Skip to main content

2013 | OriginalPaper | Buchkapitel

4. Chemical Vapor Deposition of Carbon Nanotubes

verfasst von : Zhifeng Ren, Yucheng Lan, Yang Wang

Erschienen in: Aligned Carbon Nanotubes

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Chemical vapor deposition is a popular industrial method to grow carbon nanotubes because of the mass production at low cost. Such method is also a very important technique to in situ align carbon nanotubes. In this chapter, we introduce various chemical vapor deposition methods, including thermal chemical vapor deposition and plasma-enhanced chemical vapor deposition, as well as the mechanism of growth and alignment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang, Large-scale synthesis of aligned carbon nanotubes. Science 274(5293), 1701–1703 (1996)ADSCrossRef W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang, Large-scale synthesis of aligned carbon nanotubes. Science 274(5293), 1701–1703 (1996)ADSCrossRef
2.
Zurück zum Zitat Z.W. Pan, S.S. Xie, B.H. Chang, C.Y. Wang, L. Lu, W. Liu, W.Y. Zhou, W.Z. Li, L.X. Qian, Very long carbon nanotubes. Nature 394(6694), 631–632 (1998)ADSCrossRef Z.W. Pan, S.S. Xie, B.H. Chang, C.Y. Wang, L. Lu, W. Liu, W.Y. Zhou, W.Z. Li, L.X. Qian, Very long carbon nanotubes. Nature 394(6694), 631–632 (1998)ADSCrossRef
3.
Zurück zum Zitat M. Terrones, N. Grobert, J. Olivares, J.P. Zhang, H. Terrones, K. Kordatos, W.K. Hsu, J.P. Hare, P.D. Townsend, K. Prassides, A.K. Cheetham, H.W. Kroto, D.R.M. Walton, Controlled production of aligned-nanotube bundles. Nature 388(6637), 52–55 (1997)ADSCrossRef M. Terrones, N. Grobert, J. Olivares, J.P. Zhang, H. Terrones, K. Kordatos, W.K. Hsu, J.P. Hare, P.D. Townsend, K. Prassides, A.K. Cheetham, H.W. Kroto, D.R.M. Walton, Controlled production of aligned-nanotube bundles. Nature 388(6637), 52–55 (1997)ADSCrossRef
4.
Zurück zum Zitat S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283(5401), 512–514 (1999)ADSCrossRef S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283(5401), 512–514 (1999)ADSCrossRef
5.
Zurück zum Zitat Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282, 1105–1107 (1998)ADSCrossRef Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282, 1105–1107 (1998)ADSCrossRef
6.
Zurück zum Zitat Y.C. Choi, Y.M. Shin, Y.H. Lee, B.S. Lee, G.-S. Park, W.B. Choi, N.S. Lee, J.M. Kim, Controlling the diameter, growth rate, and density of vertically aligned carbon nanotubes synthesized by microwave plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 76(17), 2367–2369 (2000)ADSCrossRef Y.C. Choi, Y.M. Shin, Y.H. Lee, B.S. Lee, G.-S. Park, W.B. Choi, N.S. Lee, J.M. Kim, Controlling the diameter, growth rate, and density of vertically aligned carbon nanotubes synthesized by microwave plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 76(17), 2367–2369 (2000)ADSCrossRef
7.
Zurück zum Zitat C. Bower, W. Zhu, S. Jin, O. Zhou, Plasma-induced alignment of carbon nanotubes. Appl. Phys. Lett. 77(6), 830–832 (2000)ADSCrossRef C. Bower, W. Zhu, S. Jin, O. Zhou, Plasma-induced alignment of carbon nanotubes. Appl. Phys. Lett. 77(6), 830–832 (2000)ADSCrossRef
8.
Zurück zum Zitat C. Bower, O. Zhou, W. Zhu, D.J. Werder, S. Jin, Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Appl. Phys. Lett. 77(17), 2767–2769 (2000)ADSCrossRef C. Bower, O. Zhou, W. Zhu, D.J. Werder, S. Jin, Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Appl. Phys. Lett. 77(17), 2767–2769 (2000)ADSCrossRef
9.
Zurück zum Zitat B.J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, L.G. Bachas, Aligned multiwalled carbon nanotube membranes. Science 303(5654), 62–65 (2004) B.J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, L.G. Bachas, Aligned multiwalled carbon nanotube membranes. Science 303(5654), 62–65 (2004)
10.
Zurück zum Zitat L. Ge, S. Sethi, L. Ci, P.M. Ajayan, A. Dhinojwala, Carbon nanotube-based synthetic gecko tapes. Proc. Natl. Acad. Sci. USA 104(26), 10792–10795 (2007)ADSCrossRef L. Ge, S. Sethi, L. Ci, P.M. Ajayan, A. Dhinojwala, Carbon nanotube-based synthetic gecko tapes. Proc. Natl. Acad. Sci. USA 104(26), 10792–10795 (2007)ADSCrossRef
11.
Zurück zum Zitat K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D.N. Futaba, M. Yumura, K. Hata, A black body absorber from vertically aligned single-walled carbon nanotubes. Proc. Natl. Acad. Sci. USA 106(15), 6044–6047 (2009)ADSCrossRef K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D.N. Futaba, M. Yumura, K. Hata, A black body absorber from vertically aligned single-walled carbon nanotubes. Proc. Natl. Acad. Sci. USA 106(15), 6044–6047 (2009)ADSCrossRef
12.
Zurück zum Zitat J.H. Chen, W.Z. Li, D.Z. Wang, S.X. Yang, J.G. Wen, Z.F. Ren, Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors. Carbon 40( 8), 1193–1197 (2002) J.H. Chen, W.Z. Li, D.Z. Wang, S.X. Yang, J.G. Wen, Z.F. Ren, Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors. Carbon 40( 8), 1193–1197 (2002)
13.
Zurück zum Zitat R.D. Bennett, G.Y. Xiong, Z.F. Ren, R.E. Cohen, Using block copolymer micellar thin films as templates for the production of catalysts for carbon nanotube growth. Chem. Mater. 16(26), 5589–5595 (2004)CrossRef R.D. Bennett, G.Y. Xiong, Z.F. Ren, R.E. Cohen, Using block copolymer micellar thin films as templates for the production of catalysts for carbon nanotube growth. Chem. Mater. 16(26), 5589–5595 (2004)CrossRef
14.
Zurück zum Zitat S.H. Jo, J.Y. Huang, S. Chen, G.Y. Xiong, D.Z. Wang, Z.F. Ren, Field emission of carbon nanotubes grown on carbon cloth. J. Vac. Sci. Technol. B 23(6), 2363–2368 (2005)CrossRef S.H. Jo, J.Y. Huang, S. Chen, G.Y. Xiong, D.Z. Wang, Z.F. Ren, Field emission of carbon nanotubes grown on carbon cloth. J. Vac. Sci. Technol. B 23(6), 2363–2368 (2005)CrossRef
15.
