by co-deposited carbon nanotubes, US patent 0131658A1 Wakharkar V, Raravikar N (2008) Electronic packages and components thereof formed by co-deposited carbon nanotubes, US patent 0131658A1
95.
Zurück zum Zitat Kong J, Soh HT, Cassell AM, Quate CF, Dai H (1998) Synthesis of individual single walled carbon nanotubes on patterned silicon wafers. Nature 395:778–781CrossRef Kong J, Soh HT, Cassell AM, Quate CF, Dai H (1998) Synthesis of individual single walled carbon nanotubes on patterned silicon wafers. Nature 395:778–781CrossRef
96.
Zurück zum Zitat Brower CA, Zhou O, Zhu W (2001) Method for fabrication of patterned carbon nanotube films. US Patent 6277318B1 Brower CA, Zhou O, Zhu W (2001) Method for fabrication of patterned carbon nanotube films. US Patent 6277318B1
97.
Zurück zum Zitat Lin W, Xiu Y, Jiang H, Zhang R, Hildreth O, Moon KS et al (2008) Self-assembled monolayer-assisted chemical transfer of in situ functionalized carbon nanotube. J Am Chem Soc 130:9636–9637CrossRef Lin W, Xiu Y, Jiang H, Zhang R, Hildreth O, Moon KS et al (2008) Self-assembled monolayer-assisted chemical transfer of in situ functionalized carbon nanotube. J Am Chem Soc 130:9636–9637CrossRef
98.
Zurück zum Zitat Sun Y, Zhu L, Jiang H, Lu J, Wei W, Wong CP (2008) A paradigm of carbon nanotube interconnects in microelectronic packaging. J Electron Mater 37:1691–1697CrossRef Sun Y, Zhu L, Jiang H, Lu J, Wei W, Wong CP (2008) A paradigm of carbon nanotube interconnects in microelectronic packaging. J Electron Mater 37:1691–1697CrossRef
99.
Zurück zum Zitat Sagnes M, Broto JM, Raquet B, Ondarçuhu T, Laurent C, Flahaut E et al (2003) Alignment and nano-connections of isolated carbon nanotubes. Microelectron Eng 67–68:683–689CrossRef Sagnes M, Broto JM, Raquet B, Ondarçuhu T, Laurent C, Flahaut E et al (2003) Alignment and nano-connections of isolated carbon nanotubes. Microelectron Eng 67–68:683–689CrossRef
100.
Zurück zum Zitat Hayamizu Y, Yamada T, Mizuno K, Davis RC, Futaba DN, Yamura M et al (2008) Integrated three-dimensional microelectromechanical devices from processable carbon nanotubes wafers. Nat Nanotech 3:289–294CrossRef Hayamizu Y, Yamada T, Mizuno K, Davis RC, Futaba DN, Yamura M et al (2008) Integrated three-dimensional microelectromechanical devices from processable carbon nanotubes wafers. Nat Nanotech 3:289–294CrossRef
101.
Zurück zum Zitat Mittal N, Jain S, Mittal J (2015) Application of electron energy loss spectroscopy for single wall carbon nanotubes (Review). J. Appl. Spectrosc 82(1):1–12CrossRef Mittal N, Jain S, Mittal J (2015) Application of electron energy loss spectroscopy for single wall carbon nanotubes (Review). J. Appl. Spectrosc 82(1):1–12CrossRef
102.
Zurück zum Zitat Mittal J (2013) Synthesis of Co filled carbon nanotubes by in situ reduction of CoCl2 filled nanotubes by NaBH4. ISRN Mater Sci 16:1–4CrossRef Mittal J (2013) Synthesis of Co filled carbon nanotubes by in situ reduction of CoCl2 filled nanotubes by NaBH4. ISRN Mater Sci 16:1–4CrossRef
103.
Zurück zum Zitat Mittal J, Monthioux M, Allouche H, Stephan O (2001) Room temperature filling of single-wall carbon nanotubes with chromium oxide in open air. Chem Phys Lett 339(5):311–318CrossRef Mittal J, Monthioux M, Allouche H, Stephan O (2001) Room temperature filling of single-wall carbon nanotubes with chromium oxide in open air. Chem Phys Lett 339(5):311–318CrossRef
104.
