Skip to main content

2014 | OriginalPaper | Buchkapitel

5. Circuit Solutions

verfasst von : Amir Zjajo

Erschienen in: Stochastic Process Variation in Deep-Submicron CMOS

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

CMOS technologies move steadily towards finer geometries, which provide higher digital capacity, lower dynamic power consumption and smaller area resulting in integration of whole systems, or large parts of systems, on the same chip. However, due to technology scaling, integrated circuits are becoming more susceptible to variations in process parameters and noise effects like power supply noise, cross-talk reduced supply voltage and threshold voltage operation severely impacting the yield [1]. Since parameter variations depend on unforeseen operational conditions, chips may fail despite they pass standard test procedures. Similarly, the magnitude of thermal gradients and associated thermo-mechanical stress increase further as CMOS designs move into nanometer processes and multi-GHz frequencies [1]. Higher temperature increases the risk of damaging the devices and interconnects since major back-end and front-end reliability issues including electro-migration, time-dependent dielectric breakdown, and negative-bias temperature instability have strong dependence on temperature. As a consequence, continuous observation of process variation and thermal monitoring becomes necessity. Such observation is enhanced with dedicated monitors embedded within the functional cores [2]. In order to maximize the coverage, the process variation and thermal sensing devices are scattered across the entire chip to meet the control requirements. The monitors are networked by an underlying infrastructure, which provides the bias currents to the sensing devices, collects measurements, and performs analog to digital signal conversion. Therefore, the supporting infrastructure is an on-chip element at a global scale, growing in complexity with each emerging design.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat ITRS, International Technology Roadmap for Semiconductors (2009) ITRS, International Technology Roadmap for Semiconductors (2009)
2.
Zurück zum Zitat V. Petrescu, M. Pelgrom, H. Veendrick, P. Pavithran, J. Wieling, Monitors for a signal integrity measurement system, in Proceedings of IEEE European Solid-State Circuit Conference, 2006, pp. 122–125 V. Petrescu, M. Pelgrom, H. Veendrick, P. Pavithran, J. Wieling, Monitors for a signal integrity measurement system, in Proceedings of IEEE European Solid-State Circuit Conference, 2006, pp. 122–125
3.
Zurück zum Zitat M. Bhushan, M.B. Ketchen, S. Polonksy, A. Gattiker, Ring oscillator based technique for measuring variability statistics, in Proceedings of IEEE International Conference on Microelectronic Test Structures, 2006, pp. 87–92 M. Bhushan, M.B. Ketchen, S. Polonksy, A. Gattiker, Ring oscillator based technique for measuring variability statistics, in Proceedings of IEEE International Conference on Microelectronic Test Structures, 2006, pp. 87–92
4.
Zurück zum Zitat N. Izumi et al., Evaluation of transistor property variations within chips on 300 mm wafers using a new MOSFET array test structure. IEEE Trans. Semicond. Manuf. 17(3), 248–254 (2004)MathSciNetCrossRef N. Izumi et al., Evaluation of transistor property variations within chips on 300 mm wafers using a new MOSFET array test structure. IEEE Trans. Semicond. Manuf. 17(3), 248–254 (2004)MathSciNetCrossRef
5.
Zurück zum Zitat P. Chen, C. Chen, C. Tsai, W. Lu, A time-to-digital-converter based CMOS smart temperature sensor. IEEE J. Solid-State Circ. 40(8), 1642–1648 (2005)CrossRef P. Chen, C. Chen, C. Tsai, W. Lu, A time-to-digital-converter based CMOS smart temperature sensor. IEEE J. Solid-State Circ. 40(8), 1642–1648 (2005)CrossRef
6.
Zurück zum Zitat V. Szekely, C. Marta, Z. Kohari, M. Rencz, CMOS sensors for online thermal monitoring of VLSI circuits. IEEE Trans. VLSI Syst. 5(3), 270–276 (1997)CrossRef V. Szekely, C. Marta, Z. Kohari, M. Rencz, CMOS sensors for online thermal monitoring of VLSI circuits. IEEE Trans. VLSI Syst. 5(3), 270–276 (1997)CrossRef
7.