Zurück zum Zitat C.J. Lee, J.H. Park, J. Park, Synthesis of bamboo-shaped multiwalled carbon nanotubes using thermal chemical vapor deposition. Chem. Phys. Lett. 323(5–6), 560–565 (2000)ADSCrossRef C.J. Lee, J.H. Park, J. Park, Synthesis of bamboo-shaped multiwalled carbon nanotubes using thermal chemical vapor deposition. Chem. Phys. Lett. 323(5–6), 560–565 (2000)ADSCrossRef
16.
Zurück zum Zitat M. Zhang, S. Fang, A.A. Zakhidov, S.B. Lee, A.E. Aliev, C.D. Williams, K.R. Atkinson, R.H. Baughman, Strong, transparent, multifunctional, carbon nanotube sheets. Science 309(5738), 1215–1219 (2005)ADSCrossRef M. Zhang, S. Fang, A.A. Zakhidov, S.B. Lee, A.E. Aliev, C.D. Williams, K.R. Atkinson, R.H. Baughman, Strong, transparent, multifunctional, carbon nanotube sheets. Science 309(5738), 1215–1219 (2005)ADSCrossRef
17.
Zurück zum Zitat G. Zhang, D. Mann, L. Zhang, A. Javey, Y. Li, E. Yenilmez, Q. Wang, J.P. McVittie, Y. Nishi, J. Gibbons, H. Dai, Ultra-high-yield growth of vertical single-walled carbon nanotubes: hidden roles of hydrogen and oxygen. Proc. Nat. Acad. Sci. USA 102(45), 16141–16145 (2005)ADSCrossRef G. Zhang, D. Mann, L. Zhang, A. Javey, Y. Li, E. Yenilmez, Q. Wang, J.P. McVittie, Y. Nishi, J. Gibbons, H. Dai, Ultra-high-yield growth of vertical single-walled carbon nanotubes: hidden roles of hydrogen and oxygen. Proc. Nat. Acad. Sci. USA 102(45), 16141–16145 (2005)ADSCrossRef
18.
Zurück zum Zitat G.-Y. Xiong, D. Wang, Z. Ren, Aligned millimeter-long carbon nanotube arrays grown on single crystal magnesia. Carbon 44(5), 969–973 (2006)CrossRef G.-Y. Xiong, D. Wang, Z. Ren, Aligned millimeter-long carbon nanotube arrays grown on single crystal magnesia. Carbon 44(5), 969–973 (2006)CrossRef
19.
Zurück zum Zitat K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306(5700), 1362–1364 (2004) K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306(5700), 1362–1364 (2004)
20.
Zurück zum Zitat G.Y. Xiong, Y. Suda, D.Z. Wang, J.Y. Huang, Z.F. Ren, Effect of temperature, pressure, and gas ratio of methane to hydrogen on the synthesis of double-walled carbon nanotubes by chemical vapour deposition. Nanotechnology 16(4), 532–535 (2005)ADSCrossRef G.Y. Xiong, Y. Suda, D.Z. Wang, J.Y. Huang, Z.F. Ren, Effect of temperature, pressure, and gas ratio of methane to hydrogen on the synthesis of double-walled carbon nanotubes by chemical vapour deposition. Nanotechnology 16(4), 532–535 (2005)ADSCrossRef
21.
Zurück zum Zitat K. Hasegawa, S. Noda, Moderating carbon supply and suppressing ostwald ripening of catalyst particles to produce 4.5-mm-tall single-walled carbon nanotube forests. Carbon 49(13), 4497–4504 (2011)CrossRef K. Hasegawa, S. Noda, Moderating carbon supply and suppressing ostwald ripening of catalyst particles to produce 4.5-mm-tall single-walled carbon nanotube forests. Carbon 49(13), 4497–4504 (2011)CrossRef
22.
Zurück zum Zitat T. Sugai, T. Okazaki, H. Yoshida, H. Shinohara, Syntheses of single- and double-wall carbon nanotubes by the HTPAD and HFCVD methods. New J. Phys. 6, 21 (2004)ADSCrossRef T. Sugai, T. Okazaki, H. Yoshida, H. Shinohara, Syntheses of single- and double-wall carbon nanotubes by the HTPAD and HFCVD methods. New J. Phys. 6, 21 (2004)ADSCrossRef
23.
Zurück zum Zitat T.B. Massalski, H. Okamoto (eds.), Binary Alloy Phase Diagrams (ASM International, Materials Park, 1996) T.B. Massalski, H. Okamoto (eds.), Binary Alloy Phase Diagrams (ASM International, Materials Park, 1996)
24.
Zurück zum Zitat H. Ago, T. Komatsu, S. Ohshima, Y. Kuriki, M. Yumura, Dispersion of metal nanoparticles for aligned carbon nanotube arrays. Appl. Phys. Lett. 77(1), 79–81 (2000)ADSCrossRef H. Ago, T. Komatsu, S. Ohshima, Y. Kuriki, M. Yumura, Dispersion of metal nanoparticles for aligned carbon nanotube arrays. Appl. Phys. Lett. 77(1), 79–81 (2000)ADSCrossRef
25.
Zurück zum Zitat Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang, H. Dai, Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J. Phys. Chem. B 105(46), 11424–11431 (2001)CrossRef Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang, H. Dai, Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J. Phys. Chem. B 105(46), 11424–11431 (2001)CrossRef
26.
Zurück zum Zitat E.T. Thostenson, W.Z. Li, D.Z. Wang, Z.F. Ren, T.W. Chou, Carbon nanotube/carbon fiber hybrid multiscale composites. J. Appl. Phys. 91(9), 6034–6037 (2002)ADSCrossRef E.T. Thostenson, W.Z. Li, D.Z. Wang, Z.F. Ren, T.W. Chou, Carbon nanotube/carbon fiber hybrid multiscale composites. J. Appl. Phys. 91(9), 6034–6037 (2002)ADSCrossRef
27.
Zurück zum Zitat A.V. Melechko, V.I. Merkulov, T.E. McKnight, M.A. Guillorn, K.L. Klein, D.H. Lowndes, M.L. Simpson, Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly. J. Appl. Phys. 97(4), 041301/1–041301/39 (2005) A.V. Melechko, V.I. Merkulov, T.E. McKnight, M.A. Guillorn, K.L. Klein, D.H. Lowndes, M.L. Simpson, Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly. J. Appl. Phys. 97(4), 041301/1–041301/39 (2005)
28.
Zurück zum Zitat R. Baker, Catalytic growth of carbon filaments. Carbon 27(3), 315–323 (1989) R. Baker, Catalytic growth of carbon filaments. Carbon 27(3), 315–323 (1989)
29.