Zurück zum Zitat Amrin S, Deshpande VD (2016) Electrical properties and conduction mechanism in carboxyl-functionalized multiwalled carbon nanotubes/poly(vinyl alcohol) composites. J Mater Sci 51:2453–2464. doi:10.1063/1.4946692 CrossRef Amrin S, Deshpande VD (2016) Electrical properties and conduction mechanism in carboxyl-functionalized multiwalled carbon nanotubes/poly(vinyl alcohol) composites. J Mater Sci 51:2453–2464. doi:10.​1063/​1.​4946692 CrossRef
105.
Zurück zum Zitat Zhang Q, Vichchulada P, Shivareddy SB, Lay MD (2012) Reducing electrical resistance in single-walled carbon nanotube networks: effect of the location of metal contacts and low-temperature annealing. J Mater Sci 47:3233. doi:10.1007/s10853-011-6161-9 CrossRef Zhang Q, Vichchulada P, Shivareddy SB, Lay MD (2012) Reducing electrical resistance in single-walled carbon nanotube networks: effect of the location of metal contacts and low-temperature annealing. J Mater Sci 47:3233. doi:10.​1007/​s10853-011-6161-9 CrossRef
106.
Zurück zum Zitat Mittal J, Lin KL (2011) The formation of electric circuits with carbon nanotubes and copper using tin solder. Carbon 49:4385–4391CrossRef Mittal J, Lin KL (2011) The formation of electric circuits with carbon nanotubes and copper using tin solder. Carbon 49:4385–4391CrossRef
107.
Zurück zum Zitat Delzeit LD (2005) Controlled patterning and growth of single wall and multiwall carbon nanotubes US patent 6858197BI Delzeit LD (2005) Controlled patterning and growth of single wall and multiwall carbon nanotubes US patent 6858197BI
108.
Zurück zum Zitat Nai SML, Wei J, Gupta M (2008) Effect of carbon nanotubes on shear strength and electrical resistivity of a lead-free solder. J Electron Mater 37:515–522CrossRef Nai SML, Wei J, Gupta M (2008) Effect of carbon nanotubes on shear strength and electrical resistivity of a lead-free solder. J Electron Mater 37:515–522CrossRef
109.
Zurück zum Zitat Zhang Y, Ichihashi T, Landree E, Nihey F, Iijima S (1999) Heterostructures of single walled carbon nanotube and carbide Nanorods. Science 285:1719–1722CrossRef Zhang Y, Ichihashi T, Landree E, Nihey F, Iijima S (1999) Heterostructures of single walled carbon nanotube and carbide Nanorods. Science 285:1719–1722CrossRef
110.
Zurück zum Zitat Li J, Mayyappan M (2006) carbon nanotube interconnect US patent 7094679B1 Li J, Mayyappan M (2006) carbon nanotube interconnect US patent 7094679B1
111.
Zurück zum Zitat Lu H, Bartch W, Burke PA (2005) Layout design and process to form nanotube cell from nanotube memory applications US patent 6969651B1 Lu H, Bartch W, Burke PA (2005) Layout design and process to form nanotube cell from nanotube memory applications US patent 6969651B1
112.
Zurück zum Zitat Nihei M, Kondo D, Kyabata A, Sato S, Shioya H, Sakaue M, et.al. (2005) Low-resistance multi-walled carbon nanotube vias with parallel channel conduction of inner shells. Interconnect Technology Conference, Proceedings of the IEEE 2005 International, pp 234–236 Nihei M, Kondo D, Kyabata A, Sato S, Shioya H, Sakaue M, et.al. (2005) Low-resistance multi-walled carbon nanotube vias with parallel channel conduction of inner shells. Interconnect Technology Conference, Proceedings of the IEEE 2005 International, pp 234–236
113.
Zurück zum Zitat Teo KC, Wong WK, Pan B (2008) Carbon nanotube via interconnect, US patent 7453154B2 Teo KC, Wong WK, Pan B (2008) Carbon nanotube via interconnect, US patent 7453154B2
114.