Zurück zum Zitat B. Datta, W. Burleson, Temperature effects on energy optimization in sub-threshold circuit design, in Proceedings of IEEE International Symposium on Quality Electronic Design, 2009, pp. 680–685 B. Datta, W. Burleson, Temperature effects on energy optimization in sub-threshold circuit design, in Proceedings of IEEE International Symposium on Quality Electronic Design, 2009, pp. 680–685
8.
Zurück zum Zitat G.C.M. Meijer, G. Wang, F. Fruett, Temperature sensors and voltage references implemented in CMOS technology. IEEE Sens. J. 1(3), 225–234 (2001)CrossRef G.C.M. Meijer, G. Wang, F. Fruett, Temperature sensors and voltage references implemented in CMOS technology. IEEE Sens. J. 1(3), 225–234 (2001)CrossRef
9.
Zurück zum Zitat G.J. McLachlan, T. Krishnan, The EM Algorithm and Extensions, (Wiley-Interscience, New York, 1997) G.J. McLachlan, T. Krishnan, The EM Algorithm and Extensions, (Wiley-Interscience, New York, 1997)
10.
Zurück zum Zitat C. Cortes, V. Vapnik, Support-vector networks. Machine Learning 20, 273–297 (1995)MATH C. Cortes, V. Vapnik, Support-vector networks. Machine Learning 20, 273–297 (1995)MATH
11.
Zurück zum Zitat IEEE Standard Test Access Port and Boundary-Scan Architecture, IEEE Std. 1149.1-2001, Test Technol. Tech. Committee. IEEE Computer Soc IEEE Standard Test Access Port and Boundary-Scan Architecture, IEEE Std. 1149.1-2001, Test Technol. Tech. Committee. IEEE Computer Soc
12.
Zurück zum Zitat E. Sackinger, W. Guggenuhl, A high-swing, high-impedance MOS cascode circuit. IEEE J. Solid-State Circ. 25(1), 89–298 (1990)CrossRef E. Sackinger, W. Guggenuhl, A high-swing, high-impedance MOS cascode circuit. IEEE J. Solid-State Circ. 25(1), 89–298 (1990)CrossRef
13.
Zurück zum Zitat P. Coban, A. Allen, 1.75-V rail-to-rail CMOS opamp, in Proceedings of IEEE International Symposium on Circuits and Systems, 1994, vol. 5, pp. 497–500 P. Coban, A. Allen, 1.75-V rail-to-rail CMOS opamp, in Proceedings of IEEE International Symposium on Circuits and Systems, 1994, vol. 5, pp. 497–500
14.
Zurück zum Zitat T. Kumamoto, M. Nakaya, H. Honda, S. Asai, Y. Akasaka, Y. Horiba, An 8-bit high-speed CMOS A/D converter. IEEE J. Solid-State Circ. 21(6), 976–982 (1986)CrossRef T. Kumamoto, M. Nakaya, H. Honda, S. Asai, Y. Akasaka, Y. Horiba, An 8-bit high-speed CMOS A/D converter. IEEE J. Solid-State Circ. 21(6), 976–982 (1986)CrossRef
15.
Zurück zum Zitat A. Yukawa, An 8-bit high-speed CMOS A/D converter, IEEE J. Solid-State Circuits, 20(3), 775–779 (1985) A. Yukawa, An 8-bit high-speed CMOS A/D converter, IEEE J. Solid-State Circuits, 20(3), 775–779 (1985)
16.
Zurück zum Zitat C–.C. Huang, J.-T. Wu, A background comparator calibration technique for flash analog-to-digital converters. IEEE Trans. Circ. Syst. I 52(9), 1732–1740 (2005)CrossRef C–.C. Huang, J.-T. Wu, A background comparator calibration technique for flash analog-to-digital converters. IEEE Trans. Circ. Syst. I 52(9), 1732–1740 (2005)CrossRef
17.