Zurück zum Zitat M. Endo, K. Takeuchi, K. Kobori, K. Takahashi, H.W. Kroto, A. Sarkar, Pyrolytic carbon nanotubes from vapor-grown carbon fibers. Carbon 33(7), 873–881 (1995) M. Endo, K. Takeuchi, K. Kobori, K. Takahashi, H.W. Kroto, A. Sarkar, Pyrolytic carbon nanotubes from vapor-grown carbon fibers. Carbon 33(7), 873–881 (1995)
30.
Zurück zum Zitat J.-C. Charlier, A. De Vita, X. Blase, R. Car, Microscopic growth mechanisms for carbon nanotubes. Science 275(5300), 647–649 (1997)CrossRef J.-C. Charlier, A. De Vita, X. Blase, R. Car, Microscopic growth mechanisms for carbon nanotubes. Science 275(5300), 647–649 (1997)CrossRef
31.
Zurück zum Zitat M. Yudasaka, R. Kikuchi, Y. Ohki, E. Ota, S. Yoshimura, Behavior of Ni in carbon nanotube nucleation. Appl. Phys. Lett. 70(14), 1817–1818 (1997)ADSCrossRef M. Yudasaka, R. Kikuchi, Y. Ohki, E. Ota, S. Yoshimura, Behavior of Ni in carbon nanotube nucleation. Appl. Phys. Lett. 70(14), 1817–1818 (1997)ADSCrossRef
32.
Zurück zum Zitat J.C. Charlier, S. Iijima, Growth Mechanisms of Carbon Nanotubes, in Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, ed by. M.S. Dresselhaus, G. Dresselhaus, P. Avouris. Topics in Applied Physics, vol 80 (Springer, Berlin, 2001), pp. 55–81 J.C. Charlier, S. Iijima, Growth Mechanisms of Carbon Nanotubes, in Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, ed by. M.S. Dresselhaus, G. Dresselhaus, P. Avouris. Topics in Applied Physics, vol 80 (Springer, Berlin, 2001), pp. 55–81
33.
Zurück zum Zitat T.W. Ebbesen (ed.), Carbon Nanotubes: Preparation and Properties (Chemical Rubber, Boca Raton, 1997) T.W. Ebbesen (ed.), Carbon Nanotubes: Preparation and Properties (Chemical Rubber, Boca Raton, 1997)
34.
Zurück zum Zitat H. Yoshida, S. Takeda, T. Uchiyama, H. Kohno, Y. Homma, Atomic-scale in-situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Lett. 8(7), 2082–2086 (2008)ADSCrossRef H. Yoshida, S. Takeda, T. Uchiyama, H. Kohno, Y. Homma, Atomic-scale in-situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Lett. 8(7), 2082–2086 (2008)ADSCrossRef
35.
Zurück zum Zitat S. Helveg, C. López-Cartes, J. Sehested, P.L. Hansen, B.S. Clausen, J.R. Rostrup-Nielsen, F. Abild-Pedersen, J.K. Nórskov, Atomic-scale imaging of carbon nanofibre growth. Nature 427, 426–429 (2004)ADSCrossRef S. Helveg, C. López-Cartes, J. Sehested, P.L. Hansen, B.S. Clausen, J.R. Rostrup-Nielsen, F. Abild-Pedersen, J.K. Nórskov, Atomic-scale imaging of carbon nanofibre growth. Nature 427, 426–429 (2004)ADSCrossRef
36.
Zurück zum Zitat K. Awasthi, A. Srivastava, O.N. Srivastava, Synthesis of carbon nanotubes. J. Nanosci. Nanotechnol. 5(10), 1616–1636 (2005) K. Awasthi, A. Srivastava, O.N. Srivastava, Synthesis of carbon nanotubes. J. Nanosci. Nanotechnol. 5(10), 1616–1636 (2005)
37.
Zurück zum Zitat W.Z. Li, D.Z. Wang, S.X. Yang, J.G. Wen, Z.F. Ren, Controlled growth of carbon nanotubes on graphite foil by chemical vapor deposition. Chem. Phys. Lett. 335, 141–149 (2001)ADSCrossRef W.Z. Li, D.Z. Wang, S.X. Yang, J.G. Wen, Z.F. Ren, Controlled growth of carbon nanotubes on graphite foil by chemical vapor deposition. Chem. Phys. Lett. 335, 141–149 (2001)ADSCrossRef
38.
Zurück zum Zitat G.B. Adams, O.F. Sankey, J.B. Page, M. O’Keeffe, D.A. Drabold, Energetics of large fullerenes: balls, tubes, and capsules. Science 256(5065), 1792–1795 (1992) G.B. Adams, O.F. Sankey, J.B. Page, M. O’Keeffe, D.A. Drabold, Energetics of large fullerenes: balls, tubes, and capsules. Science 256(5065), 1792–1795 (1992)
39.
Zurück zum Zitat J.F. Colomer, C. Stephan, S. Lefrant, G. Van Tendeloo, I. Willems, Z. Kónya, A. Fonseca, C. Laurent, J.B. Nagy, Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method. Chem. Phys. Lett. 317(1–2), 83–89 (2000)ADSCrossRef J.F. Colomer, C. Stephan, S. Lefrant, G. Van Tendeloo, I. Willems, Z. Kónya, A. Fonseca, C. Laurent, J.B. Nagy, Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method. Chem. Phys. Lett. 317(1–2), 83–89 (2000)ADSCrossRef
40.
Zurück zum Zitat B. Kitiyanan, W.E. Alvarez, J.H. Harwell, D.E. Resasco, Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co–Mo catalysts. Chem. Phys. Lett. 317(3–5), 497–503 (2000) B. Kitiyanan, W.E. Alvarez, J.H. Harwell, D.E. Resasco, Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co–Mo catalysts. Chem. Phys. Lett. 317(3–5), 497–503 (2000)
41.
Zurück zum Zitat J. Kong, H.T. Soh, A.M. Cassell, C.F. Quate, H. Dai, Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395(6705), 878–881 (1998)ADSCrossRef J. Kong, H.T. Soh, A.M. Cassell, C.F. Quate, H. Dai, Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395(6705), 878–881 (1998)ADSCrossRef
42.
Zurück zum Zitat S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430), 603–605 (1993)ADSCrossRef S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430), 603–605 (1993)ADSCrossRef
43.
Zurück zum Zitat J. Gavillet, J. Thibault, O. Stephan, H. Amara, A. Loiseau, C. Bichara, J.P. Gaspard, F. Ducastelle, Nucleation and growth of single-walled nanotubes: the role of metallic catalysts. J. Nanosci. Nanotechnol. 4(4), 346–359 (2004)CrossRef J. Gavillet, J. Thibault, O. Stephan, H. Amara, A. Loiseau, C. Bichara, J.P. Gaspard, F. Ducastelle, Nucleation and growth of single-walled nanotubes: the role of metallic catalysts. J. Nanosci. Nanotechnol. 4(4), 346–359 (2004)CrossRef
44.