Zurück zum Zitat Wyland C (2009) carbon nanotubes based conductive connections for integrated circuit devices, US Patent 0212430A1 Wyland C (2009) carbon nanotubes based conductive connections for integrated circuit devices, US Patent 0212430A1
115.
Zurück zum Zitat Furukawa T, Hakey MC, Horak DV, Koburger CW, Masters ME, Mitchell PH, et al (2006) Integrated circuit chip utilizing carbon nanotubes composite interconnection vias. US Patent 7135773B2 Furukawa T, Hakey MC, Horak DV, Koburger CW, Masters ME, Mitchell PH, et al (2006) Integrated circuit chip utilizing carbon nanotubes composite interconnection vias. US Patent 7135773B2
116.
Zurück zum Zitat Lu H, Barth W, Burke PA (2005) Layout design and process to form nanotube cell for nanotube memory applications. US Patent 6969651B1 Lu H, Barth W, Burke PA (2005) Layout design and process to form nanotube cell for nanotube memory applications. US Patent 6969651B1
117.
Zurück zum Zitat Uang RH, Chen YH (2006) Self assembled nanometer conductive bumps and methods for fabricating. US patent 6989325B2 Uang RH, Chen YH (2006) Self assembled nanometer conductive bumps and methods for fabricating. US patent 6989325B2
118.
Zurück zum Zitat Kong J, Soh HT, Cassell AM, Quate CF, Dai H (1998) Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 375:878–881CrossRef Kong J, Soh HT, Cassell AM, Quate CF, Dai H (1998) Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 375:878–881CrossRef
120.
Zurück zum Zitat Su HC, Chen CH, Chen YC, Yao DJ, Hsin Chen H, Chang YC, Yew TR (2010) Improving the adhesion of carbon nanotubes to a substrate using microwave treatment. Carbon 48:805–812CrossRef Su HC, Chen CH, Chen YC, Yao DJ, Hsin Chen H, Chang YC, Yew TR (2010) Improving the adhesion of carbon nanotubes to a substrate using microwave treatment. Carbon 48:805–812CrossRef
121.
Zurück zum Zitat Mittal J, Lin KL (2013) Connecting carbon nanotubes using Sn. J Nanosci Nanotech 23:1–7 Mittal J, Lin KL (2013) Connecting carbon nanotubes using Sn. J Nanosci Nanotech 23:1–7
123.
Zurück zum Zitat Goldberger J, Hochbaum AI, Fan R, Yang P (2006) Silicon vertically integrated nanowire field effect transistors. Nano Lett 6:973–977CrossRef Goldberger J, Hochbaum AI, Fan R, Yang P (2006) Silicon vertically integrated nanowire field effect transistors. Nano Lett 6:973–977CrossRef
124.
Zurück zum Zitat Jeong SH, Shimura D, Simoyama T, Seki M, Yokoyama N, Ohtsuka M, Koshino K, Horikawa T, Tanaka Y, Morito K (2013) Low-loss, flat-topped and spectrally uniform silicon-nanowire-based 5th-order CROW fabricated by ArF-immersion lithography process on a 300-mm SOI wafer. Opt Express 21:30163–30174CrossRef Jeong SH, Shimura D, Simoyama T, Seki M, Yokoyama N, Ohtsuka M, Koshino K, Horikawa T, Tanaka Y, Morito K (2013) Low-loss, flat-topped and spectrally uniform silicon-nanowire-based 5th-order CROW fabricated by ArF-immersion lithography process on a 300-mm SOI wafer. Opt Express 21:30163–30174CrossRef
125.
Zurück zum Zitat Dionne JA, Sweatlock LA, Sheldon MT, Alivisatos AP, Atwater HA (2010) Silicon-based plasmonics for on-chip photonics. IEEE J Quantum Electron 16:295–306CrossRef Dionne JA, Sweatlock LA, Sheldon MT, Alivisatos AP, Atwater HA (2010) Silicon-based plasmonics for on-chip photonics. IEEE J Quantum Electron 16:295–306CrossRef
Metadaten
Titel
Carbon nanotube-based interconnections
verfasst von
J. Mittal
K. L. Lin
Publikationsdatum
21.09.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 2/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0416-4

Weitere Artikel der Ausgabe 2/2017

Journal of Materials Science 2/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.