Zurück zum Zitat F. Fruett, G.C.M. Meijer, A. Bakker, Minimization of the mechanical-stress-induced inaccuracy in bandgap voltage references. IEEE J. Solid-State Circ. 38(7), 1288–1291 (2003)CrossRef F. Fruett, G.C.M. Meijer, A. Bakker, Minimization of the mechanical-stress-induced inaccuracy in bandgap voltage references. IEEE J. Solid-State Circ. 38(7), 1288–1291 (2003)CrossRef
18.
Zurück zum Zitat M.A.P. Pertijs, G.C.M. Meijer, J.H. Huijsing, Precision temperature measurement using CMOS substrate PNP transistors. IEEE Sens. J. 4(3), 294–300 (2004)CrossRef M.A.P. Pertijs, G.C.M. Meijer, J.H. Huijsing, Precision temperature measurement using CMOS substrate PNP transistors. IEEE Sens. J. 4(3), 294–300 (2004)CrossRef
19.
Zurück zum Zitat F. Fruett, G. Wang, G.C.M. Meijer, The piezojunction effect in NPN and PNP vertical transistors and its influence on silicon temperature sensors. Sens. Actuators A Sens. 85, 70–74 (2000)CrossRef F. Fruett, G. Wang, G.C.M. Meijer, The piezojunction effect in NPN and PNP vertical transistors and its influence on silicon temperature sensors. Sens. Actuators A Sens. 85, 70–74 (2000)CrossRef
20.
Zurück zum Zitat M.R. Valer, S. Celma, B. Calvo, N. Medrano, CMOS voltage-to-frequency converter with temperature drift compensation. IEEE Trans. Instrum. Meas. 60(9), 3232–3234 (2011)CrossRef M.R. Valer, S. Celma, B. Calvo, N. Medrano, CMOS voltage-to-frequency converter with temperature drift compensation. IEEE Trans. Instrum. Meas. 60(9), 3232–3234 (2011)CrossRef
21.
Zurück zum Zitat A. Bakker, J.H. Huijsing, A low-cost high-accuracy CMOS smart temperature sensor, in Proceedings of IEEE European Solid-State Circuit Conference, 1999, pp. 302–305 A. Bakker, J.H. Huijsing, A low-cost high-accuracy CMOS smart temperature sensor, in Proceedings of IEEE European Solid-State Circuit Conference, 1999, pp. 302–305
22.
Zurück zum Zitat C.H. Brown, Asymptotic comparison of missing data procedures for estimating factor loadings. Psychometrika 48, 269–292 (1983)CrossRef C.H. Brown, Asymptotic comparison of missing data procedures for estimating factor loadings. Psychometrika 48, 269–292 (1983)CrossRef
23.
Zurück zum Zitat R.B. Kline, Principles and practices of structural equation modeling, (Guilford, New York 1998) R.B. Kline, Principles and practices of structural equation modeling, (Guilford, New York 1998)
24.
Zurück zum Zitat B. Muthen, D. Kaplan, M. Hollis, On structural equation modeling with data that are not missing completely at random. Psychometrika 52, 431–462 (1987)CrossRefMATH B. Muthen, D. Kaplan, M. Hollis, On structural equation modeling with data that are not missing completely at random. Psychometrika 52, 431–462 (1987)CrossRefMATH
25.
Zurück zum Zitat A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete data via the EM Algorithm. J. Roy. Stat. Soc. B. 39, 1–38 (1977)MathSciNetMATH A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete data via the EM Algorithm. J. Roy. Stat. Soc. B. 39, 1–38 (1977)MathSciNetMATH
26.
Zurück zum Zitat R.A. Redner, H.F. Walker, Mixture densities, maximum likelihood and the EM algorithm. Surv. Math. Ind. 26, 195–239 (1984)MathSciNetMATH R.A. Redner, H.F. Walker, Mixture densities, maximum likelihood and the EM algorithm. Surv. Math. Ind. 26, 195–239 (1984)MathSciNetMATH
27.