Zurück zum Zitat A.R. Harutyunyan, The catalyst for growing single-walled carbon nanotubes by catalytic chemical vapor deposition method. J. Nanosci. Nanotechnol. 9(4), 2480–2495 (2009)MathSciNetCrossRef A.R. Harutyunyan, The catalyst for growing single-walled carbon nanotubes by catalytic chemical vapor deposition method. J. Nanosci. Nanotechnol. 9(4), 2480–2495 (2009)MathSciNetCrossRef
45.
Zurück zum Zitat C.T. Wirth, S. Hofmann, J. Robertson, State of the catalyst during carbon nanotube growth. Diam. Relat. Mater. 18(5–8), 940–945 (2009) C.T. Wirth, S. Hofmann, J. Robertson, State of the catalyst during carbon nanotube growth. Diam. Relat. Mater. 18(5–8), 940–945 (2009)
46.
Zurück zum Zitat Z.P. Huang, D.L. Carnahan, J. Rybczynski, M. Giersig, M. Sennett, D.Z. Wang, J.G. Wen, K. Kempa, Z.F. Ren, Growth of large periodic arrays of carbon nanotubes. Appl. Phys. Lett. 82(3), 460–462 (2003)ADSCrossRef Z.P. Huang, D.L. Carnahan, J. Rybczynski, M. Giersig, M. Sennett, D.Z. Wang, J.G. Wen, K. Kempa, Z.F. Ren, Growth of large periodic arrays of carbon nanotubes. Appl. Phys. Lett. 82(3), 460–462 (2003)ADSCrossRef
47.
Zurück zum Zitat J.B. In, C.P. Grigoropoulos, A.A. Chernov, A. Noy, Hidden role of trace gas impurities in chemical vapor deposition growth of vertically-aligned carbon nanotube arrays. Appl. Phys. Lett. 98(15), 153102 (2011)ADSCrossRef J.B. In, C.P. Grigoropoulos, A.A. Chernov, A. Noy, Hidden role of trace gas impurities in chemical vapor deposition growth of vertically-aligned carbon nanotube arrays. Appl. Phys. Lett. 98(15), 153102 (2011)ADSCrossRef
48.
Zurück zum Zitat W. Li, J. Wen, Z. Ren, Effect of temperature on growth and structure of carbon nanotubes by chemical vapor deposition. Appl. Phys. A 74(3), 397–402 (2002)ADSCrossRef W. Li, J. Wen, Z. Ren, Effect of temperature on growth and structure of carbon nanotubes by chemical vapor deposition. Appl. Phys. A 74(3), 397–402 (2002)ADSCrossRef
49.
Zurück zum Zitat Y. Tu, Z.P. Huang, D.Z. Wang, J.G. Wen, Z.F. Ren, Growth of aligned carbon nanotubes with controlled site density. Appl. Phys. Lett. 80(21), 4018–4020 (2002)ADSCrossRef Y. Tu, Z.P. Huang, D.Z. Wang, J.G. Wen, Z.F. Ren, Growth of aligned carbon nanotubes with controlled site density. Appl. Phys. Lett. 80(21), 4018–4020 (2002)ADSCrossRef
50.
Zurück zum Zitat W. Li, J. Wen, Y. Tu, Z. Ren, Effect of gas pressure on the growth and structure of carbon nanotubes by chemical vapor deposition. Appl. Phys. A 73(2), 259–264 (2001)ADSCrossRef W. Li, J. Wen, Y. Tu, Z. Ren, Effect of gas pressure on the growth and structure of carbon nanotubes by chemical vapor deposition. Appl. Phys. A 73(2), 259–264 (2001)ADSCrossRef
51.
Zurück zum Zitat R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4(5), 89–90 (1964)ADSCrossRef R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4(5), 89–90 (1964)ADSCrossRef
52.
Zurück zum Zitat S. Hofmann, C. Ducati, J. Robertson, B. Kleinsorge, Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 83(1), 135–137 (2003)ADSCrossRef S. Hofmann, C. Ducati, J. Robertson, B. Kleinsorge, Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 83(1), 135–137 (2003)ADSCrossRef
53.
Zurück zum Zitat S. Hofmann, C. Ducati, B. Kleinsorge, J. Robertson, Direct growth of aligned carbon nanotube field emitter arrays onto plastic substrates. Appl. Phys. Lett. 83(22), 4661–4663 (2003)ADSCrossRef S. Hofmann, C. Ducati, B. Kleinsorge, J. Robertson, Direct growth of aligned carbon nanotube field emitter arrays onto plastic substrates. Appl. Phys. Lett. 83(22), 4661–4663 (2003)ADSCrossRef
54.
Zurück zum Zitat M. Meyyappan, L. Delzeit, A. Cassell, D. Hash, Carbon nanotube growth by PECVD: a review. Plasma Sources Sci. Technol. 12(2), 205–216 (2003)ADSCrossRef M. Meyyappan, L. Delzeit, A. Cassell, D. Hash, Carbon nanotube growth by PECVD: a review. Plasma Sources Sci. Technol. 12(2), 205–216 (2003)ADSCrossRef
55.
Zurück zum Zitat M. Meyyappan, A review of plasma enhanced chemical vapour deposition of carbon nanotubes. J. Phys. D: Appl. Phys. 42(213001), 15 (2009) M. Meyyappan, A review of plasma enhanced chemical vapour deposition of carbon nanotubes. J. Phys. D: Appl. Phys. 42(213001), 15 (2009)
56.
Zurück zum Zitat K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, D.G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, D. Pribat, Uniform patterned growth of carbon nanotubes without surface carbon. Appl. Phys. Lett. 79(10), 1534–1536 (2001)ADSCrossRef K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, D.G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, D. Pribat, Uniform patterned growth of carbon nanotubes without surface carbon. Appl. Phys. Lett. 79(10), 1534–1536 (2001)ADSCrossRef
57.
Zurück zum Zitat V.I. Merkulov, A.V. Melechko, M.A. Guillorn, D.H. Lowndes, M.L. Simpson, Growth rate of plasma-synthesized vertically aligned carbon nanofibers. Chem. Phys. Lett. 361(5–6), 492–498 (2002)ADSCrossRef V.I. Merkulov, A.V. Melechko, M.A. Guillorn, D.H. Lowndes, M.L. Simpson, Growth rate of plasma-synthesized vertically aligned carbon nanofibers. Chem. Phys. Lett. 361(5–6), 492–498 (2002)ADSCrossRef
58.
Zurück zum Zitat B.A. Cruden, A.M. Cassell, Q. Ye, M. Meyyappan, Reactor design considerations in the hot filament/direct current plasma synthesis of carbon nanofibers. J. Appl. Phys. 94(6), 4070–4078 (2003)ADSCrossRef B.A. Cruden, A.M. Cassell, Q. Ye, M. Meyyappan, Reactor design considerations in the hot filament/direct current plasma synthesis of carbon nanofibers. J. Appl. Phys. 94(6), 4070–4078 (2003)ADSCrossRef
59.
Zurück zum Zitat K.B.K. Teo, D.B. Hash, R.G. Lacerda, N.L. Rupesinghe, M.S. Bell, S.H. Dalal, D. Bose, T.R. Govindan, B.A. Cruden, M. Chhowalla, G.A.J. Amaratunga, M. Meyyappan, W.I. Milne, The significance of plasma heating in carbon nanotube and nanofiber growth. Nano Lett. 4(5), 921–926 (2004)ADSCrossRef K.B.K. Teo, D.B. Hash, R.G. Lacerda, N.L. Rupesinghe, M.S. Bell, S.H. Dalal, D. Bose, T.R. Govindan, B.A. Cruden, M. Chhowalla, G.A.J. Amaratunga, M. Meyyappan, W.I. Milne, The significance of plasma heating in carbon nanotube and nanofiber growth. Nano Lett. 4(5), 921–926 (2004)ADSCrossRef
60.
Zurück zum Zitat J.-H. Han, W.-S. Yang, J.-B. Yoo, C.-Y. Park, Growth and emission characteristics of vertically well-aligned carbon nanotubes grown on glass substrate by hot filament plasma-enhanced chemical vapor deposition. J. Appl. Phys. 88(12), 7363–7365 (2000)ADSCrossRef J.-H. Han, W.-S. Yang, J.-B. Yoo, C.-Y. Park, Growth and emission characteristics of vertically well-aligned carbon nanotubes grown on glass substrate by hot filament plasma-enhanced chemical vapor deposition. J. Appl. Phys. 88(12), 7363–7365 (2000)ADSCrossRef
61.
Zurück zum Zitat Y. Wang, Nanophotonics of vertically aligned carbon nanotubes: two-dimensional photonic crystals and optical dipole antenna. Ph.D. Thesis, Boston College, 2006 Y. Wang, Nanophotonics of vertically aligned carbon nanotubes: two-dimensional photonic crystals and optical dipole antenna. Ph.D. Thesis, Boston College, 2006
62.
Zurück zum Zitat H. Wang, Z.F. Ren, The evolution of carbon nanotubes during their growth by plasma enhanced chemical vapor deposition. Nanotechnology 22(40), 405601 (2011)CrossRef H. Wang, Z.F. Ren, The evolution of carbon nanotubes during their growth by plasma enhanced chemical vapor deposition. Nanotechnology 22(40), 405601 (2011)CrossRef
63.
Zurück zum Zitat T.A. El-Aguizy, J. hyun Jeong, Y.-B. Jeon, W.Z. Li, Z.F. Ren, S.-G. Kim, Transplanting carbon nanotubes. Appl. Phys. Lett. 85(24), 5995–5997 (2004) T.A. El-Aguizy, J. hyun Jeong, Y.-B. Jeon, W.Z. Li, Z.F. Ren, S.-G. Kim, Transplanting carbon nanotubes. Appl. Phys. Lett. 85(24), 5995–5997 (2004)
64.
Zurück zum Zitat V.I. Merkulov, D.H. Lowndes, Y.Y. Wei, G. Eres, E. Voelkl, Patterned growth of individual and multiple vertically aligned carbon nanofibers. Appl. Phys. Lett. 76(24), 3555–3557 (2000)ADSCrossRef V.I. Merkulov, D.H. Lowndes, Y.Y. Wei, G. Eres, E. Voelkl, Patterned growth of individual and multiple vertically aligned carbon nanofibers. Appl. Phys. Lett. 76(24), 3555–3557 (2000)ADSCrossRef
65.
Zurück zum Zitat M. Chhowalla, K.B.K. Teo, C. Ducati, N.L. Rupesinghe, G.A.J. Amaratunga, A.C. Ferrari, D. Roy, J. Robertson, W.I. Milne, Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J. Appl. Phys. 90(10), 5308–5317 (2001)ADSCrossRef M. Chhowalla, K.B.K. Teo, C. Ducati, N.L. Rupesinghe, G.A.J. Amaratunga, A.C. Ferrari, D. Roy, J. Robertson, W.I. Milne, Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J. Appl. Phys. 90(10), 5308–5317 (2001)ADSCrossRef
66.
Zurück zum Zitat S.H. Jo, Y. Tu, Z.P. Huang, D.L. Carnahan, D.Z. Wang, Z.F. Ren, Effect of length and spacing of vertically aligned carbon nanotubes on field emission properties. Appl. Phys. Lett. 82(20), 3520–3522 (2003) S.H. Jo, Y. Tu, Z.P. Huang, D.L. Carnahan, D.Z. Wang, Z.F. Ren, Effect of length and spacing of vertically aligned carbon nanotubes on field emission properties. Appl. Phys. Lett. 82(20), 3520–3522 (2003)
67.
Zurück zum Zitat S.H. Jo, Y. Tu, Z.P. Huang, D.L. Carnahan, J.Y. Huang, D.Z. Wang, Z.F. Ren, Correlation of field emission and surface microstructure of vertically aligned carbon nanotubes. Appl. Phys. Lett. 84(3), 413–415 (2004)ADSCrossRef S.H. Jo, Y. Tu, Z.P. Huang, D.L. Carnahan, J.Y. Huang, D.Z. Wang, Z.F. Ren, Correlation of field emission and surface microstructure of vertically aligned carbon nanotubes. Appl. Phys. Lett. 84(3), 413–415 (2004)ADSCrossRef
68.
Zurück zum Zitat R.E. Morjan, V. Maltsev, O. Nerushev, Y. Yao, L.K.L. Falk, E.E.B. Campbell, High growth rates and wall decoration of carbon nanotubes grown by plasma-enhanced chemical vapour deposition. Chem. Phys. Lett. 383(3–4), 385–390 (2004)ADSCrossRef R.E. Morjan, V. Maltsev, O. Nerushev, Y. Yao, L.K.L. Falk, E.E.B. Campbell, High growth rates and wall decoration of carbon nanotubes grown by plasma-enhanced chemical vapour deposition. Chem. Phys. Lett. 383(3–4), 385–390 (2004)ADSCrossRef
69.
Zurück zum Zitat Y. Tu, Y. Lin, Z.F. Ren, Nanoelectrode arrays based on low site density aligned carbon nanotubes. Nano Lett. 3(1), 107–109 (2003)ADSCrossRef Y. Tu, Y. Lin, Z.F. Ren, Nanoelectrode arrays based on low site density aligned carbon nanotubes. Nano Lett. 3(1), 107–109 (2003)ADSCrossRef
70.