Zurück zum Zitat V. Franc, V. Hlavac, Multi-class support vector machine, in Proceedings of IEEE International Conference on Pattern Recognition, vol. 2, 2002, pp. 236–239 V. Franc, V. Hlavac, Multi-class support vector machine, in Proceedings of IEEE International Conference on Pattern Recognition, vol. 2, 2002, pp. 236–239
28.
Zurück zum Zitat A. Zjajo, J. Pineda de Gyvez, A 1.2 V 55mW 12 bits self-calibrated dual-residue analog to digital converter in 90 nm CMOS, in Proceedings of IEEE International Symposium on Low Power Electronic Design, 2011, pp. 187–192 A. Zjajo, J. Pineda de Gyvez, A 1.2 V 55mW 12 bits self-calibrated dual-residue analog to digital converter in 90 nm CMOS, in Proceedings of IEEE International Symposium on Low Power Electronic Design, 2011, pp. 187–192
29.
Zurück zum Zitat A. Zjajo, J. Pineda de Gyvez, An adaptive digital calibration of multi-step A/D converters, in Proceedings of IEEE International Conference on Signal Processing, 2010, pp. 2456–2459 A. Zjajo, J. Pineda de Gyvez, An adaptive digital calibration of multi-step A/D converters, in Proceedings of IEEE International Conference on Signal Processing, 2010, pp. 2456–2459
30.
Zurück zum Zitat D.M. Hummels, F.H. Irons, R. Cook, I. Papantonopoulos, Characterization of ADCs using a non-iterative procedure, in Proceedings of IEEE International Symposium on Circuits and Systems, vol. 2, 1994, pp. 5–8 D.M. Hummels, F.H. Irons, R. Cook, I. Papantonopoulos, Characterization of ADCs using a non-iterative procedure, in Proceedings of IEEE International Symposium on Circuits and Systems, vol. 2, 1994, pp. 5–8
31.
Zurück zum Zitat D. Hummels, Performance improvement of all-digital wide-bandwidth receivers by linearization of ADCs and DACs. Measurement 31(1), 35–45 (2002)CrossRef D. Hummels, Performance improvement of all-digital wide-bandwidth receivers by linearization of ADCs and DACs. Measurement 31(1), 35–45 (2002)CrossRef
32.
Zurück zum Zitat S.-U. Kwak, B.-S. Song, K. Bacrania, A 15 b 5 MSample/s low-spurious CMOS ADC, IEEE International Solid-State Circuits Conference Digest of Technical Papers, 1997, pp. 146–147 S.-U. Kwak, B.-S. Song, K. Bacrania, A 15 b 5 MSample/s low-spurious CMOS ADC, IEEE International Solid-State Circuits Conference Digest of Technical Papers, 1997, pp. 146–147
33.
Zurück zum Zitat K. Dyer, D. Fu, S. Lewis, P. Hurst, Analog background calibration technique for time-interleaved analog-to-digital converters. IEEE J. Solid-State Circ. 33(12), 1912–1919 (1998)CrossRef K. Dyer, D. Fu, S. Lewis, P. Hurst, Analog background calibration technique for time-interleaved analog-to-digital converters. IEEE J. Solid-State Circ. 33(12), 1912–1919 (1998)CrossRef
34.
Zurück zum Zitat D. Fu, K.C. Dyer, S.H. Lewis, P.J. Hurst, A digital background calibration technique for time-interleaved analog-to-digital converters. IEEE J. Solid-State Circ. 33(12), 1904–1911 (1998)CrossRef D. Fu, K.C. Dyer, S.H. Lewis, P.J. Hurst, A digital background calibration technique for time-interleaved analog-to-digital converters. IEEE J. Solid-State Circ. 33(12), 1904–1911 (1998)CrossRef
35.
Zurück zum Zitat G. Erdi, A precision trim technique for monolithic analog circuits. IEEE J. Solid-State Circ. 10(6), 412–416 (1975)CrossRef G. Erdi, A precision trim technique for monolithic analog circuits. IEEE J. Solid-State Circ. 10(6), 412–416 (1975)CrossRef
36.