Zurück zum Zitat Y. Wang, J. Rybczynski, D.Z. Wang, K. Kempa, Z.F. Ren, W.Z. Li, B. Kimball, Periodicity and alignment of large-scale carbon nanotubes arrays. Appl. Phys. Lett. 85(20), 4741–4743 (2004)ADSCrossRef Y. Wang, J. Rybczynski, D.Z. Wang, K. Kempa, Z.F. Ren, W.Z. Li, B. Kimball, Periodicity and alignment of large-scale carbon nanotubes arrays. Appl. Phys. Lett. 85(20), 4741–4743 (2004)ADSCrossRef
71.
Zurück zum Zitat Z.P. Huang, J.W. Xu, Z.F. Ren, J.H. Wang, M.P. Siegal, P.N. Provencio, Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition. Appl. Phys. Lett. 73(26), 3845–3847 (1998)ADSCrossRef Z.P. Huang, J.W. Xu, Z.F. Ren, J.H. Wang, M.P. Siegal, P.N. Provencio, Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition. Appl. Phys. Lett. 73(26), 3845–3847 (1998)ADSCrossRef
72.
Zurück zum Zitat Y. Shiratori, H. Hiraoka, Y. Takeuchi, S. Itoh, M. Yamamoto, One-step formation of aligned carbon nanotube field emitters at 400 \({^\circ }\)C. Appl. Phys. Lett. 82(15), 2485–2487 (2003) Y. Shiratori, H. Hiraoka, Y. Takeuchi, S. Itoh, M. Yamamoto, One-step formation of aligned carbon nanotube field emitters at 400 \({^\circ }\)C. Appl. Phys. Lett. 82(15), 2485–2487 (2003)
73.
Zurück zum Zitat L. Delzeit, I. McAninch, B.A. Cruden, D. Hash, B. Chen, J. Han, M. Meyyappan, Growth of multiwall carbon nanotubes in an inductively coupled plasma reactor. J. Appl. Phys. 91(9), 6027–6033 (2002)ADSCrossRef L. Delzeit, I. McAninch, B.A. Cruden, D. Hash, B. Chen, J. Han, M. Meyyappan, Growth of multiwall carbon nanotubes in an inductively coupled plasma reactor. J. Appl. Phys. 91(9), 6027–6033 (2002)ADSCrossRef
74.
Zurück zum Zitat H.S. Kang, H.J. Yoon, C.O. Kim, J.P. Hong, I.T. Han, S.N. Cha, B.K. Song, J.E. Jung, N.S. Lee, J.M. Kim, Low temperature growth of multi-wall carbon nanotubes assisted by mesh potential using a modified plasma enhanced chemical vapor deposition system. Chem. Phys. Lett. 349(3–4), 196–200 (2001)ADSCrossRef H.S. Kang, H.J. Yoon, C.O. Kim, J.P. Hong, I.T. Han, S.N. Cha, B.K. Song, J.E. Jung, N.S. Lee, J.M. Kim, Low temperature growth of multi-wall carbon nanotubes assisted by mesh potential using a modified plasma enhanced chemical vapor deposition system. Chem. Phys. Lett. 349(3–4), 196–200 (2001)ADSCrossRef
75.
Zurück zum Zitat V.K. Varadan, J. Xie, Large-scale synthesis of multi-walled carbon nanotubes by microwave CVD. Smart Mater. Struct. 11(4), 610 (2002)ADSCrossRef V.K. Varadan, J. Xie, Large-scale synthesis of multi-walled carbon nanotubes by microwave CVD. Smart Mater. Struct. 11(4), 610 (2002)ADSCrossRef
76.
Zurück zum Zitat H. Cui, O. Zhou, B.R. Stoner, Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition. J. Appl. Phys. 88(10), 6072–6074 (2000)ADSCrossRef H. Cui, O. Zhou, B.R. Stoner, Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition. J. Appl. Phys. 88(10), 6072–6074 (2000)ADSCrossRef
77.
Zurück zum Zitat H. Murakami, M. Hirakawa, C. Tanaka, H. Yamakawa, Field emission from well-aligned, patterned, carbon nanotube emitters. Appl. Phys. Lett. 76(13), 1776–1778 (2000)ADSCrossRef H. Murakami, M. Hirakawa, C. Tanaka, H. Yamakawa, Field emission from well-aligned, patterned, carbon nanotube emitters. Appl. Phys. Lett. 76(13), 1776–1778 (2000)ADSCrossRef
78.
Zurück zum Zitat M. Okai, T. Muneyoshi, T. Yaguchi, S. Sasaki, Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 77(21), 3468–3470 (2000)ADSCrossRef M. Okai, T. Muneyoshi, T. Yaguchi, S. Sasaki, Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 77(21), 3468–3470 (2000)ADSCrossRef
79.
Zurück zum Zitat L.C. Qin, D. Zhou, A.R. Krauss, D.M. Gruen, Growing carbon nanotubes by microwave plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 72(26), 3437–3439 (1998)ADSCrossRef L.C. Qin, D. Zhou, A.R. Krauss, D.M. Gruen, Growing carbon nanotubes by microwave plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 72(26), 3437–3439 (1998)ADSCrossRef
80.
Zurück zum Zitat H. Boehm, Carbon from carbon monoxide disproportionation on nickel and iron catalysts: Morphological studies and possible growth mechanisms. Carbon 11(6), 583–586 (1973)CrossRef H. Boehm, Carbon from carbon monoxide disproportionation on nickel and iron catalysts: Morphological studies and possible growth mechanisms. Carbon 11(6), 583–586 (1973)CrossRef
81.
Zurück zum Zitat R.T.K. Baker, P.S. Harris, R.B. Thomas, R.J. Waite, Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene. J. Catal. 30(1), 86–95 (1973)CrossRef R.T.K. Baker, P.S. Harris, R.B. Thomas, R.J. Waite, Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene. J. Catal. 30(1), 86–95 (1973)CrossRef
82.
Zurück zum Zitat L. Huang, B. White, M.Y. Sfeir, M. Huang, H.X. Huang, S. Wind, J. Hone, S. O’Brien, Cobalt ultrathin film catalyzed ethanol chemical vapor deposition of single-walled carbon nanotubes. J. Phys. Chem. B 110(23), 11103–11109 (2006)CrossRef L. Huang, B. White, M.Y. Sfeir, M. Huang, H.X. Huang, S. Wind, J. Hone, S. O’Brien, Cobalt ultrathin film catalyzed ethanol chemical vapor deposition of single-walled carbon nanotubes. J. Phys. Chem. B 110(23), 11103–11109 (2006)CrossRef
83.
Zurück zum Zitat Y. Zhang, A. Chang, J. Cao, Q. Wang, W. Kim, Y. Li, N. Morris, E. Yenilmez, J. Kong, H. Dai, Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl. Phys. Lett. 79(19), 3155–3157 (2001)ADSCrossRef Y. Zhang, A. Chang, J. Cao, Q. Wang, W. Kim, Y. Li, N. Morris, E. Yenilmez, J. Kong, H. Dai, Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl. Phys. Lett. 79(19), 3155–3157 (2001)ADSCrossRef
84.
Zurück zum Zitat Y. Avigal, R. Kalish, Growth of aligned carbon nanotubes by biasing during growth. Appl. Phys. Lett. 78(16), 2291–2293 (2001)ADSCrossRef Y. Avigal, R. Kalish, Growth of aligned carbon nanotubes by biasing during growth. Appl. Phys. Lett. 78(16), 2291–2293 (2001)ADSCrossRef
85.
Zurück zum Zitat J.G. Wen, Z.P. Huang, D.Z. Wang, J.H. Chen, S.X. Yang, Z.F. Ren, J.H. Wang, L.E. Calvet, J. Chen, J.F. Klemic, M. Reed, Growth and characterization of aligned carbon nanotubes from patterned nickel nanodots and uniform thin films. J. Mater. Res. 16(11), 3246–3253 (2001)ADSCrossRef J.G. Wen, Z.P. Huang, D.Z. Wang, J.H. Chen, S.X. Yang, Z.F. Ren, J.H. Wang, L.E. Calvet, J. Chen, J.F. Klemic, M. Reed, Growth and characterization of aligned carbon nanotubes from patterned nickel nanodots and uniform thin films. J. Mater. Res. 16(11), 3246–3253 (2001)ADSCrossRef
86.
Zurück zum Zitat V.I. Merkulov, A.V. Melechko, M.A. Guillorn, D.H. Lowndes, M.L. Simpson, Alignment mechanism of carbon nanofibers produced by plasma-enhanced chemical-vapor deposition. Appl. Phys. Lett. 79(18), 2970–2972 (2001)ADSCrossRef V.I. Merkulov, A.V. Melechko, M.A. Guillorn, D.H. Lowndes, M.L. Simpson, Alignment mechanism of carbon nanofibers produced by plasma-enhanced chemical-vapor deposition. Appl. Phys. Lett. 79(18), 2970–2972 (2001)ADSCrossRef
87.
Zurück zum Zitat Y. Hayashi, T. Negishi, S. Nishino, Growth of well-aligned carbon nanotubes on nickel by hot-filament-assisted DC plasma chemical vapor deposition in a \(\text{ CH}_4\)/\(\text{H}_2\) plasma. J. Vac. Sci. Technol. A 19(4), 1796–1799 (2001) Y. Hayashi, T. Negishi, S. Nishino, Growth of well-aligned carbon nanotubes on nickel by hot-filament-assisted DC plasma chemical vapor deposition in a \(\text{ CH}_4\)/\(\text{H}_2\) plasma. J. Vac. Sci. Technol. A 19(4), 1796–1799 (2001)
88.
Zurück zum Zitat K. MacKenzie, O. Dunens, A.T. Harris, A review of carbon nanotube purification by microwave assisted acid digestion. Sep. Purif. Technol. 66(2), 209–222 (2009)CrossRef K. MacKenzie, O. Dunens, A.T. Harris, A review of carbon nanotube purification by microwave assisted acid digestion. Sep. Purif. Technol. 66(2), 209–222 (2009)CrossRef
89.
Zurück zum Zitat X. Song, Y. Fang, A technique of purification process of single-walled carbon nanotubes with air. Spectrochim. Acta A 67(3–4), 1131–1134 (2007)ADS X. Song, Y. Fang, A technique of purification process of single-walled carbon nanotubes with air. Spectrochim. Acta A 67(3–4), 1131–1134 (2007)ADS
90.
Zurück zum Zitat T. Guo, P. Nikolaev, A. Thess, D. Colbert, R. Smalley, Catalytic growth of single-walled manotubes by laser vaporization. Chem. Phys. Lett. 243(1–2), 49–54 (1995)CrossRef T. Guo, P. Nikolaev, A. Thess, D. Colbert, R. Smalley, Catalytic growth of single-walled manotubes by laser vaporization. Chem. Phys. Lett. 243(1–2), 49–54 (1995)CrossRef
91.
Zurück zum Zitat A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tománek, J.E. Fischer, R.E. Smalley, Crystalline ropes of metallic carbon nanotubes. Science 273(5274), 483–487 (1996)ADSCrossRef A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tománek, J.E. Fischer, R.E. Smalley, Crystalline ropes of metallic carbon nanotubes. Science 273(5274), 483–487 (1996)ADSCrossRef
92.
Zurück zum Zitat A.G. Nasibulin, P.V. Pikhitsa, H. Jiang, D.P. Brown, A.V. Krasheninnikov, A.S. Anisimov, P. Queipo, A. Moisala, D. Gonzalez, G. Lientschnig, A. Hassanien, S.D. Shandakov, G. Lolli, D.E. Resasco, M. Choi, D. Tománek, E.I. Kauppinen, A novel hybrid carbon material. Nat. Nanotechnol. 2(3), 156–161 (2007)ADSCrossRef A.G. Nasibulin, P.V. Pikhitsa, H. Jiang, D.P. Brown, A.V. Krasheninnikov, A.S. Anisimov, P. Queipo, A. Moisala, D. Gonzalez, G. Lientschnig, A. Hassanien, S.D. Shandakov, G. Lolli, D.E. Resasco, M. Choi, D. Tománek, E.I. Kauppinen, A novel hybrid carbon material. Nat. Nanotechnol. 2(3), 156–161 (2007)ADSCrossRef
93.
Zurück zum Zitat Z. Huang, D. Wang, J. Wen, M. Sennett, H. Gibson, Z. Ren, Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes. Appl. Phys. A 74(3), 387–391 (2002)ADSCrossRef Z. Huang, D. Wang, J. Wen, M. Sennett, H. Gibson, Z. Ren, Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes. Appl. Phys. A 74(3), 387–391 (2002)ADSCrossRef
94.
Zurück zum Zitat S. Amelinckx, X.B. Zhang, D. Bernaerts, X.F. Zhang, V. Ivanov, J.B. Nagy, A formation mechanism for catalytically grown helix-shaped graphite nanotubes. Science 265(5172), 635–639 (1994)ADSCrossRef S. Amelinckx, X.B. Zhang, D. Bernaerts, X.F. Zhang, V. Ivanov, J.B. Nagy, A formation mechanism for catalytically grown helix-shaped graphite nanotubes. Science 265(5172), 635–639 (1994)ADSCrossRef
95.