Zurück zum Zitat M. Mayes, S. Chin, L. Stoian, A low-power 1 MHz 25 mW 12-bit time-interleaved analog-to-digital converter. IEEE J. Solid-State Circ. 31(2), 169–178 (1996)CrossRef M. Mayes, S. Chin, L. Stoian, A low-power 1 MHz 25 mW 12-bit time-interleaved analog-to-digital converter. IEEE J. Solid-State Circ. 31(2), 169–178 (1996)CrossRef
37.
Zurück zum Zitat H.-S. Lee, D. Hodges, P. Gray, A self-calibrating 15 bit CMOS A/D converter. IEEE J. Solid-State Circ. 19(6), 813–819 (1984)CrossRef H.-S. Lee, D. Hodges, P. Gray, A self-calibrating 15 bit CMOS A/D converter. IEEE J. Solid-State Circ. 19(6), 813–819 (1984)CrossRef
38.
Zurück zum Zitat P. Yu, S. Shehata, A. Joharapurkar, P. Chugh, A. Bugeja, X. Du, S.-U. Kwak, Y. Panantonopoulous, T. Kuyel, A 14b 40MSample/s pipelined ADC with DFCA, IEEE International Solid-State Circuit Conference Digest of Technical Papers, 2001, pp. 136–137 P. Yu, S. Shehata, A. Joharapurkar, P. Chugh, A. Bugeja, X. Du, S.-U. Kwak, Y. Panantonopoulous, T. Kuyel, A 14b 40MSample/s pipelined ADC with DFCA, IEEE International Solid-State Circuit Conference Digest of Technical Papers, 2001, pp. 136–137
39.
Zurück zum Zitat I. Galton, Digital cancellation of D/A converter noise in pipelined A/D converters. IEEE Trans. Circ. Syst. I, 47(3), 185–196 (2000) I. Galton, Digital cancellation of D/A converter noise in pipelined A/D converters. IEEE Trans. Circ. Syst. I, 47(3), 185–196 (2000)
40.
Zurück zum Zitat J.M. Ingino, B.A. Wooley, A continuously calibrated 12-b, 10-MS/s, 3.3-V A/D converter. IEEE J. Solid-State Circ. 33(12), 1920–1931 (1998)CrossRef J.M. Ingino, B.A. Wooley, A continuously calibrated 12-b, 10-MS/s, 3.3-V A/D converter. IEEE J. Solid-State Circ. 33(12), 1920–1931 (1998)CrossRef
41.
Zurück zum Zitat O.E. Erdogan, P.J. Hurst, S.H. Lewis, A 12-b digital-background-calibrated algorithmic ADC with -90-dB THD. IEEE J. Solid-State Circ. 34(12), 1812–1820 (1999)CrossRef O.E. Erdogan, P.J. Hurst, S.H. Lewis, A 12-b digital-background-calibrated algorithmic ADC with -90-dB THD. IEEE J. Solid-State Circ. 34(12), 1812–1820 (1999)CrossRef
42.
Zurück zum Zitat U.-K. Moon, B.-S. Song, Background digital calibration techniques for pipelined ADC’s. IEEE Trans. Circ. Syst. II, 44(2), 102–109 (1997) U.-K. Moon, B.-S. Song, Background digital calibration techniques for pipelined ADC’s. IEEE Trans. Circ. Syst. II, 44(2), 102–109 (1997)
43.
Zurück zum Zitat T.-H. Shu, B.-S. Song, K. Bacrania, A 13-b 10-Msample/s ADC digitally calibrated with oversampling delta-sigma converter. IEEE J. Solid-State Circ. 30(4), 443–452 (1994)ADS T.-H. Shu, B.-S. Song, K. Bacrania, A 13-b 10-Msample/s ADC digitally calibrated with oversampling delta-sigma converter. IEEE J. Solid-State Circ. 30(4), 443–452 (1994)ADS
44.
Zurück zum Zitat J.E. Dennis, R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, (Prentice-Hall, Englewood Cliffs, 1983) J.E. Dennis, R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, (Prentice-Hall, Englewood Cliffs, 1983)
45.