Zurück zum Zitat N. Yoshikawa, T. Asari, N. Kishi, S. Hayashi, T. Sugai, H. Shinohara, An efficient fabrication of vertically aligned carbon nanotubes on flexible aluminum foils by catalyst-supported chemical vapor deposition. Nanotehnology 19(24), 245607 (2008)ADSCrossRef N. Yoshikawa, T. Asari, N. Kishi, S. Hayashi, T. Sugai, H. Shinohara, An efficient fabrication of vertically aligned carbon nanotubes on flexible aluminum foils by catalyst-supported chemical vapor deposition. Nanotehnology 19(24), 245607 (2008)ADSCrossRef
96.
Zurück zum Zitat C.-C. Su, S.-H. Chang, Effective growth of vertically aligned carbon nanotube turfs on flexible Al foil. Mater. Lett. 65(17–18), 2700–2702 (2011)CrossRef C.-C. Su, S.-H. Chang, Effective growth of vertically aligned carbon nanotube turfs on flexible Al foil. Mater. Lett. 65(17–18), 2700–2702 (2011)CrossRef
97.
Zurück zum Zitat T. Hiraoka, T. Yamada, K. Hata, D.N. Futaba, H. Kurachi, S. Uemura, M. Yumura, S. Iijima, Synthesis of single- and double-walled carbon nanotube forests on conducting metal foils. J. Am. Chem. Soc. 128(41), 13338–13339 (2006)CrossRef T. Hiraoka, T. Yamada, K. Hata, D.N. Futaba, H. Kurachi, S. Uemura, M. Yumura, S. Iijima, Synthesis of single- and double-walled carbon nanotube forests on conducting metal foils. J. Am. Chem. Soc. 128(41), 13338–13339 (2006)CrossRef
98.
Zurück zum Zitat X. Lepró, M.D. Lima, R.H. Baughman, Spinnable carbon nanotube forests grown on thin, flexible metallic substrates. Carbon 48(12), 3621–3627 (2010)CrossRef X. Lepró, M.D. Lima, R.H. Baughman, Spinnable carbon nanotube forests grown on thin, flexible metallic substrates. Carbon 48(12), 3621–3627 (2010)CrossRef
99.
Zurück zum Zitat S.P. Patole, H.-I. Kim, J.-H. Jung, A.S. Patole, H.-J. Kim, I.-T. Han, V.N. Bhoraskar, J.-B. Yoo, The synthesis of vertically-aligned carbon nanotubes on an aluminum foil laminated on stainless steel. Carbon 49, 3522–3528 (2011)CrossRef S.P. Patole, H.-I. Kim, J.-H. Jung, A.S. Patole, H.-J. Kim, I.-T. Han, V.N. Bhoraskar, J.-B. Yoo, The synthesis of vertically-aligned carbon nanotubes on an aluminum foil laminated on stainless steel. Carbon 49, 3522–3528 (2011)CrossRef
100.
Zurück zum Zitat M.K. Tabatabaei, H. Ghafouri fard, J. Koohsorkhi, S. Khatami, S. Mohajerzadeh, Remote and direct plasma regions for low-temperature growth of carbon nanotubes on glass substrates for display applications. J. Phys. D: Appl. Phys. 44(11), 115401 (2011) M.K. Tabatabaei, H. Ghafouri fard, J. Koohsorkhi, S. Khatami, S. Mohajerzadeh, Remote and direct plasma regions for low-temperature growth of carbon nanotubes on glass substrates for display applications. J. Phys. D: Appl. Phys. 44(11), 115401 (2011)
101.
Zurück zum Zitat T. Nozaki, K. Okazaki, Carbon nanotube synthesis pressure glow discharge: a review. Plasma Processes Polym. 5(4), 301–321 (2008) T. Nozaki, K. Okazaki, Carbon nanotube synthesis pressure glow discharge: a review. Plasma Processes Polym. 5(4), 301–321 (2008)
102.
Zurück zum Zitat T. Nozaki, T. Goto, K. Okazaki, K. Ohnishi, L. Mangolini, J. Heberlein, U. Kortshagen, Deposition of vertically oriented carbon nanofibers in atmospheric pressure radio frequency discharge. J. Appl. Phys. 99(2), 024310-1–024310-7 (2006) T. Nozaki, T. Goto, K. Okazaki, K. Ohnishi, L. Mangolini, J. Heberlein, U. Kortshagen, Deposition of vertically oriented carbon nanofibers in atmospheric pressure radio frequency discharge. J. Appl. Phys. 99(2), 024310-1–024310-7 (2006)
103.
Zurück zum Zitat T. Nozaki, K. Ohnishi, K. Okazaki, U. Kortshagen, Fabrication of vertically aligned single-walled carbon nanotubes in atmospheric pressure non-thermal plasma CVD. Carbon 45(2), 364–374 (2007)CrossRef T. Nozaki, K. Ohnishi, K. Okazaki, U. Kortshagen, Fabrication of vertically aligned single-walled carbon nanotubes in atmospheric pressure non-thermal plasma CVD. Carbon 45(2), 364–374 (2007)CrossRef
104.
Zurück zum Zitat T. Nozaki, Y. Kimura, K. Okazaki, Carbon nanotubes deposition in glow barrier discharge enhanced catalytic CVD. J. Phys. D: Appl. Phys. 35(21), 2779–2784 (2002)ADSCrossRef T. Nozaki, Y. Kimura, K. Okazaki, Carbon nanotubes deposition in glow barrier discharge enhanced catalytic CVD. J. Phys. D: Appl. Phys. 35(21), 2779–2784 (2002)ADSCrossRef
105.
Zurück zum Zitat L. Zheng, G. Sun, Z. Zhan, Tuning array morphology for high-strength carbon-nanotube fibers. Small 6(1), 132–137 (2010)CrossRef L. Zheng, G. Sun, Z. Zhan, Tuning array morphology for high-strength carbon-nanotube fibers. Small 6(1), 132–137 (2010)CrossRef
106.
Zurück zum Zitat S. Huang, L. Dai, A. Mau, Controlled fabrication of aligned carbon nanotube patterns. Phys. B 323(1–4), 333–335 (2002) S. Huang, L. Dai, A. Mau, Controlled fabrication of aligned carbon nanotube patterns. Phys. B 323(1–4), 333–335 (2002)
107.
Zurück zum Zitat L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J.-M. Bonard, K. Kern, Scanning field emission from patterned carbon nanotube films. Appl. Phys. Lett. 76(15), 2071–2073 (2000)ADSCrossRef L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J.-M. Bonard, K. Kern, Scanning field emission from patterned carbon nanotube films. Appl. Phys. Lett. 76(15), 2071–2073 (2000)ADSCrossRef
Metadaten
Titel
Chemical Vapor Deposition of Carbon Nanotubes
verfasst von
Zhifeng Ren
Yucheng Lan
Yang Wang
Copyright-Jahr
2013
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-30490-3_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.