Zurück zum Zitat B. Widrow, S.D. Stearns, Adaptive Signal Processing, (Prentice-Hall, Englewood Cliffs 1985) B. Widrow, S.D. Stearns, Adaptive Signal Processing, (Prentice-Hall, Englewood Cliffs 1985)
46.
Zurück zum Zitat H.-W. Ting, B.-D. Liu, S.J. Chang, A histogram-based testing method for estimating A/D converter performance. IEEE Trans. Instrum. Meas. 57(2), 420–427 (2007)CrossRef H.-W. Ting, B.-D. Liu, S.J. Chang, A histogram-based testing method for estimating A/D converter performance. IEEE Trans. Instrum. Meas. 57(2), 420–427 (2007)CrossRef
47.
Zurück zum Zitat C.-C. Chung, C.-R. Yang, An all-digital smart temperature sensor with auto-calibration in 65 nm CMOS technology, in Proceedings of IEEE International Symposium on Circuits and Systems, 2010, pp. 4089–4092 C.-C. Chung, C.-R. Yang, An all-digital smart temperature sensor with auto-calibration in 65 nm CMOS technology, in Proceedings of IEEE International Symposium on Circuits and Systems, 2010, pp. 4089–4092
48.
Zurück zum Zitat K. Woo, S. Meninger, T. Xanthopoulos, E. Crain, D. Ha, D. Ham, Dual-DLL-based CMOS all-digital temperatrue sensor for microprocessor thermal monitoring, in Proceedings of IEEE International Solid-State Circuit Conference, 2009, pp. 68–70 K. Woo, S. Meninger, T. Xanthopoulos, E. Crain, D. Ha, D. Ham, Dual-DLL-based CMOS all-digital temperatrue sensor for microprocessor thermal monitoring, in Proceedings of IEEE International Solid-State Circuit Conference, 2009, pp. 68–70
49.
Zurück zum Zitat M.A.P. Pertijs, K.A.A. Makinwa, J.H. Huijsing, A CMOS smart temperature sensor with a 3σ inaccuracy of ± 0.1°C from 55 to 125°C. IEEE J. Solid-State Circ. 40(12), 2805–2815 (2005)CrossRef M.A.P. Pertijs, K.A.A. Makinwa, J.H. Huijsing, A CMOS smart temperature sensor with a 3σ inaccuracy of ± 0.1°C from 55 to 125°C. IEEE J. Solid-State Circ. 40(12), 2805–2815 (2005)CrossRef
50.
Zurück zum Zitat D. Schinkel, R.P. de Boer, A.J. Annema, A.J.M. van Tuijl, A 1-V 15 μW high-precision temperature switch, Proceedings of IEEE European Solid-State Circuit Conference, 2001, pp. 77–80 D. Schinkel, R.P. de Boer, A.J. Annema, A.J.M. van Tuijl, A 1-V 15 μW high-precision temperature switch, Proceedings of IEEE European Solid-State Circuit Conference, 2001, pp. 77–80
51.
Zurück zum Zitat A. Zjajo, J. Pineda de Gyvez, DfT for full accessibility of multi-step analog to digital converters, in Proceedings of IEEE International Symposium on VLSI Design, Automation and Test, 2008, pp. 73–76 A. Zjajo, J. Pineda de Gyvez, DfT for full accessibility of multi-step analog to digital converters, in Proceedings of IEEE International Symposium on VLSI Design, Automation and Test, 2008, pp. 73–76
52.
Zurück zum Zitat M. Shinagawa, Y. Akazawa, T. Wakimoto, Jitter analysis of high-speed sampling systems. IEEE J. Solid-State Circ. 25(5), 220–224 (1990)CrossRef M. Shinagawa, Y. Akazawa, T. Wakimoto, Jitter analysis of high-speed sampling systems. IEEE J. Solid-State Circ. 25(5), 220–224 (1990)CrossRef
Metadaten
Titel
Circuit Solutions
verfasst von
Amir Zjajo
Copyright-Jahr
2014
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-7781-1_5

Neuer Inhalt